用户名: 密码: 验证码:
地下水封洞库岩体力学参数REV的各向异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体力学参数的合理取值是岩土工程中最根本的问题之一,参数选择的准确与否直接影响到工程的安全性及工程造价的合理性。地下水封洞库作为一种较为新颖的工程类型,“水封效果”及“围岩稳定性”是其需要解决的两个关键问题,而岩体力学参数的合理取值是解决这两个问题的核心内容。然而实际工程中的岩体内部都存在着大量的结构面,使得岩体力学性质错综复杂,具有显著的尺寸效应及各向异性。因此,岩体力学参数的合理取值离不开其尺寸效应及各向异性的研究。表征单元体(Representative Elementary Volume, REV)是岩体力学性质尺寸效应研究的核心内容,即尺寸效应的研究需要确定各力学参数REV的大小。且岩体具有各向异性,因此力学参数在不同方向上的REV尺寸必然不同,故本文开展岩体在不同方向上的力学参数REV研究,确定能够反映岩体各向异性的力学参数REV大小。
     此外,REV的概念来源于等效连续介质理论,是该理论分析的最小体积单元。等效连续介质理论假设研究对象是由一系列这样的单元组成的等效连续介质体。将REV的概念引入到岩体力学当中,也是为了能够在岩体中找到这样一个单元体,使其能够从宏观上反映岩体的平均特性,那么就可以将岩体这种非连续介质看作由一系列这样的单元体组成的等效连续介质体。目前关于岩体REV的研究成果主要集中在岩体的渗流REV上,针对的是岩体的连续与非连续介质渗流分析,而针对岩体连续与非连续介质力学分析而研究岩体力学特性REV的成果还相对较少,且未形成一套系统的研究思路与方法。具体表现在:部分学者通过不同尺寸岩体试样的数值试验研究得到了岩体的各个等效力学参数REV,包括变形参数和强度参数,但却忽略了其等效变形参数是否具有张量特性的研究,而这却是等效连续介质力学分析的必要条件之一;部分学者通过数值试验得到了岩体等效变形参数REV,也进行了等效变形参数的张量特性研究,但工程中更加注重岩体的强度特征,因此还有必要进行其等效强度参数REV的研究,且强度参数REV的大小并不一定与变形参数REV相同;甚至还有部分学者只研究了岩体在一个方向上的力学参数REV,便将其用于等效连续介质力学分析当中。
     鉴于此,论文依托国家战略石油储备黄岛地下水封洞库工程,主要开展花岗片麻岩体在不同方向上的力学参数REV研究及其等效连续性研究。首先,分析了洞库区主要构造体系的形成及演化历史,并根据结构面发育规模及工程地质意义对其进行了不同级别的划分;重点研究了影响洞库围岩完整性的Ⅳ级结构面,并根据其发育特征确定了花岗片麻岩体的结构类型;基于野外地质调查及钻孔摄像技术获得的结构面数据,统计了花岗片麻岩体发育的优势节理组及各组节理的几何要素概率密度函数,在此基础上采用Monte-Carlo方法进行了结构面网络模拟,建立了花岗片麻岩体结构模型,为其力学参数REV的研究奠定了基础。其次,对UDEC (Universal Distinct Element Code)离散元数值模拟软件开展岩体数值试验的适宜性进行了研究,确定了本文主要的研究手段;基于Monte-Carlo方法得到的岩体结构模型(20m×20m),从其中心依次选取不同尺寸(边长1m、2m、3m、...、14m)的正方形花岗片麻岩体试样,进行不同围压下的三轴压缩数值试验研究,得到了其等效变形参数(弹性模量、泊松比)及等效强度参数(粘聚力、内摩擦角)REV的大小。再次,旋转岩体结构模型,采用同样的研究思路得到了不同方向上的力学参数REV大小,研究了其各向异性特征,并根据各力学参数的变异系数变化规律确定了最终的REV大小。最后,对花岗片麻岩体等效变形参数张量特性进行了分析,并获得了花岗片麻岩的等效柔度矩阵及其采用连续介质力学分析的最小尺寸,在此基础上提出了岩体进行等效连续介质力学分析时的基本原则。
     论文主要的研究内容及成果主要包括以下儿个方面:
     一、洞库花岗片麻岩体结构模型研究
     (1)结构面形成及演化历史
     洞库区及其周围邻近地区分布的主要构造体系包括红崖山断裂、老君塔山断裂、前马连沟断裂以、孙家沟断裂以及柳花泊断裂,它们均属于脆性断裂,从区域构造演化历史来看,脆性断裂的产生主要发生在中生代板内活化阶段,受太平洋板块向NW或向W俯冲的影响,主要的构造运动为燕山运动。
     (2)结构面的分级
     距离工程区最近的三条大规模断裂——前马连沟断裂、老君塔山断裂及孙家沟断裂属于洞库区的Ⅰ级结构面;工程区规模较大F3断层横穿主洞室区,F4断层构成洞库稳定性分析的边界条件,属于Ⅱ级结构面;F1、F2、F7、F8、F9均为小型断层或破碎带,属于Ⅲ级结构面;花岗片麻岩体内发育的数量众多的构造节理、岩脉侵入节理以及物质分异面等属于Ⅳ级结构面;花岗片麻岩特有的片麻理属于V级结构面。Ⅳ级结构面的发育特征直接反应了岩体的完整性,是岩体结构划分的主要依据,并控制着岩体的强度及变形破坏方式。
     (3)花岗片麻岩体结构类型及数值模型建立
     花岗片麻岩体主要被软弱结构面F3、F4及F8切割成为Ⅰ级块裂结构(Ⅰ-1),被构造节理及岩脉侵入节理等坚硬结构面断续切割成为Ⅱ级块状断续结构(Ⅱ-2),具有断续结构的花岗片麻岩的力学性质与研究尺寸紧密相连,表现出了明显的尺寸效应。根据洞库区发育的三组陡倾角优势节理,考虑其倾向、倾角、迹长和间距四个几何要素,采用Monte-Carlo方法进行了结构面网络模拟,从而得到了花岗片麻岩体结构模型。
     二、UDEC数值试验适宜性研究(1) UDEC求解岩体变形参数的可靠性
     以含有两组正交节理的规则岩体为例,通过对比其在不同方向上的柔度矩阵解析解及数值解,验证了UDEC求解岩体等效变形参数的可靠性。研究表明不同方向上的等效变形参数数值解与解析解吻合较好,且其等效弹性模量及泊松比随研究方向的变化曲线近似于椭圆;等效剪切模量不随研究方向的改变而改变,其拟合曲线呈圆形。
     (2) UDEC求解岩体强度参数的可靠性
     以含一组结构面的岩体为例,利用Jaeger的单弱面强度理论求得结构面倾角β在0°、15°、30°、...、90°下的岩体抗压强度,并与数值计算结果进行对比以验证UDEC求解岩体抗压强度的可靠性。研究表明,除了β=75°的岩体抗压强度数值计算结果大于其解析解外,其它倾角下的抗压强度数值解与理论解非常接近,相对误差均小于1%。结构面倾角β=75°时数值计算误差较大的原因在于该倾角下的结构面出露于岩体上下边界,而数值压缩试验过程中施加在岩体上下边界的位移边界条件限制了岩体沿结构面的自由变形,从而导致结构面两端的岩块也发生了破坏,增大了岩体强度。此外,通过完整岩石三轴数值压缩试验求得其抗剪强度参数,并与室内试验得到的岩石强度参数进行对比验证了UDEC求解等效强度参数的可靠性。
     三、花岗片麻岩体力学参数REV各向异性研究
     (1)岩体尺寸效应研究及其力学参数REV
     基于Monte-Carlo方法得到的花岗片麻岩体结构模型(20m×20m),由其中心依次选取边长lm、2m、3m、...、14m的正方形岩体试样,进行不同围压下的三轴压缩数值试验以确定各力学参数REV的大小。花岗片麻岩体等效弹性模量Ex、Ey,等效泊松比vxy、vyx及等效内摩擦角φ均随着岩体尺寸的增加波动性减小,趋于稳定时对应的岩样边长分别为5m、2m、5m、3m,6m,可知不同岩体力学参数的REV大小是不相同的,不能一概而论,表述时必须明确REV所指的对象。
     (2)岩体力学参数REV各向异性
     通过研究花岗片麻岩体在0°、30°、60°、90°、120°、150°方向上的岩体力学参数随岩体尺寸增加的变化规律可知,不同方向上的等效力学参数Ex、Ey、vxy、vyx及φ均随着岩体尺寸的增大而波动性减小,并逐渐趋于稳定,且同一力学参数在不同方向上达到稳定时对应的岩体尺寸不同,表明岩体的等效力学参数REV确实具有各向异性。最后通过计算不同尺寸岩体的各个等效力学参数在不同方向上的变异系数,并根据各参数变异系数随尺寸的变化规律确定了最终的各力学参数REV大小。
     四、基于力学参数REV各向异性的花岗片麻岩体等效连续性研究
     (1)等效变形参数张量特性研究
     基于上述研究对岩体等效变形参数的张量特性进行了分析,当岩体尺寸达到6m×6m后,各等效变形参数的拟合曲线形状近似于椭圆,且其长轴与短轴的差别不大,各向异性特征不明显;等效弹性模量Ex、Ey的数值计算结果基本上都落在了相应的各条拟合曲线上,误差较小;而等效泊松比vxy、vyx的数值计算结果则较偏离各条拟合曲线,相对而言误差较大。此时由等效变形参数得到的柔度矩阵拟合误差基本接近于5%,低于10%的允许误差,表明花岗片麻岩的等效弹性模量Ex、Ey及泊松比vxy、vyx可以采用张量的形式近似表示。最后综合确定花岗片麻岩等效连续介质力学分析的最小尺寸为6m×6m。
     (2)岩体的等效连续介质力学分析基本原则
     力学参数REV各向异性研究的目的是确定岩体在不同方向上的各个力学参数都趋于稳定时的岩体尺寸;而岩体变形参数能够用张量形式近似表示这一条件的本质是确定不同方向上的岩体等效柔度矩阵均趋于稳定时的岩体尺寸,且其拟合误差在允许范围内。柔度矩阵是由等效变形参数计算得到的,不同方向上的柔度矩阵趋于稳定的实质即是不同方向上的等效变形参数趋于稳定,可见等效变形参数张量特性的研究包括了等效变形参数REV的各向异性研究。故岩体力学参数REV的各向异性与其等效变形参数张量特性在本质上具有共同之处,即都要研究岩体等效变形参数REV的各向异性,而它们的不同之处在于前者还包括了岩体强度参数REV的各向异性研究,后者则要进行等效柔度矩阵拟合误差的分析。根据两者之间的区别与联系,提出了岩体的等效连续介质力学分析基本原则,即首先进行岩体等效变形参数张量特性的研究,它包含了等效变形参数REV及其各向异性研究,其次再进行等效强度参数REV及其各向异性研究,并取它们中的较大值作为等效连续分析的最小尺寸。
     通过以上研究主要得到以下认识:岩体的各力学参数REV大小是不相同的,在表述岩体REV时必须明确其所指的具体对象;各力学参数在不同方向上的REV大小是不同的,确定力学参数REV大小时必须研究其各向异性特征;力学参数REV的各向异性与等效变形参数张量特性在本质上存在共同之处,岩体的等效连续分析需要遵循一定的原则。本文的创新之处在于:(1)通过数值试验研究了岩体力学参数REV的各向异性,并根据各力学参数的变异系数变化规律确定了最终的各力学参数REV大小;(2)探讨了岩体力学参数REV的各向异性与等效变形参数张量特性之间的联系,并在此基础上提出了岩体进行等效连续介质力学分析的基本原则。
Determination of rock mass mechanical parameters is one of the most basic issues in geotechnical engineering. The accuracy of parameters is directly related to the safety of project and the reasonability of construction costs. Underground water sealed caverns, as a novel engineering construction mode, has two key issues need to be addressed, which are water sealed effects and surrounding rock stability. And the determination of mechanical parameters is the core contents during solving these two issues. However, there are a lot of discontinuities existing in rock mass in practice, leading to a complicate nature of its mechanical properties with scale dependent and anisotropy. Therefore, the research of rock mass's size effects and anisotropy characteristics cannot be separated from the determination of mechanical parameters. Representative Elementary Volume (REV) is the critical issue in the research of rock mass scale dependent, in other word, it is necessary to determine the REV size during studying mechanical property size effects. Moreover, rock mass has anisotropy characteristic, so mechanical parameters REV must be various in different directions. Therefore, the study of mechanical parameters REV in different directions was carried out in this thesis to achieve the final REV sizes that can reflect the rock mass's anisotropy characteristic.
     Representative elementary volume (REV), the fundamental concept in the continuum theory, is the minimum element in the analysis based on this theory, which supposes that the research object is a continuum body composed by a series of such element. However, rock mass is ordinarily regarded as non-continuum medium because of the presence of the discontinuities. In order to apply the continuum theory into the rock (mass) mechanics, the element that can represents the average properties in a microscopic view should be found, and then the discontinuous rock mass can be equivalent to a continuous medium consists of such elements. And such an element is the REV of the rock mass. So far, the researches about the rock mass REV are mainly concerned the flow property REV for continuum and non-continuum flow analysis. However, fewer studies about the mechanical property REV are reported for continuum and non-continuum mechanical analyses of the rock mass. And there have not been a systematic research thoughts and methods for the latter. Some researchers obtained the mechanical parameters' REV by the numerical experiments on different rock mass samples sizes, including deformation and strength parameters. But they lose sight of the verification of the deformation parameters' tensor characteristics, which is one of the necessary conditions for continuum mechanics analysis. The other researches achieve rock mass deformation parameters'REV by numerical experiments and verify their tensor characteristics, while they omit the study of the equivalent strength parameters that are paid more attention in engineering. And the sizes of strength parameters' REV are not always the same as deformation parameters' REV. There are even also some researchers that just study the mechanical parameters' REV only in one direction.
     The thesis attempted to solve the issues mentioned above, and the project of underground water sealed caverns, national strategic reserve for oil, Huangdao, in Shandong Province, is taken as an example to study the granite gneiss mechanical parameters REV. Firstly, the formation and evolution processes of major tectonic system were analyzed in the interesting area. And the discontinuities are classified by the development scale and engineering geological significance. The forth-class (Class IV) discontinuities, main factor of rock mass's integrity, were researched in detail, and the structure type of granite gneiss was determined based on the forth-class discontinuities' development characteristics. And then according to the discontinuities data obtained from field investigation and borehole camera technique, the superior joint groups were found and geometric elements' probability distribution models for each group were statistically analyzed. On this basis, discontinuity network simulation was conducted with Monte-Carlo mathematic method, and the structure model of granite gneiss was obtained, which laid a foundation for the further study of its mechanical parameters REV's anisotropy. Secondly, the suitability of UDEC (Universal Distinct Element Code) software to carry out numerical experiments was verified and made it as the main research means in this thesis. From the center of the obtained granite gneiss structure model, different sizes of square samples with side length of lm,2m,3m...14m were chosen to conduct triaxial numerical compression experiments under different confining pressures. And the sizes of equivalent deformation parameters (elastic modulus and Poisson's ratio) REV and equivalent strength parameters (cohesion and friction angle) REV of granite gneiss were finally achieved. The results indicated that each mechanical parameter have a distinct REV size. And then, the mechanical properties in different directions (30°,60°,90°,120°,150°) of the structure model were also analyzed in the same research thought, and the results revealed that there were various REV sizes in different directions for each mechanical parameter. Namely, mechanical parameters' REV indeed had an anisotropic characteristic. According to the mechanical parameters' coefficients of variation (CV) for each sample in various directions, their final REV sizes were determined. Lastly, the tensor characteristic of equivalent deformation parameters was analyzed. Based on this, the elastic compliance matrix and the minimum size for granite gneiss equivalent continuum mechanical analysis was obtained. Through the researches of mechanical parameters REV's anisotropy and equivalent deformation parameters'tensor characteristic, some common ground in essence between them was found, and their relation and difference were clearly posed. Finally, the necessary research contents and logical order for equivalent continuum mechanics analysis were determined.
     The main works and achievements in this thesis are as follows.
     1. Granite gneiss structure model
     (1) Formation and evolution of discontinuities
     Hongyashan Fault, Laojuntashan Fault, Qianmaliangou Fault, Sunjiagou Fault and Liuhuapo Fault, brittle ones, are the main tectonic system in research area. According to the analysis of regional tectonic evolution processes, these brittle faults were generally produced in Mesozoic intraplate activation phase, when Yanshan movement was the dominant tectonic movement influenced by the Pacific Plate subduction to northwest (NW) or west (W).
     (2) Classification of the discontinuities
     Qianmaliangou Fault, Laojuntashan Fault and Sunjiagou Fault, belonging to the first-class (Class Ⅰ) discontinuities, are the three large-scaled faults close to the engineering site. F3fault crosses all the proposed storage caverns and F4fault lying on the edge of caverns constitutes the boundary condition of in-situ stress field analysis, and they can be referred as to the second-class (Class Ⅱ) discontinuities. F1, F2, F7, F8, F9faults are small-scaled faults or fracture zones, they are the third-class (Class Ⅲ) discontinuities of the project. There are a large number of tectonic joints, dyke intrusion joints and substance differentiation planes developing in granite gneiss, they can be cataloged to forth-class (Class IV) discontinuities. And the fifth-class (Class V) discontinuities are the gneissic schistosities of the intact rock. The development characteristics of the forth-class discontinuities reflect the integrity of granite gneiss and are the major basis for the structure type classification, which control the deformation and failure modes of the rock mass.
     (3) Structure type and numerical model of granite gneiss
     F3, F4and F8fault with weak mechanical properties cut the granite gneiss into faulted structure type (Ⅰ.1), the first-class type. And it is further cut by the secondary discontinuities, tectonic joints and dyke intrusion joints with hard mechanical properties, into intermitted structure type (Ⅱ.2), the second-class type. Granite gneiss with the intermitted structure type has eminent scale dependent that the mechanical properties are close related to the size of the rock mass. Based on the three superior joints groups with steep dips, the numerical model of the rock mass is constructed with Monte-Carlo mathematic method considering four major geometric elements such as dip directions, dips, trace lengths and spaces.
     2. Suitability of the UDEC software for numerical experiment
     (1) Reliability of the deformation parameters obtained by UDEC
     Taking the regular structure rock mass with two orthogonal joints as an example, the reliability of deformation parameters obtained by UDEC software is verified by contrasting the analytic solution and numerical solution of the elastic compliance matrix in different directions. And the numerical solutions agree well with the analytic solution. The curve shapes of elastic modulus and Poisson's ratio variation with research directions are similar to an ellipse. While the curve shape of shear modulus is a circle, namely the value of it does not change with the direction.
     (2) Reliability of the strength parameters obtained by UDEC
     Taking the rock mass with one group of discontinuity as an example, its compressive strengths are calculated by Jaeger's strength theory and UDEC software on the conditions that the discontinuity's angle is0,15,30...and90degree. The numerical solutions are close to the numerical solutions in each case and the relative errors are less than one percent except when the discontinuity angle is75degree. In that case, the numerical solution is much larger than the analytic solution, and the error reaches to one hundred and ten percent. The reason is that the displacement boundary conditions on upper and lower model edges limit the freedom of the rock mass's deformation and cause the failure of the rock block near the discontinuity. Therefore, the rock mass's strength becomes higher. In addition, the strength parameters of intact rock obtained by triaxial numerical compression tests using UDEC software are compared with the laboratory results.
     3. Anisotropy of mechanical parameters REV
     (1) Scale dependent and mechanical parameters REV
     From the center of the obtained granite gneiss structure model (20m×20m), different sizes of square samples with side length of lm,2m,3m...14m were chosen to conduct triaxial numerical compression experiments under different confining pressures. The mechanical parameters of each rock mass sample can be achieved by numerical calculation results and the scale dependent rules and REV sizes can be determined. The fluctuation of elastic modulus(Ex, Ey), Poisson's ratio (vxy, vyx) and internal friction angle(φ) decreases with the sample size increasing, and the corresponding size length of samples are respectively are5m,2m,5m,3m,6m when they become stable. The results indicated that each mechanical parameter has a distinct REV size. So the meaning of REV's object must be clearly expressed.
     (2) Anisotropy of mechanical parameters REV
     The mechanical properties in different directions (30°,60°,90°,120°,150°) of the structure model were also analyzed in the same research thought, and the results revealed that the fluctuation of mechanical parameters (Exy, Eyx, vxy, vyx an φ) all decrease and finally are stable with size increasing. But there were various REV sizes in different directions for each mechanical parameter. Namely, the mechanical parameters' REV did have an anisotropic characteristic. According to the mechanical parameters' coefficients of variation (CV) for each sample in various directions, their final REV sizes were determined.
     4. Analysis of equivalent continuum properties of granite gneiss based on REV's anisotropy
     (1) Tensor characteristics of the deformation parameters
     Based on the above researches in this thesis, tensor characteristics of the deformation parameters are analyzed. When the sample size reaches6m×6m, the shapes of deformation parameters' fitting curves are similar to ellipse and the difference between long axis and short axis is little, which indicates that the anisotropic feature of deformation parameters is not eminent. The numerical solutions of elastic modulus (Ex, Ey) almost all fall on the fitting curves and the errors are small. While the numerical solutions of Poisson's ratio (vxy, vyx) deviate from the fitting curves and have relatively larger errors. But the fitting errors of the equivalent elastic compliance matrix for granite gneiss deduced by them are acceptable after the sample size reaches6m×6m. The value of the error is close to five percent, less than ten percent (the allowable error), therefore, the equivalent elastic modulus (Ex, Ey) and Poisson's ratio (vxy, vyx) of granite gneiss can be approximately represented in tensor form. Finally the minimum size, 6m×6m, for granite gneiss equivalent continuum mechanical analysis was obtained.
     (2) The principles of equivalent continuum mechanical analysis for rock mass
     The research of mechanical parameters REV's anisotropy is in essence to determine the rock mass size in which the parameters in different directions are all stable. The necessary condition that deformation parameters can be expressed in tensor form for equivalent continuum analysis is in essence to determine the rock mass size in which the compliant matrixes in different directions are all stable and its fitting error is within the allowable range. The compliant matrix is calculated by deformation parameters, so the fact that rock mass compliant matrixes in different directions reach stable means that deformation parameters in different directions reach stable. Therefore, the research of equivalent continuum properties contains the research of deformation parameters REV's anisotropy. Through the above analysis, we can find that there is some common ground in essence between the researches of mechanical parameters REV's anisotropy and deformation parameters tensor characteristics. Namely, they both need to carry out the study about the anisotropy of deformation parameters REV. The difference between them is that the former includes the research of strength parameters REV, while the latter demand the error analysis of the equivalent compliance matrix. According to their relation and differences, the principle of equivalent continuum mechanical analysis for rock mass is proposed. The equivalent deformation parameters'tensor characteristics must be firstly researched, and then the strength parameters REV and its anisotropy. The larger one of them can be referred as to the minimum size for equivalent continuum mechanical analysis.
     Some benefit conclusions have been drawn through the research in this thesis. Each mechanical parameter has a distinct REV size, so the meaning of REV's object must be clearly expressed. The sizes of the same mechanical parameter REVs in different direction are various, the anisotropy of REV must be considered during determination of sizes of mechanical parameters REV. There are some common ground in essence between the researches of mechanical parameters REV's anisotropy and deformation parameters tensor characteristics, and the equivalent continuum analysis for rock mass must conform to certain principle. There are two innovations in this thesis. One is that the anisotropy of mechanical parameters REV is posed and researched by numerical experiments and the final REV size for each parameter is determined according to its coefficient of variation (CV) of each sample in different directions. The other is that the relationship between the researches of mechanical parameters REV's anisotropy and deformation parameters tensor characteristics is discussed and the principle of equivalent continuum mechanical analysis for rock mass is proposed.
引文
[1]孙玉科,李建国.岩质边坡稳定性的工程地质研究[J].地质科学,1965,04:330-352.
    [2]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [3]王思敬,杨志法,刘竹华.地下工程岩体稳定分析[M].北京:科学出版社,1984.
    [4]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [5]王清玉.应用弹性波法对岩体结构分类及有关问题解析[J].四川水力发电,1994,01:49-54.
    [6]常旭,刘伊克,王辉.基于波速与衰减成像的岩体结构分析[J].科学通报,2000,04:416-420.
    [7]邓荣贵.地震物探在高速路堑边坡岩体结构研究中的应用[J].辽宁工程技术大学学报(自然科学版),2001,04:463-465.
    [8]黎华清,甘伏平,魏宇,等.利用孔间CT成像对喀斯特岩体结构、电站坝基渗漏与稳定性研究[J].CT理论与应用研究,2012,21(4):635-645.
    [9]徐卫亚,赵立永.坝基工程岩体结构分类分数维研究[J].武汉水利电力大学(宜昌)学报,1999,21(1):10-13.
    [10]秦四清,张倬元,王士天,等.节理岩体的分维特征及其工程地质意义[J].工程地质学报,1993,1(2):14-23.
    [11]丁多文.岩体结构分形及应用研究[J].岩土力学,1993,14(3):67-72.
    [12]袁宝远,杨志法,肖树芳.岩体结构要素分形几何研究[J].工程地质学报,1998,6(4):68-74.
    [13]徐卫亚,赵立永,梁永平.工程岩体结构类型定量划分问题研究[J].武汉水利电力大学学报,1999,32(2):9-12.
    [14]李富平,徐东强,陈彩.岩体结构类型划分的神经网络方法[J].黄金,1999,20(8):20-23.
    [15]傅荣华,李天斌,邓荣贵.确定岩体结构类型的专家系统方法[J].水文地质工程地质,1994,02:6-9,16.
    [16]Bingham C. Distributions on the sphere and the projective plan[D]. Yale University,1964.
    [17]Cruden D M. Describing the size of discontinuities[J].International Journal of Rock Mechanics and Mining Sciences,1977,14(3):133-137.
    [18]Shanley R J, Mahtab M A. Delineation and analysis of clusters in orientation data[J]. Mathematical Geology,1976,8(1):9-23.
    [19]Kulatilake P H S W, Wu T H. Estimation of mean length of discontinuity[J]. Rock Engineering,1984,17(4):215-232.
    [20]潘别桐,井兰如.岩体结构概率模拟和应用[C].岩石力学新进展会议论文集,沈阳:东北工学院出版社,1989:55-79.
    [21]电力工业部.水利水电工程地质勘察规范(GB50021-99).北京:中国计划出版社,1999.
    [22]中华人民共和国水利部.工程岩体分级标准.北京:中国计划出版社,1997.
    [23]国家标准.岩土工程勘察规范(GB50021-2001).北京:中国建筑工业出版社,2002.
    [24]中华人民共和国国家标准.建筑地基基础设计规范(GB50007-2002).北京:中国建筑工业出版社,2002.
    [25]Weibull W. The phenomenon of rupture of solids[C]. Proceedings of Royal Swedish Institute of Engineering Research. Stockholm,1939:1-55.
    [26]Bazant Z P. Instability, ductility, and size effect in strain-softening concrete[J]. Journal of the Engineering Mechanics Division,1976,102(2):331-344.
    [27]Carpinteri A, Chiaia B. Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy[J]. Materials and Structures,1995,28(8):435-443.
    [28]Bazant Z P. Scaling of quasibrittle fracture:hypotheses of invasive and lacunar fractality, their critique and Weibull connection[J].International Journal of Fracture,1997,83(l):41-65.
    [29]Bazant Z P(著),王文标,黄晨光,等(译).结构破坏的尺度律[J].力学进展,1999,29(3):383-433.
    [30]中华人民共和国水利部.岩土工程基本术语标准(GB/T50279-1998).北京:中国计划出版社,1997.
    [31]Dreyer W. The Science of Rock Mechanics[M]. Ohio:Transport Technical Publication, 1972.
    [32]Hudson J A, Crouch S L, Fairhurst C E. Soft, stiff and servo-controlled testing machines[J]. Engineering Geology,1972,6(3):155-189.
    [33]Hoek E, Brown E T. Underground Excavation in rock[M]. London:Institute of Mining and Metallurgy,1980.
    [34]李先炜.岩块力学性质[M].北京:煤炭工业出版社,1983.
    [35]刘宝琛,张家生,杜奇中,等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6):611-614.
    [36]杨圣奇,徐卫亚,苏承东.考虑尺寸效应的岩石损伤统计本构模型研究[J].岩石力学与工程学报,2005,24(24):4484-4490.
    [37]邓华锋,李建林,朱敏,等.圆盘厚径比对岩石劈裂抗拉强度影响的试验研究[J].岩石力学与工程学报,2012,31(4):792-798.
    [38]郭培军.岩石(岩体)强度尺寸效应的分形研究[C].中国青年学者岩土工程力学及其应用讨论会论文集.武汉:科学出版社,1994:124-130.
    [39]杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报,1999,18(1):24-28.
    [40]朱珍德,张爱军,邢福东,等.岩石抗压强度与试件尺寸相关性试验研究[J].河海大学学报(自然科学版),2004,32(1):4245.
    [41]周国林,谭国焕,李启光,等.剪切破坏模式下岩石的强度准则[J].岩石力学与工程学报,2001,20(6):753-762.
    [42]郭志.实用岩体力学[M].北京:地震出版社,1996:21-25.
    [43]尤明庆,华安增.岩样单轴压缩的尺度效应和矿柱支承性能[J].煤炭学报,1997,22(1):39-43.
    [44]王学滨,潘一山,宋维源.岩石试件尺寸效应的塑性剪切应变梯度模型[J].岩土工程学报,2001,23(6):711-713.
    [45]王学滨,潘一山,杨小彬.准脆性材料试件应变软化尺度效应理论研究[J].岩石力学与工程学报,2003,22(2):188-191.
    [46]潘一山,魏建明.岩石材料应变软化尺寸效应的实验和理论研究[J].岩石力学与工程学报,2002,21(2):215-218.
    [47]杨圣奇,苏承东,徐卫亚.岩石材料尺寸效应的试验和理论研究[J].工程力学,2005,22(4):112-118.
    [48]杨圣奇.岩石材料的非均质性与力学特性研究[D].焦作:焦作工学院,2003.
    [49]Tang C A, Liu H, Lee P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part I:Effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(4):555-569.
    [50]Tang C A, Tham L G, Lee P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part II:Constraint, slenderness and size effect[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(4):571-583.
    [51]Tang C A, Tham L G, Wang S H, et al. A numerical studies of the influence of heterogeneity on the strength characterization of rock under uniaxial tension[J]. Mechanics of Materials,2006,39(4):326-339.
    [52]Tang C A, Kaiser P K. Numerical studies of cumulative damage and seismic energy release during brittle rock failure of microstructure on rock failure-Part I:Fundamentals[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(2):113-121.
    [53]Tang C A, Kaiser P K. Numerical studies of cumulative damage and seismic energy release during brittle rock failure of microstructure on rock failure-Part Ⅱ:Rib pillar collapse[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(2):123-134.
    [54]张明,卢裕杰,介玉新,等.不同加载条件下岩石强度尺寸效应的数值模拟[J].水力发电学报,2011,30(4):147-154.
    [55]冯夏庭,周辉,李明田.岩石破坏过程模拟的细胞自动机方法[C].全球华人中青年学者岩土力学与工程学术论坛中国科学院岩土力学与工程学术研讨会,武汉,2003,10:75-89.
    [56]周辉,王泳嘉,谭云亮,等.岩体破坏演化的物理细胞自动机(PCA)(Ⅰ)-基本模型[J].岩石力学与工程学报,2002,21(4):475-478.
    [57]周辉,谭云亮,冯夏庭,等.岩体破坏演化的物理细胞自动机(PCA)(Ⅱ)—模拟例证[J].岩石力学与工程学报,2002,21(6):782-786.
    [58]Feng X T, Pan P Z, Zhou H. Simulation of rock microfractureing process under uniaxial compression using an elasto-plastic cellular automation[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(7):1091-1108.
    [59]Pan P Z, Feng X T, Hudson J A. Study of failure and scale effects in rocks under uniaxial compression using 3D cellular automata[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(4):674-685.
    [60]王士民,冯夏庭,王泳嘉,等.脆性岩石破坏的演化细胞自动机(ECA)研究[J].岩石力学与工程学报,2005,24(15):2634-2639.
    [61]王士民,朱合华,冯夏庭,等.细观非均匀性对脆性岩石材料宏观破坏形式的影响[J].岩土力学,2006,27(2):224-227.
    [62]李明田,张敏学.拉伸断裂模拟的细胞自动机模型以及尺寸效应研究[J].山东交通学院学报,2005,13(2):1-5,10.
    [63]王学滨.岩石变形局部化的FLAC数值模拟[D].辽宁:辽宁工程技术大学,2002.
    [64]靖洪文,苏海健,杨大林,等.损伤岩样强度衰减规律及其尺寸效应研究[J].岩石力学与工程学报,2012,31(3):543-549.
    [65]洪亮,李夕兵,马春德,等.岩石动态强度及其应变率灵敏性的尺寸效应研究[J].岩石力学与工程学报,2008,27(3):526-533.
    [66]王家来,左宏伟.岩体弹性模量的尺寸效应初步研究[J].岩土力学,1998,19(1):60-64.
    [67]周火明,盛谦,邬爱清.三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究[J].岩石力学与工程学报,2001,20(5):661-664.
    [68]喻勇,肖国强,王法刚.岩体变形模量的尺寸效应[J].岩土力学,2003,24(S1):47-49.
    [69]张志刚,乔春生.改进的节理岩体变形模量经验确定方法及其工程应用[J].工程地质学报,2006,14(2):233-238.
    [70]张志刚,乔春生.改进的节理岩体强度参数经验确定方法及工程应用[J].北京交通大学学报,2006,30(4):46-49.
    [71]王谦源,李晔.分形节理岩体强度与变形尺度效应的试验研究[J].岩土力学,2008,29(5):1325-1328.
    [72]张占荣.地下洞室岩体变形模量的尺寸效应研究[J].工程地质学报,2011,19(5):642-647.
    [73]李建林,王乐华.卸荷岩体的尺寸效应研究[J].岩石力学与工程学报,2003,22(12):2032-2036.
    [74]李宏,朱浮声,王泳嘉.岩体(石)的损伤、尺寸效应和不均匀性[C].面向21世纪的岩石力学与工程:中国岩石力学与工程学会第四次学术大会论文集.1996,5:181-185.
    [75]Bear J. Dynamics of fluids in porous media[M]. New York:American Elsevier,1972.
    [76]Bear J. Hydraulics of groundwater[M]. New York:McGraw Hill,1979.
    [77]Pariseau, W G. Non-representative volume element modelling of equivalent jointed rock mass properties[C]. Proceeding of International Symposium on Mechanics of Jointed and Faulted Rock (MJFR-2),1995:563-568.
    [78]张莉丽.裂隙岩体渗透典型单元体存在性[D].北京:中国地质大学(北京),2011.
    [79]向文飞.裂隙岩体表征单元体及力学特性尺寸效应研究[D].武汉:武汉大学,2005.
    [80]Long J C S, Remer J S, Wilson C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resource Research,1982,18(3):645-658.
    [81]Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research,1986,22(13):1845-1856.
    [82]周创兵,於三大.论岩体表征单元体积REV—岩体力学参数取值的一个基本问题[J].工 程地质学报,1999,7(4):332-336.
    [83]庞作会.基于节理网络模型的岩体REV数值估算与无网格伽辽金法(EFGM)[D].武汉:中国科学院武汉岩土力学研究所,1998.
    [84]朱冬林.节理岩体的REV及变形与强度的数值估算[D].武汉:中国科学院武汉岩土力学研究所,2003.
    [85]卢波,葛修润等.节理岩体表征单元体的分形几何研究[J].岩石力学与工程学报,2005,24(8):1355-1361.
    [86]杨建平,陈卫忠,戴永浩.裂隙岩体变形模量尺寸效应研究Ⅰ:有限元法[J].岩土力学,2011,32(5):1538-1545.
    [87]杨建平,陈卫忠,戴永浩.裂隙岩体变形模量尺寸效应研究Ⅱ:解析法[J].岩土力学,2011,32(6):1607-1612.
    [88]Shlomo P N. Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts[C]. Proceeding of the 28th US Symposium of Rock Mechanics. Tucson Belkema:University of Arizona,1987:533-561.
    [89]Wang M, Kulatilake P H S W, Urna J, et al. Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(7):887-904.
    [90]周创兵,熊文林.论岩体的渗透特性[J].工程地质学报,1996,4(2):69-74.
    [91]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,15(4):338-344.
    [92]张贵科,徐卫亚.裂隙网络模拟与REV尺度研究[J].岩土力学,2008,29(6):1675-1680.
    [93]谭春,陈剑平,阙金声等.基于三维裂隙网络模拟和灰色理论的岩体表征单元体研究[J].水利学报,2012,43(6):709-716.
    [94]Kulatilake PHSW. Estimating elastic constants and strength of discontinuous rock[J]. Journal of Geotechnical Engineering,1985,111(7):847-864.
    [95]Pouya A, Ghoreychi M. Determination of rock mass strength properties by homogenization [J]. International Journal for Numerical Analytical Methods in Geomechanics,2001,25(12): 1285-1303.
    [96]Chalhoub M, Pouya A. Numerical homogenization of a fractured rock mass:a geometrical approach to determine the mechanical Representative Elementary Volume[J]. Electron J Geotech Eng,2008,13(Bund. K):1-12.
    [97]杨建平.裂隙岩体宏观力学参数评价研究[D].武汉:中国科学院武汉岩土力学研究所,2009.
    [98]张红亮.节理岩体变形与强度的尺度效应及REV问题研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [99]王旭.鄂西三叠系灰岩岩体的REV及强度参数研究[D].武汉:中国地质大学(武汉),2007.
    [100]张占荣,盛谦,杨艳霜,等.基于现场试验的岩体变形模量尺寸效应研究[J].岩土力学,2010,31(9):2875-2881.
    [101]周火明,盛谦,陈殊伟,等.层状复合岩体变形试验尺寸效应的数值模拟[J].岩石力学与工程学报,2004,23(2):289-292.
    [102]晏长根,伍法权,祁生文,等.随机节理岩体变形与强度参数及其尺寸效应的数值模拟研究[J].岩土工程学报,2009,31(6):879-885.
    [103]朱道建,杨林德,蔡永昌.柱状节理岩体各向异性特性及尺寸效应研究[J].岩石力学与工程学报,2009,28(7):1405-1414.
    [104]卢波.自然单元法的发展及其应用[D].武汉:中国科学院武汉岩土力学研究所,2005.
    [105]Bhasin R, H(?)eg K. Numerical modelling of block size effects and influence of joint properties in multiply jointed rock[J]. Tunnelling and Underground Space Technology, 1998,13(2):181-188.
    [106]Min KB, Jing L. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(6):795-816.
    [107]Min KB, Jing L. Stress dependent mechanical properties and bounds of poisson's ratio forfractured rock masses investigated by a DFN-DEM technique[J]. International Journal of Rock Mechanics and Mining Science,2004,41(3):l-6.
    [108]Kulatilake P H S W, Wang S, Stephansson O. Effect of finite size joints on the deformability of jointed rock in three dimensions[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1993,30(5):479-501.
    [109]宁宇,徐卫亚,郑文棠,等.柱状节理岩体随机模拟及其表征单元体尺度研究[J].岩石力学与工程学报,2005,27(6):1202-1205.
    [110]张志刚.节理岩体强度确定方法及其各向异性特征研究[D].北京:北京交通大学,2007.
    [111]Esmaieli K, Hadjigeorgiou J, Grenon M. Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(6):915-926.
    [112]Kulatilake P H S W, Ucpirti H, Wang S, et al. Use of the distinct element method to perform stress analysis in rock with non-persistent joints and to study the effect of joint geometry parameters on the strength and deformability of rock masses[J]. Rock Mechanics and Rock Engineering,1992,25(4):253-274.
    [113]Wang S, Kulatilake P H S W. Linking between joint geometry models and a distinct element method in three dimensions to perform stress analyses in rock masses containing finite size joints[J]. Japanese Society of Soil Mechanics and Foundation Engineering,1993,33(4):8-98.
    [114]卢波,葛修润,朱冬林等.节理岩体表征单元体的分形几何研究[J].岩石力学与工程学报,2005,24(8):1355-1361.
    [115]Arthur J R F, Menzies B K. Inherent anisotropy in a sand[J]. Geotechnique,1972,22(1):115-128.
    [116]Arthur J R F, Chua K S, Dunstan T. Induced anisotropy in a sand[J]. Geotechnique,1977, 27(1):13-30.
    [117]张坤勇,殷宗泽,梅国雄.土体各向异性研究进展[J].岩土力学,2004,25(9):1503-1509.
    [118]Lekhnitskii S G. Theory of elasticity of anisotropic elastic body[M]. Holden-Day Inc., San Francisco,1963.
    [119]Pinto J L. Deformability of Shear failure of anisotropic rocks schistose rocks[C] Proceeding of 2nd conference international science rock mechanics. Belgraged,1970,1:491-496.
    [120]Nasseri M H B, Rao K S, Ramamurthy. Anisotropic strength and deformational behavior of Himalayan schists[J]. International Journal of Rock Mechanics and Mining Science,2003, 40(1):3-23.
    [121]Behrestaghi M H N, Rao K S, Ramamurthy T. Engineering geological and geotechnical responses of schistose rocks from dam project area in India[J]. Engineering Geology, 1996,44(1-4):183-201.
    [122]Attewell P B, Sanford M R. Intrinsic shear strength of a brittle anisotropic rock-Ⅰ: experimental and mechanical interpretation[J]. International Journal of Rock Mechanics and Mining Science,1974,11(11):423-430.
    [123]Attewell P B, Sanford M R. Intrinsic shear strength of a brittle anisotropic rock-Ⅱ:Textural data acquisition and processing[J]. International Journal of Rock Mechanics and Mining Science,1974,11(11):431-438.
    [124]Attewell P B, Sanford M R. Intrinsic shear strength of a brittle anisotropic rock-Ⅲ:Textural interpretation of failure[J]. International Journal of Rock Mechanics and Mining Science, 1974,11(11):439-451.
    [125]Liao J J, Yang M T and Hsieh H Y. Direct Tensile Behavior of a Transversely Isotropic rock[J]. International Journal of Rock Mechanics and Mining Science,1997,34(5):837-849.
    [126]Al-Harthi A A. Effect of planar structures on the anisotropy of Ranyah sandstone[J]. Sandi Arabia. Engineering Geology,1998,50(1-2):49-57.
    [127]Hoek E, Brown E T. Empirical strength criterion for rock masses[J]. Journal of Geotechnical and Geoenvironmental Engineering,1980,106.(ASCE 15715).
    [128]Niandou H, Shao J F, Henry J P, et al. Laboratory investigation of the mechanical behavior of Tournimire shale[J]. International Journal of Rock Mechanics and Mining Science,1997, 34(1):3-16.
    [129]Ramamurthy T, Rao G V, Singh J. A strength criterion for anisotropic rocks[C]. Proceedings of Australian-New Zealand Conference on Geotechnics, Sydney,1998,1:253-257.
    [130]Talesnick M L, Bloch-Friedman E A. Compatibility of different methodologies for the determination of elastic parameters of intact anisotropic rocks[J]. International Journal of Rock Mechanics and Mining Science,1999,36(7):919-940.
    [131]Tien Y M, Kuo M C, Juang C H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Science,2006,43(8):1163-1181.
    [132]周大千.各向异性岩石的强度方程及其试验研究[J].石油学报,1988,(3):87-97.
    [133]赵平劳.层状结构岩石抗剪强度各向异性试验研究[J].兰州大学学报,1990,26(4):135-139.
    [134]赵平劳.层状岩石抗压强度围压效应各向异性研究[J].兰州大学学报,1993,29(1):105-109.
    [135]席道瑛,陈林,张涛.砂岩的变形各向异性[J].岩石力学与工程学报,1995,14(1):49-58.
    [136]席道瑛,陈林.岩石各向异性参数研究[J].物探化探计算技术,1994,(1):16-21.
    [137]曹文贵,颜荣贵.小铁山矿各向异性石英角斑凝灰岩力学参数量测与研究[J].湖南有色金属,1995,11(4):1-6.
    [138]苏志敏,江春雷,Ghafoori M.页岩强度准则的一种模式[J].岩土工程学报,1999,21(3):311-314.
    [139]冒海军,杨春和.结构面对板岩力学特性影响研究[J].岩石力学与工程学报,2005,24(20):3651-3656.
    [140]田象燕,高尔根,白石羽.饱和岩石的应变率效应和各向异性的机理探讨[J].岩石力学与工程学报,2003,22(11):1789-179.
    [141]曾纪全,杨宗才.岩体抗剪强度参数的结构面倾角效应[J].岩石力学与工程学报,2004,23(20):3418-3425.
    [142]刘爱华,黄教,罗荣武.岩石弱面与岩体各向异性的力学试验研究[C].第十届全国岩石力学与工程学术大会论文集.威海,2008:152-156.
    [143]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001,20(3):338-341.
    [144]Duveau G, Shao J F, Henry J P. Assessment of some failure criteria for strongly anisotropic geomaterials[J]. Mechanics of Cohesive-frictionMaterials,1998,3(1):1-26.
    [145]Jaeger J C. Friction of rock sand stability of rock slope[J]. Geotechnique,1971,21(2): 97-134.
    [146]McLamore R, Gray K E. The mechanical behavior of anisotropic sedimentary rocks[J]. Transactions of the American Society of Mechanical Engineers, Series B,1967,89(1):62-76.
    [147]张玉军,刘谊平.层状岩体抗剪强度的方向性及剪切破坏面的确定[J].岩土力学,2001,22(3):254-257.
    [148]Hill R(著),王仁(译).塑性数学理论[M].科学出版社,1966.
    [149]Pariseau W G. Plasticity theory for anisotropic rocks and soils[C]. Proceedings of 10th US Symposium on Rock Mechanics, USRMS,1968, vol.1, p.267.
    [150]Nova R. The failure of transversely isotropic rocks in triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,1980,17(6):325-332.
    [151]Cazacu O, Cristescu N D, Shao J F. A new anisotropic failure criterion for transversely isotropic solids[J]. Mechanics of Cohesive-frictionMaterials,1998,3(1):89-103.
    [152]阮怀宁.岩土工程中各向异性强度理论研究[J].河海科技进展,1992,12(3):42-50.
    [153]阮怀宁,徐志英.非均质非线性各向异性岩石破坏准则研究[J].河海大学学报,1992,20(5):1-6.
    [154]Pietruszczak S, Mroz Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor[J].Computers and Geotechnics,2000,26(2):105-112.
    [155]Pietruszczak S, Mroz Z. On failure criteria for anisotropic cohesive-frictional materials[J]. International Journal for Numerical and Analytical in Geomechnics,2001,25(5):509-524.
    [156]Pietruszczak S, Lydzba D, Shao J F. Modelling of inherent anisotropy in sedimentary rocks[J]. International Journal of Solids and Structures,2002,39(3):637-648.
    [157]余天堂,卢应发,Shao J F,等.沉积岩的一种各向异性模型[J].岩土力学,2002,23(1):47-50.
    [158]余天堂.岩土材料固有各向异性的模拟[J].岩石力学与工程学报,2004,23(10):1604-1607.
    [159]Lydzba D, Pietruszczak S, Shao J F. On anisotropy of stratified rocks:homogenization and fabric tensor approach[J]. Computers and Geotechnics,2003,30(4):289-302.
    [160]钟世英,徐卫亚.基于微结构张量理论的柱状节理岩体各向异性强度分析[J].岩土力学,2011,32(10):3081-3084
    [161]Mroz Z, Maciejewski J. Failure criteria of anisotropically damaged materials based on the critical plane concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(4):407-431.
    [162]沈新普,Mroz Z.正交各向异性损伤材料的Mohr--Coulomb条件[J].煤炭学报,2003,28(1):26-30.
    [163]杨强,陈新,周维垣.基于二阶损伤张量的节理岩体各向异性屈服准则[J].岩石力学与工程学报,2005,24(8):1275-1282.
    [164]陈新,杨强,周维垣.基于二阶损伤张量的节理岩体各向异性特性及其在井壁稳定分析中的应用[C].第八次全国岩石力学与工程学术大会论文集.成都,2004:212-215.
    [165]陈新.从细观到宏观的岩体各向异性塑性损伤耦合分析及其工程应用[D].北京:清华大学,2005.
    [166]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(Ⅰ):各向异性损伤本构模型[J].岩土力学,2005,26(5):779-783.
    [167]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(Ⅱ):各向异性渗透系数张量及算例[J].岩土力学,2005,26(12):1996-2000.
    [168]韦立德,杨春和.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(Ⅰ):理论模型[J].岩土力学,2006,27(3):428-434.
    [169]张嘉翔,韦立德,陈从新,杨春和.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(Ⅱ):三轴压缩应力状态下理论模型及算例[J].岩土力学,2007,28(2):241-246.
    [170]郭汉燊.岩石各向异性断裂机制[D].长沙:冶金工业部长沙矿冶研究院,1983.
    [171]刘东燕.断续节理岩体的压剪断裂及其强度特性研究[D].重庆:重庆建筑工程学院,1993.
    [172]许强,黄润秋.岩体强度的各向异性研究[J].水文地质工程地质,1993,06:10-12.
    [173]张建海,何江达,范景伟.含断续节理岩体强度的各向异性[J].云南水力发电,2000,16(2):36-38.
    [174]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [175]朱珍德,秦天昊,王士宏,等.基于Cosserat理论的柱状节理岩体各向异性本构模型研究[J].岩石力学与工程学报,2010,29(S2):4068-4076.
    [176]杨乐.基于Cosserat介质理论的层状岩体均匀化数值分析与应用研究[D].重庆:重庆大学,2009.
    [177]Jaeger J C. Shear failure of anisotropic rocks[J]. Geological Magazine,1960,97:65-72.
    [178]Hoek E. Strength of jointed rock masses[J].Geotechnique,1983,33(3):187-222.
    [179]Walsh J B, Brace W F. A fracture criterion for brittle anisotropic rock[J]. Journal of Geophysical Research,1964,69(16):3449-3456.
    [180]McClintock F A, Walsh J B. Friction on Griffith cracks in rocks under pressure[C]. Proceedings of 4th US National Congress Application Mechanics,1962,2:1015-1022.
    [181]Duveau G, Shao J F. A modified single plane of weakness theory for the failure of highly stratified rocks[J]. International journal of rock mechanics and mining sciences,1998,35(6): 807-813.
    [182]Tien Y M, Kuo M C.A failure criterion for transversely isotropic rocks[J]. International journal of rock mechanics and mining sciences,2001,38(3):399-412.
    [183]张学民.岩石材料各向异性特征及其对隧道围岩稳定性影响研究[D].长沙:中南大学,2007.
    [184]杜时贵,唐辉明.岩体断裂粗糙度系数的各向异性研究[J].工程地质学报,1993,1(2):32-42.
    [185]L·金(著),陈丹妮(译).节理各向异性摩擦及剪切刚度的三维本构模型[J].水电科技情报,1996,01:32-38.
    [186]Bieniawski Z T. The effect of specimen size on compressive strength of coal[J].International Journal of Rock Mechanics and Mining Sciences,1968,5(4):325-335.
    [187]Oda M A. Method for evaluating the representative elementary volume based on joint survey of rock mass[J]. Canadian Geotechnical Journal,1988,25(3):281-287.
    [188]Palmstrom A, Singh R. The deformation modulus of rock masses-comparisons between in situ tests and indirect test estimates[J]. Tunnelling and Underground Space Technology,2001, 16(2):115-131.
    [189]石安池,唐鸣发,周其健.金沙江白鹤滩水电站柱状节理玄武岩岩体变形特性研究[J].岩石力学与工程学报,2008,27(10):2079-2086.
    [190]徐海清.贵州省鱼简河水库坝基岩体力学参数研究[D].武汉:中国地质大学(武汉),2004.
    [191]Kayabasi A, Gokceoglu C, Ercanoglu M. Estimating the deformation modulus of rock masses:a comparative study [J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(1):55-63.
    [192]Kim K, Gao H. Probabilistic approaches to estimating variation in the mechanical properties of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanies Abstracts,1995,32(2):111-120.
    [193]李维树,彭朝全,张仕光.乌江构皮滩水电站坝基岩体变形参数取值方法[J].地下空间,2004,24(2):148-152.
    [194]冯国栋.姚河坝水电站岩体纵波速度与静变形模量相关关系的探讨[J].水电工程研究,1993,1:49-54.
    [195]王法刚,尹健民,李维树.某水电站坝基岩体变形模量与波速相关性研究[J].地下空间与工程学报,2006,2(6):903-906,911.
    [196]Bieniawski Z T. Determining rock mass deformability:experience from case histories[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978,15(5):237-247.
    [197]Serafim J L, Pereira J P. Consideration of the geomechanical classification of Bieniawski[C]. Proceeding of International Symposium on Engineering Geology and Underground Construction, Portugal:Lisbon,1983,1(2):33.
    [198]Barton N. Some new Q value correlations to assist in site characterization and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(2): 185-216.
    [199]Sonmez H, Ulusay R, Gokceoglu C. Indirect determination of the modulus of deformation of rock masses based on the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences,2004,1(5):849-857.
    [200]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [201]工程地质研究室.岩体工程地质力学问题[M].北京:科学出版社,1976.
    [202]唐辉明.工程地质学基础[M].北京:化学工业出版社,2008.
    [203]杨举.地下水封油库洞室群应力应变规律与设计优化研究[D].武汉:中国地质大学(武汉),2011.
    [204]宋琨.花岗片麻岩体渗透特性及水封条件下洞库围岩稳定性研究[D].武汉:中国地质大学(武汉),2012.
    [205]徐光黎,唐辉明,潘别桐,等.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993.
    [206]张宜虎.岩体等效水力学参数研究[D].武汉:中国地质大学(武汉),2006.
    [207]吴琼.复杂节理岩体力学参数尺寸效应及工程应用研究[D].武汉:中国地质大学(武汉),2012.
    [208]王泳嘉,邢纪波.离散单元法及在岩石力学中的应用[M].东北:东北工学院出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700