用户名: 密码: 验证码:
地聚物/聚氯乙烯复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质聚合物(简称地聚物,Geopolymer)是一种由[A104]和[SiO4]四面体构成具有三维非晶结构的铝硅酸盐无机聚合物,主要制备原料为铝硅酸盐矿物及固体工业废弃物等。地聚物具有强度高、耐腐蚀、耐水、耐高温、固封金属离子等许多优点,但其材料最大的缺点是“脆”,由此对地聚物进行增韧改性的研究比较活跃。
     聚氯乙烯(简称PVC)是五大通用热塑性树脂之一,因其具有柔韧的分子链,优良的综合性能,其材料的应用已涉及到各种领域。如果将高韧性聚氯乙烯树脂与地聚物脆性材料复合,将会大大提高地聚物材料的韧性;同时地聚物的存在也会提高聚氯乙烯树脂的高温稳定性。基于上述思想,本文系统研究了地聚物/聚氯乙烯复合材料的高温制备工艺,并对复合材料的性能进行了表征和应用探索。
     研究中采用偏高岭土、水玻璃、片碱等制备纯地聚物,并对地聚物的制备工艺参数进行优化,获得力学性能优良的基体材料;利用聚氯乙烯具有有机高分子柔性分子链特征,通过塑炼压制法对地聚物进行增韧改性。另外,研究中利用地聚物无机刚性粒子和耐高温的优点,经共混法和原位聚合法对PVC进行了改性,并将其研究成果应用于PVC片材的制备中。其研究结果如下:
     (1)在纯地聚物的制备过程中,研究了地聚物在高温条件下的流变学特性、固化时间、微观结构和力学性能。结果表明,以地聚物的强度为依据,确定了地聚物中各氧化物摩尔比:n(SiO2)/n(Al2O3)=3.3,n(Na2O)/n (SiO2)=0.27,n(H2O)/n(Na2O)=11.0,最佳工艺参数为:水玻璃陈化时间24h,养护温度60℃,养护时间48h等工艺控制条件。由此制备的28d地聚物抗压强度、抗弯强度高达89.63MPa、13.87MPa。高温成型研究结果显示,170℃时,地聚物浆体的初凝和终凝时间分别为11和16分钟,增大水钠比为14后,其浆体的凝结时间延长;升高养护温度可提高地聚合反应速度并缩短浆体的硬化时间;流变性能研究发现在地聚物成型加工中施加一定的剪切力,有利于地聚物材料的流动成型。
     (2)PVC对地聚物的增韧改性(PVC小于50wt%),是在地聚物网络结构形成之前加入PVC,在塑炼加工作用下使熔融态的PVC分子链与正在发生地质聚合反应的浆料共混,形成互穿网络的地聚物复合材料。通过高温流变学测试,发现当PVC含量小于50wt%时,由于PVC贡献的粘性特征被大量的地聚物贡献的弹性响应掩盖,导致复合材料模量越来越大,整个复合材料表现出地聚物的固体特征。其高温加工成型工艺参数如下:塑炼温度为170℃,塑炼时间为5分钟,塑炼后的薄片在170℃,15MPa的压力下,保温保压7分钟。PVC增韧地聚物复合材料的机械强度检测结果表明,复合材料的抗弯强度随PVC含量的增加而增大,PVC加入量为50wt%时,复合材料的抗弯强度达到67.06MPa,比纯地聚物28d龄期的抗弯强度提高了3.73倍。
     (3)地聚物增韧PVC的共混改性方法(PVC大于50wt%),则是在地聚物形成的未固化阶段,将正在进行地聚合反应的浆体加入PVC树脂中,在共混物的塑炼压制加工过程中,正在形成的地聚物网络结构与己解缠绕而伸展的PVC分子链之间存在较好的结合,从而增强了地聚物与基体PVC的界面作用。力学性能测试结果表明,与纯PVC相比,地聚物含量在10wt%以内时,复合材料有较好的力学性能,其中以4wt%为最佳,其材料的抗冲击强度达到了9.13KJ·m-2,比纯PVC材料提高了约40%。维卡软化、热重分析、差示扫描量热法表征结果表明,与纯PVC相比较,复合材料的维卡软化温度提高了2-6℃,地聚物的加入对PVC分子链缺陷结构脱HC1具有吸收和抑制的作用,从而提高了地聚物/PVC复合材料的热稳定性。
     (4)原位聚合法地聚物/PVC复合材料的制备,是将经硅烷偶联剂有机化改性的地聚物和氯乙烯单体,采用倒加料工艺经原位聚合生成地聚物/PVC复合树脂,然后经塑炼压制制备出复合材料。研究了地聚物对悬浮聚合体系的温度、压力、转化率、搅拌电流等参数的影响。力学性能检测结果表明,在地聚物含量为3wt%时,与纯PVC相比,复合材料抗冲击强度提高了59.4%,拉伸强度提高了13.8%,断裂伸长率提高了7.65%。由Kissinger法所计算的热分解活化能表明,原位聚合法地聚物/PVC复合材料和纯PVC材料的反应表观活化能分别为274.78J.mol-1和152.06J.mol-1地聚物/PVC的热分解活化能明显高于PVC的热分解活化能,证明地聚物的引入提高了PVC基体树脂的分解活化能,表明其热稳定性得以提高。
     (5)在上述研究的基础上,将不同量的地聚物与PVC熟料充分混合后应用到PVC片材的生产过程中,在保证复合材料力学性能的前提下,使复合片材成本大大降低,耐老化性能得到提高。
Geopolymer is a kind of three dimensional structure aluminum silicate inorganic polymer composed by the [AlO4] and [SiO4] tetrahedron, which was mainly preparared by aluminum silicate or industrial waste. Geopolymer has high strength, corrosion resistance, water resistance, high temperature resistance, enclosed metal ion, and many other advantages, but its typical defect is "brittle", so toughening modification of geopolymer is more active.
     Polyvinyl chloride (PVC) is one of the five biggest common thermoplastic resins, because it has flexible molecular chain, excellent comprehensive performance, the application of PVC material has related to various fields. If the high toughness PVC resin is compounded with brittle geopolymer materials, which will greatly improve toughness of geopolymer material, simultaneously geopolymer will also improve high temperature performanceresin of PVC. Based on the above ideas, this dissertation systematically studied thepreparation technology at high temperature of geopolymer/polyvinyl chloride (PVC) composites, and the performances of the composites were characterized and explored.
     In the dissertation, pure geopolymer was prepared with metakaolin, sodium silicate, sheet alkali and water, and the preparation technology parameters of geopolymer were also optimized. Moreover, geopolymer matrix materials with high mechanics performance were prepared. geopolymer was toughened by polyvinyl chloride (PVC) with organic polymer flexible molecular chain characteristics, through the plasticate pressing method. In addition, with the characteristic of inorganic rigid particles and high temperature resistance for the geopolymer, PVC was modified by the blending method and in situ polymerization, and the research results were used in the preparation of PVC sheets. The research results are as follows:
     (1) In the pure geopolymer preparation process, the rheological properties, curing time, microstructure and mechanical properties of geopolymer under the high temperature condition were studied. The results showed that, according to the strength of the geopolymer as the basis, the optimum proportion and technological parameters of geopolymer was determined as:the molar ratio of (SiO2)/(Al2O3) was3.3, the molar ratio of (Na2O)/(SiO2) was0.27, the molar ratio of (H2O)/(Na2O) was11, and the aging time of sodium silicate was24h, the curing temperature was60℃, the curing time was48h. So the strength of geopolymer reached to the highest,28d compressive strength and folding strength of geopolymer reached to89.63MPa,13.87MPa, respectively. High temperature moulding results showed that170℃,the initial setting time and final setting time of geopolymer slurry were11and16minutes, respectively. After the water sodium ratio of geopolymer was increased (14), the condensation time of geopolymer slurry extended. The reaction heat of geopolymer reflected that the increase of curing temperature could improve polymerization reaction rate and shorten the slurry setting time. Rheological properties showed that exerting shear force in polymer processing during the high temperature moulding process was helpful for flow moulding of geopolymer materials.
     (2)Toughening modification of geopolymer was used PVC during the network structure process of geopolymer, because molten PVC molecular chain and polymerization of geopolymer worked together, which formed interpenetrating network of geopolymer composites. Through the high temperature rheology test, it was found that when PVC content was less than50wt%, the modulus of composites was bigger and bigger and the whole composites were characteristic of solid features of geopolymer because the contribution of the viscous features of PVC have been covered by the contribution of the elastic response. Its processing parameters were as follows: plastification temperature of PVC was175℃, plastification time of PVC was6minutes, heat preservation time was10minutes after plasticated under170℃,15MPa. The mechanical strength results of geopolymer toughened by showed that the28d bending strength reached to55.87MPa when the addition of PVC was40wt%, which was improved by3.1times compared with that of the pure geopolymer.
     (3) The toughening modification of PVC was joined the geopolymer slury into PVC resin under coagulation stage of geopolymer, whose network structure was bonded by winding PVC molecular chain, resulting in enhancing the geopolymer and matrix PVC interface effect. Mechanics performance test results showed that, the geopolymer composites had good mechanical properties when geopolymer content was less then10wt%compared with pure PVC, of which4wt%content geopolymer was the optimum, and the impact strength of the PVC based composites reached to9.13KJ·m-2, which increased by40%compared with that of pure PVC. Vicat softening, thermogravimetric analysis, differential scanning calorimetry characterization results of PVC based composites showed that, vicat softening temperature increased by2-6℃compared with that of pure PVC. After geopolymer was joined into PVC, thermal stability of the Geolymer/PVC composites was enhanced because geopolymer inhibited and absorbed the releases of the HCl from PVC resulting from the molecular chain defect structure of PVC.
     (4) In situ polymerization of Geolymer/PVC composites was prepared with geopolymer modfied by silane coupling agent organic and vinyl chloride monomer through the fall loading process by in situ polymerization, and then by plasticated pressing.The temperature, pressure, conversion, stirring electric current of suspension polymerization system were studied. Mechanical properties testing results showed that the impact strength of Geolymer/PVC composites increased by59.4%, the tensile strength of Geolymer/PVC composites increased by13.8%, the elongation at break of Geolymer/PVC composites increased by7.65%compared with that of pure PVC when the geopolymer content was3wt%. The thermal decomposition activation energy calculated by Kissinger method showed that apparent activation energy of PVC/polymer composite by in situ polymerization and pure PVC material were274.78J·mol-1and152.06J·mol-1, respectively. The thermal decomposition activation energy of Geolymer/PVC was obviously higher than that of the PVC,which proved that the introduction of geopolymer improved the decomposition activation energy of PVC matrix resin and showed that its thermal stability was improved.
     (5) According to the above research conclusion, different amount of geopolymer were mixing fully with PVC and applied in PVC sheet production process, the mechanical properties of PVC composites were higher than that of the pure PVC sheets. In addition, aging resistance of PVC composite was greatly increased and significantly improved the durability of PVC sheets composites.
引文
[1]Gordon L. E., Provis J. L., Van Deventer J. S. J. Non-traditional ("geopolymer") cements and concretes for construction of large CCS equipment [J]. Energy Procedia,2011,4: 2058-2065.
    [2]Komnitsas K. A. Potential of geopolymer technology towards green buildings and sustainable cities [J]. Procedia Engineering,2011,21:1023-1032.
    [3]Shvarzman A., Koveler K., Grader G S., Shier G E.. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite [J]. Cement and Concerte Research,2003(33):405-416.
    [4]Temuujin J., Williams R. P., van Riessen A.. Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature[J]. J. Mater. Proc. Technol.,2009, 209(12-13):5276-5280.
    [5]王春梅等,煅烧制度及激发剂对偏高岭土活性的影响[J].武汉理工大学学报,2009,31(7):126-129.
    [6]Badogiannis E., Kakali G, Tsivilis S.. Metakaolin as supplementary cementitious material [J]. Journal of Thermal Analysis and Calorimetry,2005,81(2):457-462.
    [7]诸华军,姚晓,华苏东,王道正.煅烧制度对偏高岭土胶凝活性的影响[J].非金属矿,2007(5):6-8.
    [8]Zhang Shuzheng, Gong Kecheng, Lu Jianwei. Novel modification method for Inorganic geopolymer by using water soluble organic polymers [J]. Materials Letters,2004,58: 1292-1296.
    [9]Chen C. H., Teng C. C., Su S. F., et al. Effects of microscale calcium carbonate and nanoscale calcium carbonate on the fusion, thermal, and mechanical characterizations of rigid poly(vinyl chloride)/calcium carbonate composites [J]. Journal of Polymer Science Part B-Polymer Physics,2006,44(2):451-460.
    [10]Ismail H., Munusamy Y.. Polyvinyl chloride/organoclay nanocomposites:Effects of filler loading and maleic anhydride [J]. Journal of Reinforced Plastics and Composites,2007, 26(16):1681-1694.
    [11]Davidovits J.. Goepolymers:inorganic polymeric new materials [J]. Journal of Thermal Analysis,1991,37:1633-1656.
    [12]杨建军,殷素红,徐小彬,文梓芸.土壤聚合物材料粘结强度的试验研究[J].腐蚀与防护,2009,30(6):377-379.
    [13]饶绍建,王克俭,正交试验研究矿物聚合物抗压强度[J].硅酸盐通报,2010,29(6):1442-1446.
    [14]贾屹海.Na-粉煤灰地质聚合物制备与性能研究[D].北京:中国矿业大学,2009.
    [15]Davidovits J., (2006), Le"beton"des pyramides egyptiennes, Revue du Palais de la Decouverte, Paris,343, dec.2006,47-60.
    [16]Davidovits F., (2007), Geology and Construction in Vitruvius de Architectura, PhD Thesis [D], University of Caen, France.
    [17]Purdn A. O.. The action of alkalis on blast furnace slag [J]. Journal of Society of Chemical Industry,1940,59:191-202.
    [18]Duxson P., Fernandez-Jimenez A, lukey G C, et al. Geopolymer technology:the current state of the art[J]. Journal of Mater Science,2007,9(42):2917-2933.
    [19]Malonepg, Kirkpatrickt, Randallea. Potential applications of alkali-activated alumino-ailicate binders in military operations. Report WES/MP/GL-85-15, US Army Corps of Engineers, Vicksburg, Ml.1986.
    [20]Geopolymere'99, Proceedings 2rst European Conference on Geopolymer,1999, edited by J. Davidovits, R. Davidovits and C. James [C]. Geopolymer Institute and LN. S. S. E. t, Saint-Quentin, France(1999).
    [21]Geopolymer 2002, Proceedings Third International Conference on Geopolymer,2002, edited by Profannie Van Deventer, et al [C]. The University of Melbourne, Melbourne, Australia(2002).
    [22]Davidovits J.. Recent progresses in conerctes for nuclear waste and uranium waste containment[J]. Concrete International.1994.12(16):53-58.
    [23]Lyon R. E., Foden A., Phi. Balaguru, et al. Fire-resistant Aluminosilicate Composites[J]. Journal Fire and Materials. VOl.21.1997:67-73.
    [24]Valeria E. F. Barbosa, Kenneth J. D. Mackenzie, Clelio Thanmaturgo. Synthesis and characterization of materials based on inorganic polymers of alumina and silica:sodium polysialate polymers[J]. International Journal of Inorganic Materials.2(2000):309-317.
    [25]Xu H., Van Deventer J. S. J.. The geopolymerisation of natural alumino-silicates report. In:Davidovits J., Davidovits R., James C. (Eds.), Proceedings of the 2nd International Conference on Geopolymer'99 [C]. Saint Qunentin, France,1999, pp.43-64.
    [26]Van Jaarsveld J. G S., Van Deventer J. S. J. The effect of metal contaminants on the formation and properties of waste-based geopolymers[J]. Cement and Concrete Research, 1999,29(8):1189-1200.
    [27]Van Deventer J. S. J., Provis J. L., Duxson P., et al. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products[J]. Journal of Hazardous Materials,2007,139 (3):506-513.
    [28]Van Deventer J. S. J., Provis J L, Duxson P, et al. Technological, environmental and commercial drivers for the use of geopolymers in a sustainable materials industry [J]. Minerals Engineering,2007,20:1261-1277.
    [29]Criado M., Fema'ndez-Jime'nez A, Palomo A.. Effect of sodium sulfate on the alkali activation of fly ash [J]. Cement and Concrete Composites,2010,32(8):589-594.
    [30]Criado M, Ferna'ndez-Jime'nez A, Palomo A.. Alkali activation of fly ash. Part Ⅲ:Effect of curing conditions on reaction and its graphical description[J]. Fuel,2010,89(11): 3185-3192.
    [31]Bakharev T. Geopolymeric materials prepared using class fly ash and elevated temperature curing[J]. Cement and Concrete Research,2005,35(6):1224-1232.
    [32]Dimitrios Panias, Ioanna P., Giannopoulou, Theodra Perraki. Effect of synthesis parameters on the mechanical properties of fly ash- based geopolymers [J]. Colloids and Surfaces A:Physicochem. Eng,2007,301(1):246-254.
    [33]杨南如.碱胶凝材料形成的物理化学基础Ⅰ[J].硅酸盐学报,1996,24(2):209-215.
    [34]杨南如.碱胶凝材料形成的物理化学基础Ⅱ[J].硅酸盐学报,1996,24(4):459-465.
    [35]张云升,孙伟,李宗津,等.用半经验AM1算法研究地聚合反应中的溶解过程[J].建筑材料学报,2005,8(5):485-494.
    [36]陶文宏,付兴华,孙凤金,等.地聚物胶凝材料性能与聚合机理的研究[J].硅酸盐学报,2008,27(4):730-738.
    [37]杨南如.化学激发胶凝材料的原料和激发机理[C].水泥与混凝土利废技术与可持续发展论坛,北京,2006.3:95-115.
    [38]曾燕伟,方永浩,徐玲玲.化学激发胶凝材料研究进展[M].东南大学出版社,2005.11:184-195.
    [39]马鸿文,白志民,王万金等.一种用含钾岩石制取钾肥的方法[P].中国发明专利,申请号:CN96120733.7f.
    [40]谢吉星,印杰,陈俊静等.地聚合材料固化处理垃圾焚烧飞灰[J].环境工程学报,2010,4(4):935-739.
    [41]郑娟荣.地聚物基涂料的试验研究[J].新型建筑材料,2004.5,54.
    [42]郑娟荣,刘丽娜.偏高岭土基地质聚合物合成条件的试验研究[J].郑州大学学报,2008,29(2):44-47.
    [43]金漫彤,沈学优.土壤聚合物的制备及其固化重金属离子的研究[J].化工环保,2005,25(2):84-86.
    [44]Davidovits J.. Ceramic-ceramic composite materials and production method, USP. No.4,888,311, December19,1989.
    [45]Davidovits J.. Process for obtaining a geopolymeric alumino-silicate and products thus obtained [P]. UPS, No.5,342,595, August 30,1994.
    [46]Dylmar Penteado Dias, Clelio Thaumaturgo. Fracture toughness of geopolymeric concretes reinforced with basalt fiber[J]. Cement&Concrete Composites,2005,27:49-54.
    [47]Lin Tiesong, Jia Dechang, He Peigang, Wang Meirong, Liang Defu. Effects of fiber content on mechanical properties and fracture behaviour of short carbon fiber reinforced geopolymer matrix composites[J]. Materials Science and Engineering,2008,497:181-185.
    [48]Sun Peijiang, Wu Hwai-Chung. Transition from brittle to ductile behavior of fly ash using PVA fibers[J]. Cement Concrete,2008,30:29-36.
    [49]Zhang Y J,Wang Y C,Xu D L, et al Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin[J].Materials Science and Engineering A,2010,527: 6574-6580.
    [50]Dias D P, Thaumaturgo C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers [J]. Cement and Concrete Composites,2005,27:49-54.
    [51]Li W M, Xu J Y. Mechanical properties of basalt fiber reinforced geopolymeric ncrete under impact loading[J]. Materials Science and Engineering:A,2009,505(1-2):178-186.
    [52]He P G, Jia D C, Lin T S, et al. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites[J]. Ceramics International,2010,36(4):1447-1453.
    [53]Tiesong Lin, Dechang Jia, Peigang He, MeirongWang, Defu Liang. Effects of fiber content on mechanial properties and fracture behaviour of short carbon Fiber reinforced geopolymer matrix composites[J]. Materials Science and Engineering,2008,497:181-185.
    [54]Shrotri K., Langner A., Varela B. Dynamic mechanical properties of geopolymer-organic polymer composites [C]. Geopolymer 2005 proceedings,2005,65-68.
    [55]莫羡忠,王荣华,庞锦英,等.地聚物基复合材料的制备及弯曲强度的研究[J],广西大学学报:自然科学版,2009,34(2):183-186.
    [56]Davidovits J., Comrie D. C., Paterson J. H., et al. Geopolymeric Concretes for Environmental Protection [J]. British Ceramic Transactions.1990,89(6):195-202.
    [57]Malone P. G, Kirkpatrick. T., Randall C. A. Potential applications of Alkali-Activated Corps of Engineers, Viesburg, Ml.1986.
    [58]Van Jaarsveld J. G. S., Van Deventer J. S. J., Lorenzen L.. The potential use of geopolymeric materials to immobilize toxic metals:Part Ⅰ. Theory and applications[J].1997, 10(7):659-669.
    [59]H Xu, Van Deventer J S J. The geopolymerisation of alumino-silicate minerals[J]. International Journal of Mineral Processing,2000,59 (3):247-266.
    [60]H Xu. Geopolymerisation of aluminosilicate minerals, in Department of Chemical Engineering,2002.the University of Melbourne:Melbourne.
    [61]D. Feng, H. Tan, J. S. JV. Deventer, Ultrasound enhanced geopolymerisation [J]. Journal Of Materials Science,2004.39:51-580.
    [62]Ba Bushkin VI, Matveyev GM. Mchedlov- Petrossyan OP. Thermodylnamics of Silicates [M]. Berlin:Springer-Ver-lag.1985.276-281.
    [63]Mccorrnick A. V, Bell A. T., Radke C. J.. Influence of alkali- metal cations on silicon exchange and silicon-29spin relaxation in alka line silicate solutions[J]. J Phys Chem,1989, 93(5):1737-1741.
    [64]张书政,龚克成.地聚合物[J].材料科学与工程学报,2003,21(3):430-436.
    [65]Provis, J. L., P. Dtjxson, G. C., et al., Statistical thermodynamic model for Si/Al Ordering in amorphous aluminosilicates[J]. Chem. Mater,2005,17(11):2976-2986.
    [66]Li Z. J., Ding Z., Zhang Y. S.. Development of sustainable cmentitious materials [J]. International Workshop on Sustainable Development and Concrete Technology,2004:Beijing, China.
    [67]吴中伟.高技术混凝土[J].硅酸盐通报,1994,(1)41-45.
    [68]Davidovits J., Comrie D. C., Paterson J. H., et al. Geopolymeric Concretes for Environmental Protection[J]. Concrete Int,1990,21(7):30-40.
    [69]Provis J., Van Deventer J. S. J. Geopolymers:structure, processing, properties and applications [P]. Woodhead Publishing Limited, Abington Hall. Cambridge (UK):ISBN-13: 9781845694494,2009.7.2.
    [70]Davidovits J., Morris M.. The pyramids:An Enigma Solved [M], New York,1988.
    [71]Zhang J. G, Provis J. L., Feng D. W.. Geopolymers for immobilization of Cr66+, Cd2+ and Pb2+[J]. Journal of Hazardous Materials,2008,157:587-598.
    [72]Davidovits J., Davidovics M. Geopolymer room temperature ceramic matrix for Composites[J]. Ceramic Engineering,1988,9:835-842.
    [73]Davidovits J.. Ceramic- ceramic composite materials and production method [P].US. No. 4,888,311, December 19,1989.
    [74]Xiong Chuanxi, Lu Shengjun. Microporous polyvinyl chloride:novel reactor for PVC/CaCO3 anocomposites[J]. Nanotechnology,2005,16,1787-1792.
    [75]Moulay S. Chemical modification of poly(vinyl chloride)-Still on the run [J]. Progress in Polymer Science,2010,35(3):303-331.
    [76]Crawford E., Lesser J. Mechanics of rubber particle cavitation in toughened poly vinyl chloride(PVC)[J]. Polymer,2000,41:5860-5865.
    [77]Klaric I., Vrandecic N. S., Roje U, et al. Effect of poly(vinyl chloride)/ chlorinated polyethylene blend composition on thermal stability [J]. Journal of Applied Polymer Science,2000,78(1):166-172.
    [78]Whittle A. J., Burford R. P., Hoffman M. J. Assessment of strength and toughness of modified PVC pipes[J]. Plastics Rubber and Composites,2001,30(9):434-440.
    [79]Mousa A. Studies on rheological behaviour of thermoplastic elstomer derived from PVC and NBR using torque rheometry[J]. Iranian Polymer Journal,2004,13(6):455-461.
    [80]Manoj N R, Depp J. Self-crosslinkable plastic-rubber blend system based on PVC and acrylonitrile-co-butadiene rubber[J].Appl Polym Sci,1993,49(1):132-136.
    [81]Dimonie D.,Coserea R.M.,Singurel G.,et al.Rheological Properties of Polyvinyl Chloride-Thermoplastic Polyurethane Blends[J].Materiale Plastice,2009,46(3):321-326
    [82]Yu J. Y., Feng P. C., Zhang H. L. Effects of Core-Shell Acrylate Particles on Impact Properties of Chlorinated Polyethylene/Polyvinyl Chloride Blends[J]. Polymer Engineering and Science,2010,50(2):295-301.
    [83]Liu Y, Xie B. H., Yang W., et al. Morphology and fracture behaviour of poly(vinylchloride)/ethylene-vinyl acetate copolymer blends [J]. Polymer Testing,2007, 26(3):388-395.
    [84]Jing P., Genshuan W., Yudong Z. Studies on mechanical and rheological roperties of poly(vinyl chloride)modified with elastomers and rigid organic particles[J].Journal of Applied Polymer Science,2003,88(10):2478-2483
    [85]Jin D.W., Shon K. H., Kim B.K., et al. Compatibility enhancement of BS/PVC blends[J].Journal of Applied Polymer Science,1998,70(4):705-709
    [86]吴其晔,高卫平,王庆国等.PMMA基核-壳型有机刚性粒子增韧改性R-PVC/CPE韧性体[J].高分子材料科学与工程,2000(16),6:105-108.
    [87]王建民,李凤岭,常旭升等.PS对PVC增韧机理的研究[J].合成树脂及塑料.1996(13):11-14.
    [88]Pagacz J., Pielichowski K. Preparation and Characterization of PVC/Montmorillonite Nanocomposites-A Review[J]. Journal of Vinyl&Additive Technology,2009,15(2):61-76.
    [89]Rice J. R., Rosengren G. F.. Plane strain deformation near acrack tip in a power-law hardening materials[J]. J Mech Phys Solid,1968,16:1-12.
    [90]Wu Souheng. Control of intrinsic brittleness and toughness of polymers and blends by chemical structure[J]. Polymer International,1992,29(3):229-247.
    [91]Zhang L., Luo M. F., Sun S. S., et al. Effect of Surface Structure of Nano-CaCO3 Particles on Mechanical and Rheological Properties of PVC Composites[J]. Journal of Macromolecular Science Part B-Physics,2010,49(5):970-982.
    [92]Daril Ynh Roberts. Chemical coupling of polypropylene systems containing nonglass fillers[J]. Journal of Vinyl & AddtivesTechnology,1999,5(4):231-234.
    [93]熊传溪,董丽杰,汪庆刚等.过程工程学报,2004(4):347.
    [94]黄锐,张忠义,邓毅.半硬制PVC超细CaCO3体系性能的初步研究[J].中国塑料,1987,1(1):15.
    [95]Li Jie, Zhao Hui, Sun Ruimi. Effect of hyperbranched poly(amine-ester)grafted nano-SiO2 on reinforcement and Toughness of PVC [J]. Journal of Beijing Institute of Technology,2008,17(1):104-108.
    [96]Z Demje n, B Puka nszky, J Nagy. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites [J]. Compos,1998,29(3):323-329.
    [97]Liu Z. H., Kwok K. W., LIR K. Y., et al. Effects of coupling agent and morphology on the impact strength of high density polyethylene/CaCO3 composites [J]. Polymer,2002,43(8): 2501-2506.
    [98]Ohtake T., Uchida K., Ikazaki F., et al. Synthesis of mullite from fly ash alumina powder mixture[J]. Journal of the Ceramic Society of Japan,1991,99(3):239-243.
    [99]包永忠,韩金铭,舒文晓,黄志明.十一烯酸根插层水滑石对聚氯乙烯热稳定性的影响[J].塑料助剂,2008(4):33-36.
    [100]田爱娟,李小红,束华东,崔玉霞,张治军.表面改性纳米SiO2原位聚合增强PVC树脂性能研究[J].中国氯碱.2010(5):1 6-20.
    [101]黄志明,包永忠,单国荣,翁志学,潘祖仁.氯乙烯/纳米碳酸钙原位悬浮聚合转化率的控制[J].聚氯乙烯.2003(1):16-18.
    [102]Du J. X., Wang D. Y., Wilkie C. A., et al. An XPS investigation of thermal degradation and charring on poly(vinyl chloride)-clay nanocomposites[J]. Polymer Degradation and Stability,2003,79(2):319-324.
    [103]Liang Z. M., Wan C. Y, Zhang Y, et al. PVC/montmorillonite nanocomposites based on a thermally stable, rigid-rod aromatic amine modifier [J]. Journal of Applied Polymer Science,2004,92(1):567-575.
    [104]Wang D. Y, Wilkie C. A. Preparation of PVC-clay nanocomposites by solution blending[J]. Journal of Vinyl & Addmve Technology December,2002,8(4):238-245.
    [105]Gong F. L., Zhao C. G, Feng M., et al. Synthesis and characterization of PVC/montmorillonite nanocomposite [J]. Journal of Materials Science,2004,39(1):293-294.
    [106]Lepoittevin B., Pantoustier N., Devalckenaere M., et al. Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation:a masterbatch process [J]. Polymer,2003,44(7):2033-2040.
    [107]王辉,包永忠,黄志明,翁志学.聚氯乙烯/纳米水滑石复合材料的形态与力学性能[J].高分子学报,2005(5):693-696.
    [108]Stereson M, Sagoe-Crentsil K. Relationship between composition, structure and strength of inorganic polymers-Part I Metakaolin-derived inorganic polymers [J]. Journal of Materials science,2005,40(8):2023-2036.
    [109]Duxson P. Mallicoat S. W, Lukey G. C, etal. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers[J]. Colloids and Sarfaces A:Physicochemical and Engineering Aspects,2007,292(1):8-20.
    [110]张云升.高性能地聚合物混凝土结构形成机理及其性能研究[D].南京:东南大学,2003.
    [111]Panias, D., I. P. GiannoPoulou, T. Perraki. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2007,301(2):246-254.
    [112]Singh, P. S, T. Bastow, M. Trigg. Outstanding problems posed by nonpolymeric particulates in the synthesis of a well-structured geopolymeric material [J]. Cement and Concrete Research,2004,34(10):1934-1947.
    [113]Hua Xu, J S J Van Deventer. The geopolymerisation of alumino-silicate minerals[J]. International Journal of Mineral Processing,2000,(3):247-266.
    [114]Xu, H, Geopolymerisation of alumino silicate minerals [D]. in Department of Chemical Engineering. Melbourne:the University of Melbourne,2002.
    [115]Barrer R M. Hydrothermal Chemistry of Zeolites [M]. London:Academic Press,1982.
    [116]Barbosa V. F. F, Mackenzie K. J. D, Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica:sodium polysialate polymers[J]. International Journal of Inorganic Materials,2000,(2):309-317.
    [117]Lyon R. E., Balaguru P. N., Foden A., et al. Fire-resistant aluminosilicate composites[J]. Journal Fire and Materials,1997,21:67-73.
    [118]Davidovits J. Geopolymers:man-made rock geosynthesis and the resulting development of very early high strength cement[J]. Journal of Materials Education,1994,16: 91-137.
    [119]Xu H., Van Deventer J. S. J. The geopolymerisation of alumino-silicate minerals[J]. International Journal of Mineral Processing,2000,59(3):247-266.
    [120]Alonso S., Palomo A. Alkaline activation of metakaolin and calcium hydroxide mixtures:influence of temperature, activator concentration and solids ratio[J]. Materials Letters,2001,47:55-62.
    [121]Tang A., Su L., Li C., et al. Effect of mechanical activation on acid-leaching of kaolin residue [J]. Applied Clay Science,2010,48:296-299.
    [122]Barbosa V. F. F., Mackenzie K. J. D. Synthesis and thermal behaviour of potassium sialate geopolymers [J]. Materials Letters,2003,57:1477-1482.
    [123]Provis J. L., Van D. J. S. J. Geopolymerization kinetics.2. Reaction kinetic modelling [J]. Chemical Engineering Science,2007,62(9):2318-2329.
    [124]Sitarz M., Handke M., Mozgawa W. Identification of silicooxygen rings in SiO2 based on IR spectra [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2000,56(9):1819-1823.
    [125]Sitarz M., Handke M., Mozgawa W., et al. The non-ring cations influence on silicooxygen ring vibrations[J]. Journal of Molecular Structure,2000,555(1-3):357-362.
    [126]Duxson P., Lukey G, Deventer J. J. Physical evolution of Na-geopolymer derived from metakaolin up to 1000℃[J]. Journal of Materials Science,2007,42(9):3044-3054.
    [127]Kim D., Petrisor I. G, Yen T. F. Geopolymerization of biopolymers:a preliminary inquiry[J]. Carbohydrate Polymers,2004,56(2):213-217.
    [128]Kim D., Lai H.-T., Chilingar G, et al. Geopolymer formation and its unique properties [J]. Environmental Geology,2006,51(1):103-111.
    [129]Henrichs S. M. Early diagenesis of organic matter in marine sediments:progress and perplexity[J]. Marine Chemistry,1992,39(1-3):119-149.
    [130]Lin T., Jia D., Wang M., et al. Effects of fiber content on mechanical properties and fracture behaviour of short carbon fiber reinforced geopolymer matrix composites[J]. Materials Science and Engineering,2008,497:181-185.
    [131]Dias D. P., Thaumaturgo C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers[J]. Cement and Concrete Composites,2005,27(1):49-54.
    [132]Sun P., Wu H.-C. Transition from brittle to ductile behavior of fly ash using PVA fibers [J]. Cement & Concrete Composites.2007,30:29-36.
    [133]Zhang Yunsheng, Sun Wei, Li Zongjin, et al. Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber[J]. Construction and Building Materials,2008,22:370-383.
    [134]张耀君,李圣.无机铝硅酸盐聚合物与有机高分子复合胶凝材料的制备方法[P].中国专利,申请号:200910022109.4,公开号:CN101544484A,2009.
    [135]Millar J. R.. Interpenetrating polymer networks:styrene-divinylbenzene copolymers with two and three interpenetrating networks, and their sulfonates [J]. Journal of the Chemical Society (Resumed),1960,236:1311-1317.
    [136]Xiong Chuanxi, Lu Shengjun, Wang Dongyan, et al. Microporous polyvinyl chloride: novel reactor for PVC/CaCO3 nanocomposites[J]. Nanotechnology,2005,16:1787-1792.
    [137]Davidovit J., Translated by Kejian Wang. Geopolymer chemistry and application [M]. Beijing:National Defense Press,2011.
    [138]Awad W. H., Beyer G, Benderly D., et al. Material properties of nanoclay PVC composites [J]. Polymer,2009,50(8):1857-1867.
    [139]Xie X. L., Liu Q. X., Li R. K., et al. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization[J]. Polymer,2004,45: 6665-6673.
    [140]Wu D. Z., Wang X. D., Song Y. Z., et al. Nanocomposites of poly(vinyl chloride) and nanometric calcium carbonate particles:effects of chlorinated polyethylene on mechanical properties, morphology, and rheology[J]. Journal of Applied Polymer Science,2004,92: 2714-2723.
    [141]Rowles M., Connor B. O.. Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite [J]. Journal of Materials Chemistry,2003,13:1161-1165.
    [142]Bakharev T.. GeoPolymeric materials prepared using Class F fly ash and elevated temperature curing [J]. Cement and Concrete Research,2005,35:1224-1232
    [143]Babushkin V. Tr., Matveyev G M., Mchedlov-Pelrossyan O. P.. Thermodynamics of silicates [M]. Springer-Verlag, Berlin,1985:276-281.
    [144]Terselius B.. Gelation of PVC:Part 5 [M]. Plastics Rubber and Composites Processing and Applications,1985,5:193-201.
    [145]白启荣.PVC热稳定剂的作用机理[J].高分子材料研究,2007,11,32.
    [146]申海燕.PVC热稳定性的测试及机理研究[J].岳阳师范学院学报,2002,15,57.
    [147]Bacaloglu R., Fisch M.. Degradation and stabilization of poly(vinyl chloride). V. Reaction mechanism of poly(vinyl chloride) degradation[J]. Polymer Degradation and stability,1995,47(1):33-57.
    [148]Knumann R., Bockhorn H.. Investigation of the kinetics of pyrolysis of PVC by T G-MS-analysis[J]. Combustion Science and Technology,1994,101(1-6):285-299.
    [149]Nandini C. Thermal decomposition of poly (vinyl chloride)[J]. Journal of Polymer Science A, Polymer Chemistry,1994,32(7):1225-1237.
    [150]Diego B., David L., Girard-Reydet E., et al. Multiscale morphology and thermomechanical history of poly(vinyl chloride)(PVC) [J]. Polymer International,2004,53: 515-522.
    [151]Zuiderduin W. C. J., Westzaan C., Huetink J., et al. Toughening of polypropylene with calcium carbonate particles[J]. Polymer,2003,44(1):261-275.
    [152]Bao Y. Z., Huang Z. M., Weng Z. X.. Preparation and characterization of poly(vinyl chloride)/layered double hydroxides nanocomposite via in situ suspension polymerization [J]. Journal of Applied Polymer Science,2006,102:1471-1477.
    [153]Xie X. L., Liu Q. X., Li R. K., et al. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization [J]. Polymer,2004,45: 6665-6673.
    [154]Georgiadou S., Jin L. L., Thomas N., et al. Dispersion of nanoparticles in poly(vinyl chloride) grains during in situ polymerization[J]. Journal of Applied Polymer Science,2012, 124:1824-1830.
    [155]Gong F. L., Feng M., Zhao C. G, et al. Particle configuration and mechanical properties of poly(vinyl chloride)/montmorillonite nanocomposites via in situ suspension polymerization[J]. Polymer Testing,2004,23:847-853.
    [156]Palomo A., Macias A., Blanco M. T., et al. Physical chemical and mechanical characterization of geopolymers [C]. Proceedings of the Ninth International Congress on the Chemistry of Cement,1992(11):505-511.
    [157]Comrie D. C., Davidovits J.. Longterm durability of hazardous toxic and nuclear waste disposals[C]. Geopolymer'88, First European Conference on Soft Mineralurgy,1., Compiegne, France,1988:125-134.
    [158]Davidovits J.. Geopolymer chemistry and properties [C]. Geopolymer'88, First European Conference on Soft Mineralurgy,1., Compiegne, France,1988,25-48.
    [159]Arkles B. Tailoring surfaces with silanes[J]. Chem Tech.1977,7:766-781.
    [160]黄志明,黄颖,张立锋等.氯乙烯-无机纳米材料的原位聚合[J].聚氯乙烯,2000(11):21-24.
    [161]Bing Juanlin, Huang Zhiming. PVC Production Process and Technology [M]. Beijing: Chemical Industry Press,2008.
    [162]Xie T. Y, Hamielec A. E., Wood P. E., et al. Experimental investigation of vinyl chloride polymerization at high conversion:mechanism, kinetics and modeling[J]. Polymer, 1991,32(3):537-557.
    [163]Kiparissides C., Daskalaskis G, Achilias D. S., et al. Dynamic simulation of industrial poly(vinyl chloride) batch suspension polymerization reactors [J]. Industrial and Engineering Chemistry Research,1997,36(4):1253-1267.
    [164]Burgess R. H.. Manufacture and processing of PVC [M]. London:Applied Science, 1982.
    [165]Stephenson R. C., Smallwood P. V.. Encyclopedia of polymer science and engineering: Vol.117 and Supplement 2nd (Ed) [M]. New York:Wiley,1989.
    [166]肺冬林,蔡启振,张素卿等.聚氯乙烯树脂颗粒结构与增塑剂吸收性能的关系[J].塑料工业,1989:8.
    [167]Ponce-Ibarra V H,Benavides R,Cadenas-Pliego G,et al.Thermal degradation of poly(vinyl chloride) synthesized with a titanocene catalyst[J].Polymer Degradation and Stability,2006,91:499-503.
    [168]Kissinger H. E.. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29(11):1702-1706.
    [169]Doyle C. D.. Kinetic analysis of thermogravimetric data[J]. Journal of Applied Polymer Science,1961,5(15):285-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700