用户名: 密码: 验证码:
基于氯离子侵蚀的混凝土耐久性与寿命预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯离子侵蚀造成的钢筋混凝土结构耐久性失效乃至破坏现象屡见不鲜,导致了巨大的经济损失,使氯离子侵蚀环境下结构的耐久性问题备受人们关注。氯离子侵蚀不仅会引发构件中的钢筋锈蚀,还会加剧寒冷地区混凝土表面冻融剥蚀。由此研究混凝土中氯离子扩散性能及混凝土的抗盐冻性能对氯离子侵蚀环境下钢筋混凝土结构的耐久性有非常重要的意义。
     本文通过试验研究了海洋水下区、海洋潮汐区、海洋大气区以及冻融条件下粉煤灰混凝土中氯离子扩散性能,建立了粉煤灰混凝土中氯离子扩散模型,基于可靠性理论对氯离子侵蚀环境下的混凝土结构进行了寿命预测,并通过试验研究了粉煤灰混凝土的抗盐冻性能及抗盐冻性定量化设计。主要研究内容如下:
     海洋水下区和潮汐区是混凝土结构遭受氯离子侵蚀的重点区域。本文采用全浸泡和干湿交替方式分别模拟海洋水下区和潮汐区,研究了不同水胶比和不同掺量粉煤灰混凝土中自由氯离子和总氯离子扩散性能以及氯离子结合性能,得到了混凝土中自由氯离子含量与总氯离子含量的关系,建立了有效氯离子扩散系数与表观氯离子扩散系数的关系模型,并分别用线性结合机制、Langmuir结合机制和Freundlich结合机制对试验数据进行了回归分析,得到了相应的参数,为全面准确描述混凝土中氯离子扩散性能奠定了基础。
     海洋大气环境中的混凝土结构受到氯离子侵蚀和碳化的双重作用。本文采用浸泡与碳化交替方式模拟海洋大气区,研究了碳化作用对混凝土中自由氯离子和总氯离子扩散的影响。结果表明,碳化作用提高了氯离子在混凝土中的扩散速度。
     寒冷地区海洋环境和除冰盐环境中的混凝土结构受到冻融和氯离子侵蚀的双重作用,冻融作用会加快氯离子在混凝土中的扩散速度,而氯离子侵蚀又会加剧混凝土表面的冻融剥蚀。本文通过不同冻融损伤混凝土的全浸泡试验,研究了冻融损伤对混凝土中自由氯离子和总氯离子扩散的影响,引入混凝土冻融损伤度,建立了氯离子扩散系数与冻融损伤度的关系模型,为冻融和氯离子侵蚀环境下混凝土中氯离子扩散模型的建立提供了依据。
     本文并通过粉煤灰混凝土快速盐冻试验,研究了水胶比、粉煤灰掺量、引气量对混凝土抗盐冻性能的影响,考察了混凝土外观、质量损失率、相对动弹性模量、超声声速、抗压强度随盐冻循环次数的变化规律,建立了混凝土动弹性模量与超声声速及抗压强度的关系模型,并建立了混凝土抗盐冻循环次数的预测模型,为工程建设中有抗盐冻性要求混凝土的配合比设计提供了依据,同时也为寒冷地区海洋环境和除冰盐环境中混凝土结构冻融损伤的评定及耐久性设计奠定了基础。
     基于Fick第二定律,考虑了温湿度、氯离子扩散的时间依赖性、氯离子结合性能以及冻融损伤等因素对混凝土中氯离子扩散的影响,针对不同氯离子结合机制分别建立了综合的氯离子扩散模型,并对建立的氯离子扩散模型进行了工程验证,结果较为满意,模型的建立为氯离子侵蚀环境下混凝土结构耐久性寿命的预测提供了理论依据。
     在分析了混凝土保护层、临界氯离子浓度、表面氯离子浓度、初始氯离子浓度、氯离子扩散系数、氯离子扩散系数的衰减指数及氯离子结合系数等因素概率特性的基础上,基于可靠性理论对氯离子侵蚀环境下的混凝土结构进行了寿命预测,并对混凝土结构耐久性寿命的敏感性进行了分析,得到了各影响因素对耐久性寿命的影响规律及影响程度,为结构的耐久性设计提供了相应参考。最后对不同氯离子结合机制下混凝土结构耐久性寿命进行了对比,结果表明,Langmuir结合机制可更准确预测结构的耐久性寿命。
Durability failure of reinforced concrete structures due to chloride corrosion often occurs, which leads to enormous economic loss, so the durability problems of structures in chloride corrosion environment arouse the attention of people. Chloride corrosion can not only cause the rust of rebar, but also aggravate surface scaling of concrete in cold region. Therefore, the study on chloride diffusion properties in concrete and frost-salt resistance of concrete have very important significance to the durability of reinforced concrete structures in chloride corrosion environment.
     The chloride diffusion properties in fly ash concrete of marine underwater region, marine tidal region, marine atmospheric region and cold region were investigated by tests. The chloride diffusion model in fly ash concrete was established, and service life prediction for concrete structures in chloride corrosion environment was carried out based on reliability theory. The frost-salt resistance and quantitative design on frost-salt resistance of fly ash concrete were also investigated by tests. The main contents of this paper are as follows:
     Marine underwater region and marine tidal region are the key region where concrete structures suffer chloride corrosion. The diffusion properties of free chloride and total chloride and the chloride binding properties in different water-binder ratio and different volume of fly ash concrete were investigated by using full-immersion method and alternation of wet-dry method to simulate marine underwater region and marine tidal region respectively. The relationship between free chloride content and total chloride content in concrete was obtained, and the relation model between effective chloride diffusion coefficient and apparent chloride diffusion coefficient was also established. Regression analysis on experiment data was carried out by using linear binding mechanisms, Langmuir binding mechanisms and Freundlich binding mechanisms respectively, and the parameters were obtained. The study above provide basis for describing the diffusion properties of chloride in concrete completely and accurately.
     The concrete structures in marine atmospheric environment suffer the dual action of chloride corrosion and carbonation. The influence of carbonation on diffusion of free chloride and total chloride in concrete was investigated by using alternation of immersion and carbonation method to simulate marine atmospheric region. The results show that, carbonation action increases the diffusion speed of chloride in concrete.
     The concrete structures in marine environment of cold region and deicing salt environment suffer the dual action of freeze-thaw and chloride corrosion, freeze-thaw action can increase the diffusion speed of chloride in concrete, and chloride corrosion can aggravate surface scaling of concrete. The influence of freeze-thaw damage on diffusion of free chloride and total chloride in concrete was investigated by full-immersion tests of the concrete with different freeze-thaw damage, and the relation model between chloride diffusion coefficient and freeze-thaw damage was established by introducing freeze-thaw damage value of concrete, which provides basis for establishment of chloride diffusion model in concrete under the environment of freeze-thaw and chloride corrosion.
     Accelerated frost-salt tests of fly ash concrete were also carried out. The influence of water-binder ratio, volume of fly ash and air-entraining content on frost-salt resistance of concrete were investigated. The variation rule of surface characteristics, weight loss rate, relative dynamic modulus of elasticity, supersonic velocity, compressive strength of concrete with the number of frost-salt cycle were inspected. The relation model between dynamic modulus of elasticity and velocity of ultrasonic sound, and the relation model between dynamic modulus of elasticity and compressive strength of concrete was established respectively. And the model for predicting the cycle number of frost-salt resistance of concrete was also established. The study above provide basis for design of mix proportion of the concrete with request of frost-salt resistance in engineering construction, and also provide basis for the evaluation on freeze-thaw damage and the durability design of concrete structures in marine environment of cold region and deicing salt environment.
     Based on Fick’s second law and the analysis for the influence of temperature, humidity, time-dependence of chloride diffusion, chloride binding properties and freeze-thaw damage on chloride diffusion in concrete, comprehensive chloride diffusion model was established respectively according to different chloride binding mechanisms. The model is reasonable according to engineering verification, which provides theory basis for durability life prediction of concrete structures in chloride corrosion environment.
     Based on the analysis for probabilistic characteristics of concrete cover, critical chloride concentration, surface chloride concentration, initial chloride concentration, chloride diffusion coefficient, attenuation index of chloride diffusion coefficient and chloride binding coefficient, service life prediction for concrete structures in chloride corrosion environment was carried out according to reliability theory. Meanwhile, the sensitivity of durability life of concrete structures was analyzed, the rule and the degree of influence of each factor on durability life were obtained, which provide reference for durability design of structures. Finally, the durability life of concrete structures under different chloride binding mechanisms were compared. The results show that, Langmuir binding mechanisms can predict service life of structures more accurately.
引文
[1]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社. 2003:4-8,104-108.
    [2]洪乃丰.钢筋混凝土基础设施腐蚀与耐久性.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社,2003:76-83.
    [3]黄士元,杨全兵.我国寒冷地区混凝土路桥结构的耐久性问题.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社,2003:44-51.
    [4]赵全胜.大掺量粉煤灰混凝土在工程中的应用研究[D].河北工业大学硕士学位论,2002.
    [5]邢占东.氯离子环境下的双掺混凝土耐久性研究[D].大连理工大学硕士学位论文,2005.
    [6]王立刚.粉煤灰的环境危害与利用[J].中国矿业,2001,10(4):27-28.
    [7] Davis R E.,Carlson R. W.,Kelly J. W.,Davis H. E.. Properties of Cement and Concretes Containing Fly Ash. //Proc. ACI[C]. May-June,1937.
    [8] Davis R. E.. Historical Accounts of Mass Concrete. //Symposium on Mass Concrete[C]. 1963.
    [9] S. P. Shah. High performance concrete:Past,present and future.//Proceedings of the International Symposium on High Performance concrete[C]. Hong Kong and Shenzhen,China, 2000:3-27.
    [10] Sydney Mindess. High performance concrete:The Canadian experience.//Proceedings of the International Symposium on High Performance concrete[C]. Hong Kong and Shenzhen,China. 2000:135-144.
    [11]吕梁,侯浩波.粉煤灰性能与应用[M].北京:中国电力出版社. 1998:3-4.
    [12]文俊强.广州珠江黄埔大桥超大掺量粉煤灰混凝土的初步研究[D].暨南大学硕士学位论文,2006.
    [13]沈旦申,吴鹏鸣.粉煤灰水泥混合材料的试验研究.工程建设[J]. 1953(40):35-43.
    [14]沈旦申,张荫济.粉煤灰效应探讨[J].硅酸盐学报,1981,9(1):57-63..
    [15]吴中伟.绿色高性能混凝土——混凝土的发展方向[J].混凝土与水泥制品,1998(1):3-6.
    [16]余成行,师卫科,宋元旭.大掺量粉煤灰混凝土在中央电视台新台址工程中的应用[J],混凝土,2006(8):88-91.
    [17]王思恭.粉煤灰混凝土在北京西客站工程中的应用[J].施工技术,1995(5):29-30.
    [18] JGJ28-86《粉煤灰在混凝土和砂浆中应用技术规程》[S].北京:中国建筑工业出版社.
    [19] GBJ146-90《粉煤灰混凝土应用技术规范》[S].北京:中国计划出版社.
    [20] JTJ/T273-97《港口工程粉煤灰混凝土技术规程》[S].北京:人民交通出版社.
    [21] GB1596-2005《用于水泥和混凝土中的粉煤灰》[S].北京:中国标准出版社.
    [22] DL/T5055-2007《水工混凝土掺用粉煤灰技术规范》[S].北京:中国电力出版社.
    [23]覃维祖.大掺量粉煤灰混凝土与高性能混凝土[J].混凝土与水泥制品,1995(2):22-26.
    [24] Organisation for Economic Co-operation and Development,“Durability of Concrete Road Bridges”, 1990.
    [25] Dan F. Adkins, Gary P. Merkley, Gertrudys Brito. Mathematics of concrete scaling[J]. Journal of Materials in Civil Engineering, 1993, 5(2):280-288.
    [26]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社. 1998:2-4,18-20.
    [27] Dunker K. F., Rabbat B. G.. Why America’s Bridges are Crumbling[J]. Scientific American, 1992, 268(3):66-68.
    [28]乔伊夫著,赵铁军译.严酷环境下混凝土结构的耐久性设计[M].北京:中国建材工业出版社. 2010:12.
    [29]赵霄龙.寒冷地区高性能混凝土耐久性及其评价方法研究[D].哈尔滨工业大学博士学位论文,2001.
    [30]巴恒静,赵霄龙,杨英姿.寒区机场混凝土道面破坏原因分析及提高道面混凝土耐久性的对策研究.中国土木工程学会混凝土与预应力混凝土学会高强与高性能混凝土委员会,高强与高性能混凝土及其应用第三届学术讨论会,济南,1998.
    [31]黄土元,杨全兵,郭荣泰等.高抗冻融高抗盐剥蚀混凝土路面的研究与应用[J].黑龙江交通科技,2000增刊:45-55.
    [32]潘德强,洪定海,郑恩惠等.华南海港钢筋混凝土码头锈蚀破坏调查报告.四航科研所、南京水利科学研究所等,1981.
    [33]潘德强.我国海港工程混凝土结构耐久性现状及对策.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社,2003:96-107.
    [34] CECS220:2007《混凝土结构耐久性评定标准》[S].北京:中国建筑工业出版社.
    [35] CCES 01-2004《混凝土结构耐久性设计与施工指南》[S].北京:中国建筑工业出版社.
    [36] CCES 01-2004(2005年修订版)《混凝土结构耐久性设计与施工指南》[S].北京:中国建筑工业出版社.
    [37] DBJ14-S6-2005《混凝土结构耐久性设计规程》[S].济南.
    [38] GB/T 50476-2008《混凝土结构耐久性设计规范》[S].北京:中国建筑工业出版社.
    [39]洪乃丰.基础设施腐蚀防护和耐久性问与答[M].北京:化学工业出版社. 2003:61-65.
    [40]金伟良.混凝土结构耐久性[M].北京:科学出版社. 2002:48-49,55-57.
    [41]冯乃谦,刑锋.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社. 2009:122,130.
    [42]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].东南大学博士学位论文,2006.
    [43]赵铁军.混凝土渗透性[M].北京:科学出版社. 2006:11-18.
    [44]路新瀛,张华新,王晓睿.混凝土渗透性电测方法评述[J].混凝土与水泥制品,2003(4):7-9.
    [45]路新瀛,王晓睿,张华新. ASTM C1202实验方法浅析[J].工业建筑,2004,34(4):89-91.
    [46] Min-hong Zhang, O.E. Gjorv. Permeability of high-strength lightweight concrete[J]. ACI Materials Journal, 1991, 88(5):463-469.
    [47] H.T.Cao, L.Bucea, B.Meck. Rapid assessment of concrete's resistance to chloride penetration-modified ASTMC1202. Concrete Institute of Australia-Concrete 97:391-397.
    [48]高春勇,姚燕,王玲等.混凝土抗氯离子渗透性能试验方法的研究.新型高性能混凝土耐久性的研究与工程应用[M].中国建材工业出版社,2004:311-314.
    [49]赵铁军.高性能混凝土的渗透性研究[D].清华大学博士学位论文,1997.
    [50]王晓冬,张鹏,赵铁军.混凝土氯离子渗透性试验方法综述[J].工业设计与建设,2005,37(5):25-29.
    [51]蒋林华.混凝土抗氯离子渗透扩散性研究[J].中国腐蚀与防护学报,2002,22(6):343-348.
    [52]白轲,杨元霞.碳化作用对混凝土强度及氯离子渗透性能的影响[J].粉煤灰综合利用,2008(6):23-26.
    [53] Chi Sun Poon, Lik Lam, Yuk Lung Wong. Effects of fly ash and silica fume on interfacial porosity of concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(3):197-205.
    [54] Michael D.A. Thomas, Phil B. Bamforth. Modelling chloride diffusion in concrete effect of fly ash and slag[J]. Cement and Concrete Research, 1999, 29(4):487-495.
    [55]袁承斌,张德峰,刘荣桂等.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报(自然科学版),2003,31(1):50-54.
    [56]邢锋,冷发光,冯乃谦等.长期持续荷载对素混凝土氯离子渗透性的影响[J].混凝土,2004(5):3-8.
    [57]何世钦,贡金鑫.弯曲荷载作用对混凝土中氯离子扩散的影响[J].建筑材料学报,2005,8(2):134-138.
    [58]涂永明,吕志涛.应力状态下混凝土结构的盐雾侵蚀试验研究[J].工业建筑,2004,34(5):1-3.
    [59]赵尚传,贡金鑫,水金锋.弯曲荷载作用下水位变动区域混凝土中氯离子扩散规律试验[J].中国公路学报,2007,20(4):76-82.
    [60]巴恒静,张武满,高小建.水灰比与应力水平对混凝土氯离子渗透性影响[J].武汉理工大学学报,2006,28(5):45-47.
    [61] Mitsuru Saito, Hiroshi lshimori. Chloride permeability of concrete under static and repeated compressive loading[J]. Cement and Concrete Research, 1995, 25(4):803-808.
    [62]洪锦祥,缪昌文,黄卫.冻融损伤对混凝土氯离子扩散性能的影响[J].混凝土,2006(1):36-38.
    [63]何世钦,贡金鑫,赵国藩.冻融循环下混凝土中氯离子的扩散性[J].水利水运工程学报,2004(4):32-36.
    [64] B. Gérard, J. Marchand. Influence of cracking on the diffusion properties of cement-based materials—Part I: Influence of continuous cracks on the steady-state regime[J]. Cement and Concrete Research, 2000, 30(1):37-43.
    [65] P.J. Tumidajski, G.W. Chan. Effect of Sulfate and Carbon Dioxide on Chloride Diffusivity[J]. Cement and Concrete Research,1996, 26(4):551-556.
    [66] Prinya Chindaprasirt, Sumrerng Rukzon, Vute Sirivivatnanon. Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended Portland cement mortar[J]. Construction and Building Materials, 2008, 22(8):1701-1707.
    [67]金祖权,孙伟,李秋义.碳化对混凝土中氯离子扩散的影响[J].北京科技大学学报,2008,30(8):921-925.
    [68]苏卿.滨海环境下海砂混凝土结构耐久性机理与寿命预测研究[D].西安建筑科技大学博士学位论文,2010.
    [69]郑永来,郑洁琼,张梅.碳化程度对混凝土中氯离子扩散系数的影响[J].同济大学学报(自然科学版),2010,38(3):412-416.
    [70]张鹏,赵铁军,郭平功等.冻融和碳化作用对混凝土氯离子侵蚀的影响[J].东南大学学报(自然科学版),2006,36增刊(Ⅱ):238-242.
    [71]马昆林,谢友均,刘灿等.混凝土固化氯离子影响因素的研究[J].混凝土,2004(6):20-21.
    [72]王新友,李宗津.混凝土使用寿命预测的研究进展[J].建筑材料学报,1999,2(3):249-256.
    [73] Qiang Yuan, Caijun Shi, Geert De Schutter et al. Chloride binding of cement-based materials subjected to external chloride environment–A review[J]. Construction and Building Materials, 2009, 23(1):1-13.
    [74] Tuutti K.. Analysis of pore solution squeezed out of cement paste and mortar[J]. Nordic Concrete Research, 1982, 25(1):1-16.
    [75] T.U. Mohammed, H. Hamada. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research, 2003, 33(9):1487-1490.
    [76] Paul Sandberg. Studies of chloride binding in concrete exposed in a marine environment[J]. Cement and Concrete Research, 1999, 29(4):473-477.
    [77] Xinying Lu, Cuiling Li, Haixia Zhang. Relationship between the free and total chloride diffusivity in concrete[J]. Cement and Concrete Research, 2002, 32(2):323-326.
    [78] Xu A. The structure and some physical and properties of cement mortar with fly ash. Licentiate thesis[D]. Department of Building Materials, Chalmers University of Technology, Goteborg, Sweden, Publication 1990.
    [79] R.K. Dhir, M.A.K. El-Mohr, T.D. Dyer. Developing chloride resisting concrete using PFA[J]. Cement and Concrete Research, 1997, 27(11):1633-1639.
    [80]曹青,谭克锋,袁伟.矿物掺合料对水泥基材料氯离子固化能力影响的研究[J].四川建筑科学研究,2009,35(3):189-192.
    [81] O. A. Kayyali, M.Sh. Qasrawi. Chloride binding capacity in cement-fly-ash pastes[J]. Journal of Materials in Civil Engineering, 1992, 4(1):16-26.
    [82]金祖权,孙伟,张云升.双因素作用下混凝土对氯离子结合能力研究[J].混凝土与水泥制品,2004(6):1-3.
    [83]胡蝶,麻海燕,余红发.矿物掺合料对混凝土氯离子结合能力的影响[J].硅酸盐学报,2009,37(1):129-134.
    [84] Nagataki S., Otsuki N., Wee TH. et al. Condensation of chloride ion in hardened cement matrix materials and on embedded steel bars[J]. ACI Materials Journal, 1993, 90(4):323-332.
    [85] T.U. Mohammed, H. Hamada. A discussion of the paper‘‘Relationship between the free and total chloride diffusivity in concrete’’by Xinying Lu, Cuiling Li, and Haixia Zhang[J]. Cement and Concrete Research, 2003, 33(3):451-453.
    [86] Blunk G, Gunkel P, Smolczyk HG.. On the distribution of chloride between the hardening cement paste and its pore solution[C]. Proceedings of the 8th international congress on the chemistry of cement, 1986:85-90.
    [87] Rasheeduzzafar. Influence of cement composition on concrete durability[J]. ACI Materials Journal, 1992, 89(6):574-586.
    [88] Dhir R.K., Jones M.R., McCarthy M.J.. PFA concrete: chloride-induced reinforcement corrosion[J]. Magazine of Concrete Research, 1994, 46(169):269-277.
    [89]王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响[J].硅酸盐学报,2000,28(6):570-574.
    [90] Zibara Hassan. Binding of external chloride by cement pastes[D]. PhD thesis, Department of Building Materials, University of Toronto, Canada, 2001.
    [91] Roberts M.H.. Effect of calcium chloride on the durability of pretensioned wire in prestressed concrete[J]. Magazine of Concrete Research, 1962, 14(42):143-154.
    [92] Tetsuya Ishida , Prince O'Neill Iqbal, Ho Thi Lan Anh. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete[J]. Cement and Concrete Research, 2009, 39(10):913-923.
    [93] Svend Engelund, John D. Sorensen. A probabilistic model for chloride-ingress and initiation of corrosion in reinforced concrete structures[J]. Structural Safety, 1998, 20(1):69-89.
    [94] Yu Wang, Long-yuan Li, C.L. Page. Modelling of chloride ingress into concrete from a saline environment[J]. Building and Environment, 2005, 40(12):1573-1582.
    [95] Yunping Xi, Ba?ant Z. P.. Modeling chloride penetration in saturated concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(1):58-65.
    [96] Byung Hwan Oh, Seung Yup Jang. Effects of material and environmental parameters on chloride penetration profiles in concrete structures[J]. Cement and Concrete Research, 2007, 37(1):47-53.
    [97]施养杭,罗刚.有限差分法氯离子侵入混凝土计算模型[J].华侨大学学报(自然科学版),2004,25(1):58-61.
    [98]吴相豪,李丽.海港码头混凝土构件氯离子浓度预测模型[J].上海海事大学学报,2006,27(1):17-20.
    [99]刘荣桂,陆春华.海工预应力混凝土氯离子侵蚀模型及耐久性[J].江苏大学学报(自然科学版),2005,26(6):525-528.
    [100]王仁超,朱琳,李振富.混凝土氯离子综合机制扩散模型及敏感性研究[J].哈尔滨工业大学学报,2004,36(6):824-828.
    [101]余红发,孙伟,麻海燕等.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):240-247.
    [102]陈妤,刘荣桂,付凯.冻融循环下海工预应力混凝土结构的耐久性[J].建筑材料学报,2009,12(1):17-21.
    [103] Powers T. C.. Freezing effect in concrete. Scholer C F, Durability of concrete. Detroit:American Concrete Institute, 1975.
    [104]杨全兵,黄士元.受冻地区混凝土的盐冻破坏[J].黑龙江交通科技,2000增刊:7-9.
    [105]杨全兵,吴学礼等.去冰盐引起的混凝土的盐冻剥蚀破坏[J].黑龙江交通科技,2000增刊:2-6.
    [106] Standard test method for scaling resistance of concrete surfaces exposed to deicing chemicals, ASTM Standard C672, Annual Book of ASTM Standards, vol. 04.02, American Society for Testing and Materials, Philadelphia, 1992:341-343.
    [107] John J. Valenza II , George W. Scherer. A review of salt scaling: I. Phenomenology[J]. Cement and Concrete Research, 2007, 37(7):1007-1021.
    [108] SIS, Concrete Testing-Hardened Concrete-Frost Resistance, Standardiserings- Kommissionen I Sverige, Swedish Standard 13 72 44, 1992.
    [109] DL/T 5150-2001《水工混凝土试验规程》[S].北京:中国电力出版社.
    [110]游有鲲,缪昌文,慕儒.粉煤灰高性能混凝土抗冻性研究[J].混凝土与水泥制品,2000(5):14-15.
    [111]袁晓露,李北星,崔巩等.粉煤灰混凝土的抗冻性能及机理分析[J].混凝土,2008(12):43-44.
    [112]程云虹,闫俊,刘斌等.粉煤灰混凝土抗冻性能试验研究[J].低温建筑技术,2008(1):1-3.
    [113] S.H.Gebler, P. Klieger. Effect of fly ash on the durability of air-entrained concrete. In: V.M. Malhotra (Ed.), ACI Special Publication SP-91, American Concrete Institute, Detroit, 1986:483-519.
    [114] Gebler, S. H., Klieger, P.. Effect of fly ash on the durability of air-entrained concrete. ACI Special Publication SP-91, (ed. V. M. Malhotra) 1986:483-519.
    [115] Whiting, D. Deicer salt scaling resistance of lean concrete containing fly ash. ACI Special Publication SP-114, (ed. V. M.Malhotra) 1989:349-372.
    [116] M. Pigeon, C. Talbot, J. Marchand et al. Surface microstructure and scaling resistance of concrete[J]. Cement and Concrete Research, 1996, 26(10):1555-1566.
    [117]张德思,成秀珍.粉煤灰混凝土的抗冻融耐久性[J].混凝土与水泥制品,1999(4):8-10.
    [118] A. Bilodeau, G.G. Carette, V.M. Malhotra, W.S. Langley. Influence of curing and drying on slat scaling resistance of fly ash concrete. In: V.M. Malhotra (Ed.), ACI Special Publication SP-126, American Concrete Institute, Detroit, 1991:201–228.
    [119]陈少峰,孙立,李振宝.混凝土盐冻破坏的试验研究[J].公路,2006(4):216-219.
    [120]缪昌文,刘加平,慕儒等.混凝土抗除冰盐的剥落性能与机理研究[J].公路, 2001(12):88-92.
    [121]赵霄龙,卫军,巴恒静.高性能混凝土在盐溶液中的抗冻性[J].建筑材料学报,2004,(1):85-88.
    [122]杨全兵,吴学礼,黄士元.去冰盐引起的混凝土的盐冻剥蚀破坏[J].黑龙江交通科技, 2000增刊:2-6.
    [123]陈迅捷,欧阳幼玲.海洋环境中混凝土抗冻融循环试验研究[J].水利水运工程学报,2009 (2):68-71.
    [124] H. Sommer. The precision of the microscopical determination of the air-void system in hardened concrete[J]. Cement, Concrete, and Aggregate, 1979, 1(2):49-55.
    [125]杨全兵.混凝土盐冻破坏机理(Ⅰ)——毛细管饱水度和结冰压[J].建筑材料学报,2007,10(5):522-527.
    [126]张云清,余红发,王甲春.盐冻条件下混凝土结构表面的损伤规律研究[J].中国公路学报,2009,22(4):57-63.
    [127]严安,李启令,吴科如.高性能混凝土在荷载作用下的冻融性能及其可靠性分析[J].混凝土与水泥制品,2000(3):3-6.
    [128]慕儒,严安,孙伟.荷载作用下高强混凝土的抗冻性[J].东南大学学报,1998,28(4):138-144.
    [129]孙伟,余红发,王晴等.弯曲荷载对混凝土抗卤水冻蚀性的影响[J].武汉理工大学学报,2005,27(7):46-49.
    [130]余红发,慕儒,孙伟等.弯曲荷载、化学腐蚀和碳化作用及其复合对混凝土抗冻性的影响[J].硅酸盐学报,2005,33(4):492-499.
    [131]邹超英,赵娟,梁锋等.冻融作用后混凝土力学性能的衰减规律[J].建筑结构学报,2008,29(1):117-123.
    [132]邹超英,徐天水,胡琼.应力状态对抗冻混凝土力学性能的影响[J].低温建筑技术,2005(6):6-7.
    [133]施士升.冻融循环对混凝土力学性能的影响[J].土木工程学报,1997,30(4):35-42.
    [134]程红强,张雷顺,李平先.冻融对混凝土强度的影响[J].河南科学,2003,21(2):214-216.
    [135]段安,钱稼茹.受冻融环境混凝土的应力-应变全曲线试验研究[J].混凝土,2008(8):13-16.
    [136]李平先,张雷顺.冻融循环作用下混凝土的剪切强度试验研究[J].郑州大学学报(工学版),2004,25(4):12-15.
    [137]覃丽坤,宋玉普,王玉杰等.冻融循环对海水中混凝土抗压性能的影响[J].混凝土,2004(1):16-18.
    [138]于长江,宋玉普.冻融环境下混凝土双向拉压强度与变形特性的试验研究[J].混凝土,2004(5):12-16.
    [139]于长江,宋玉普,张众.冻融环境下普通混凝土三轴受压强度与变形特性的试验研究[J].混凝土,2005(2):3-7.
    [140]商怀帅,尹全贤,宋玉普等.冻融循环后普通混凝土变形特性的试验研究[J].人民长江,2006,37(4):58-61.
    [141]覃丽坤,宋玉普,陈浩然等.双轴拉压混凝土在冻融循环后的力学性能及破坏准则[J].岩石力学与工程学报,2005,24(10):1740-1745.
    [142] Vesa Penttala, Fahim Al-Neshawy. Stress and strain state of concrete during freezing and thawing cycles[J]. Cement and Concrete Research, 2002, 32(9):1407-1420.
    [143] Ba?ant Z. P.. Mathematical model for freeze-thaw durability of concrete[J]. Journal of the American Ceramic Society, 1998, 71(9): 776-783.
    [144] B. Zuber, J. Marchand. Modeling the deterioration of hydrated cement systems exposed to frost action—Part 1: Description of the mathematical model[J]. Cement and Concrete Research, 2000, 30(12):1929-1939.
    [145] Zhi-Yun Zhou, Hirozo Mihashi. Micromechanics model to describe strain behavior of concrete in freezing process[J]. Journal of Materials in Civil Engineering, 2008, 20(1):46-53.
    [146]蔡昊.混凝土抗冻耐久性预测模型[D].清华大学博士学位论文,1998.
    [147]许丽萍,吴学礼,黄士元.抗冻混凝土的设计[J].上海建材学院学报,1993,6(2):112-123.
    [148]李金玉,邓正刚,曹建国等.混凝土抗冻性的定量化设计.重点工程混凝土耐久性研究与工程应用[M],北京:中国建材工业出版社,2001.
    [149]王立久.混凝土抗冻耐久性预测数学模型[J].混凝土,2009(4):1-4.
    [150] Tuutti, K.. Service life of structures with regard to corrosion of embedded steel [J]. Metal Construction, 1979, 1:293-301.
    [151] GBJ82-85《普通混凝土长期性能和耐久性能试验方法》[S].北京.
    [152]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社. 2003:167-169.
    [1] JTJ270-98《水运工程混凝土试验规程》[S].北京:人民交通出版社.
    [2]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社. 2007:59,194-120.
    [3]冯乃谦,邢锋.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社. 2009:130.
    [4] T.U. Mohammed, H. Hamada. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research, 2003, 33(9):1487-1490.
    [5] Xinying Lu, Cuiling Li, Haixia Zhang. Relationship between the free and total chloride diffusivity in concrete[J]. Cement and Concrete Research, 2002, 32(2):323-326.
    [6]胡蝶,麻海燕,余红发等.矿物掺合料对混凝土氯离子结合能力的影响[J].硅酸盐学报,2009,37(1):129-134.
    [7]王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响[J].硅酸盐学报,2000,28(6):570-574.
    [8]曹青,谭克锋,袁伟.矿物掺合料对水泥基材料氯离子固化能力影响的研究[J].四川建筑科学研究,2009,35(3):189-192.
    [9] Maage M., Helland S.. Service life prediction of eaisting concrete structure exposed to marine environment[J].ACI Materials Journal, 1996, 93(6):602-608.
    [10] Michael D.A. Thomas, Phil B. Bamforth. Modelling chloride diffusion in concrete effect of fly ash and slag[J]. Cement and Concrete Research, 1999, 29(4):487-495.
    [1]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社. 2002:55-57.
    [2]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].东南大学博士学位论文,2006.
    [3]张奕,姚昌建,金伟良.干湿交替区域混凝土中氯离子分布随高程的变化规律[J].浙江大学学报(工学版),2009,43(2):360-365.
    [1]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社. 2003:10-11.
    [2]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社. 2007:34-36.
    [3]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社. 2003:64.
    [4]蔡光汀.钢筋混凝土腐蚀机理和防腐措施探讨[J].混凝土,1992(1):18-24.
    [5]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].东南大学博士学位论文,2006.
    [6]王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响[J].硅酸盐学报,2000,28(6):570-574.
    [7] S. Go?i, A. Guerrero. Accelerated carbonation of Friedel’s salt in calcium aluminate cement paste[J]. Cement and Concrete Research, 2003, 33(1):21-26.
    [8] K. Kobayashi, M. Funato, R. Shiraki et al. Carbonation and concentration of chloride in concrete containing chlorides[J]. III, Kenkyin, 1989, 41(12):930- 932.
    [9] A.K. Suryavanshi, R.N. Swamy. Stability of Friedel’s salt in carbonated concrete structural elements[J]. Cement and Concrete Research, 1996, 26(5):729-741.
    [10]苏卿.滨海环境下海砂混凝土结构耐久性机理与寿命预测研究[D].西安建筑科技大学博士学位论文,2010.
    [11]柯斯乐E L.扩散-流体系统中的传质[M].北京:化学工业出版社,2002.
    [1]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,1999.
    [2]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].东南大学博士学位论文,2000.
    [3]陈妤,刘荣桂,蔡东升等.冻融与氯盐侵蚀作用下预应力结构耐久性试验及数值模拟[J].建筑结构学报,2010,31(2):104-110.
    [4]赵霄龙,卫军,黄玉盈.混凝土冻融耐久性劣化与孔结构变化的关系[J].武汉理工大学学报,2002,24(12):14-17.
    [5]李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究[J].水利学报,1999(1):41-49.
    [1] GBJ82-85《普通混凝土长期性能和耐久性能试验方法》[S].北京.
    [2] Marchand J.,Pigeon M.,Bager D. et al.Influence of chloride Solution concentration on deicer salt scaling deterioration of concrete[J].ACI Materials Journal, 1999, 96(4):429-435.
    [3]黄士元,杨全兵.高抗冻融高抗盐剥蚀混凝土路面的研究与应用[J].黑龙江交通科技,2000增刊:45-55.
    [4]国家建筑工程质量监督检验中心.混凝土无损检测技术[M].中国建材工业出版社,1996:13-14,151-153.
    [5] ASTM C666/C666M-03. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. Annual Book of ASTM Standards. Vol.04.02, ASTM, Philadelphia.
    [6] GB/T 50476-2008《混凝土结构耐久性设计规范》[S].北京:中国建筑工业出版社.
    [7] CCES 01-2004《混凝土结构耐久性设计与施工指南》[S].北京:中国建筑工业出版社.
    [8] Kreijger P. C.. The skin of concrete-Composition and properties[J]. Materiaux et Constructions, 1984, 17:275-283.
    [9]关礼杰.以动弹性模量评定混凝土耐久性[J].铁道建筑,1981(3):12-15.
    [10]罗骐先.用纵波超声换能器测量混凝土表面波速和动弹性模量[J].水利水运科学研究,1996,21(3):264-269.
    [11]郝恩海,刘杰,王忠海等.混凝土超声声速与强度和弹性模量的关系研究[J].天津大学学报,2002,35(3):380-383.
    [12]李金玉,彭小平,邓正刚等.混凝土抗冻性的定量化设计[J].混凝土,2000(9):61-65.
    [1]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社. 2007:60-61.
    [2] Page C. L., Short, N. R., El Tarras A.. Diffusion of chloride ions in hardened cement paste[J]. Cement and Concrete Research, 1981, 11(3):395-406.
    [3] Ba?ant, Z. P., Najjar, L. J.. Nonlinear water diffusion of nonsaturated concrete[J]. Materiaux et Constructions, 1972, 5(25).
    [4] Michael D.A. Thomas, Phil B. Bamforth. Modelling chloride diffusion in concrete effect of flyash and slag[J]. Cement and Concrete Research, 1999, 29(4):487-495.
    [5]余红发,孙伟,麻海燕等.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):240-247.
    [6] Tang Luping, Joost Gulikers. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete[J]. Cement and Concrete Research, 2007, 37(4):589-595.
    [7]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].东南大学博士学位论文,2000.
    [8] Zibara Hassan. Binding of external chloride by cement pastes[D]. PhD thesis, Department of Building Materials, University of Toronto, Canada, 2001.
    [9] T.U. Mohammed, H. Hamada. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research, 2003, 33(9):1487–1490.
    [10] Sergi W, Yu SW, Page CL. Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment[J]. Magazine of Concrete Research, 1992, 44(158):63-69.
    [11] T. Ishida, S. Miyahara, T. Maruya. Chloride binding capacity of mortars made with various Portland cements and mineral admixtures[J]. Journal of Advanced Concrete Technology, 2008, 6(2):287-301.
    [12] Seung-Woo Pack, Min-Sun Jung, Ha-Won Song et al. Prediction of time dependent chloride transport in concrete structures exposed to amarine environment[J]. Cement and Concrete Research, 2010, 40(2):302-312.
    [13] H.-W. Song, S.-W. Pack, J.S. Moon. Durability evaluation of concrete structures exposed to marine environment focusing on a chloride build-up on concrete surface. Proceedings of the International Workshop on Life Cycle Management of Coastal Concrete Structures, Nagaoka Japan 2006:1-9.
    [14] L. Tang, L. O. Nilsson. Modeling of chloride penetration into concrete—tracing five years field exposure[J]. Concrete Science and Engineering, 2000, 2(8):170-175.
    [15] Amey S. L., Johnson D.A., Miltenberger M. A. et al. Predicting the Service Life of Concrete Marine Structure: An Environmental Methodology[J]. ACI Materials Journal, 1998, 95(2): 205-214.
    [1]苏卿.滨海环境下海砂混凝土结构耐久性机理与寿命预测研究[D].西安建筑科技大学博士学位论文, 2010.
    [2] Trevor J. K.. Impact of Specification Changes on Chloride Induced Corrosion Service Life of Virginia Bridge Decks. Thesis in Civil and Environmental Engineering.Virginia: Virginia Polytechnic Institute and State University, 2001.
    [3] Ueli Angst, Bernhard Elsener, Claus K. Larsen et al. Critical chloride content in reinforced concrete—A review[J]. Cement and Concrete Research, 2009, 39(12):1122-1138.
    [4]田俊峰,潘德强,赵尚传.海工高性能混凝土抗氯离子侵蚀耐久寿命预测[J].中国港湾建设,2002(2):1-6.
    [5] Ki Yong Ann, Ha-Won Song. Chloride threshold level for corrosion of steel in concrete[J]. Corrosion Science, 2007, 49(11):4113-4133.
    [6] Michael D.A. Thomas. Chloride thresholds in marine concrete[J]. Cement and Concrete Research, 1996, 26(4):513-519.
    [7] C. Alonso, C. Andrade, M. Catellote et al. Chloride threshold values to depassivate reinforcing bars in a standardized OPC mortar[J]. Cement and Concrete Research, 2000, 30(7):1047-1055.
    [8]李岩.氯离子在混凝土中的渗透性能与钢筋腐蚀临界浓度的试验研究[D].南京水利科学研究院硕士学位论文,2003.
    [9] Vu Kim. Anh. T., Stewart Mark G.. Structural reliability of concrete bridges including improved chloride-induced corrosion models [J]. Structural Safety, 2000, 22(4):313-333.
    [10] Enright M. P., Frangopol D. P.. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion[J]. Engineering Structures, 1998, 20(11):960-971.
    [11] Ha-Won Song , Seung-Woo Pack, Ki Yong Ann. Probabilistic assessment to predict the time to corrosion of steel in reinforced concrete tunnel box exposed to sea water[J]. Construction and Building Materials, 2009, 23(10):3270-3278.
    [12] Zoubir Lounis, Lamya Amleh. Reliability-Based Prediction of Chloride Ingress and Reinforcement Corrosion of Aging Concrete Bridge Decks. Life-Cycle Performance of Deteriorating Structures, 2003:113-122.
    [13] General Guidelines for Durability Design and Redesign, Duracrete, The European Union February, 2000.
    [14] Seung Jun Kwon, Ung Jin Na, Sang Soon Park et al. Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion[J]. Structural Safety 2009,31(1):75-83.
    [15]郝晓丽.氯腐蚀环境混凝土结构耐久性与寿命预测[D].西安建筑科技大学硕士学位论文,2004.
    [16]刘秉京.桥梁混凝土结构使用寿命设计.//工程科技论坛:混凝土结构的安全性与耐久性,2001.
    [17]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].东南大学博士学位论文,2006.
    [18]乔伊夫著,赵铁军译.严酷环境下混凝土结构的耐久性设计[M].北京:中国建材工业出版社,2010.
    [19] A. Boddy, E. Bentz, M.D.A. Thomas et al. Hooton. Overview and sensitivity study of a multimechanistic chloride transport model[J]. Cement and Concrete Research, 1999, 29(6):827-837.
    [20]马亚丽.基于可靠性分析的钢筋混凝土结构耐久寿命预测[D].北京工业大学博士学位论文,2006.
    [21]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社. 2003:240-243.
    [22] GB/T 50476-2008《混凝土结构耐久性设计规范》[S].北京:中国建筑工业出版社.
    [23] Siemes A J M, Rostam S. Durable Safety and Serviceability.//A Performance Based Design Format, IABSE Report 74:Proceedings IABSE Colloquium“Basis of Design and Actions on Structures-Background and Application of Eurocode 1”, Delft, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700