用户名: 密码: 验证码:
乌东德坝区岩体裂隙及块体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乌东德水电站是金沙江下游河段规划建设的四个水电梯级——乌东德、白鹤滩、溪洛渡、向家坝的最上游一级,具有以发电为主,兼顾防洪和拦沙等综合效益。乌东德大坝位于云南省禄劝县和四川省会东县交界的乌东德峡谷中,电站厂房位于峡谷两岸的岩体中。大坝为双曲拱坝,拱座岩体以层状灰岩和大理岩为主。坝区岩体裂隙及裂隙圈闭而成的块体是影响工程安全的重要因素,是工程技术人员重点关注的问题。
     论文依托乌东德水电站工程,对坝区岩体裂隙和块体进行了系统研究。主要研究内容包括:(1)对坝区典型地段的实测裂隙进行统计分析,采用逆建模方法构建三维裂隙网络模型;(2)基于三维裂隙网络模型,采用带宽投影法求算裂隙的二维和三维连通率,分析连通率的分布特征和尺寸效应;(3)计算各高程拱座岩体的块体百分比,分析各段岩体的块度组合特征;(4)将岩体块度模数这一概念拓展到三维空间,对坝区岩体进行三维块度模数计算并进行分级;(5)采用一般块体方法对地下电站厂房的随机块体进行预测分析,确定随机块体的规模、数量和稳定性,为地下厂房的开挖支护提供建议。
     研究表明:乌东德坝区主要发育倾W向和NE向的两组裂隙,平均迹长在1.0~4.0m之间,服从对数正态分布或负指数分布,裂隙平均间距属宽~很宽间距,最大三维裂隙密度为0.251m-3。拱座岩体缓倾角裂隙的二维连通率均小于10.0%,中倾角裂隙连通率位于8.0%~22.5%之间,陡倾角裂隙连通率位于0~11.6%;三维情况下,底滑面连通率为0.5~4.0%,侧滑面连通率为1.9~23.4%,侧滑面连通率近似服从正态分布,具有显著的尺寸效应,侧滑面连通率随裂隙发育特征表现出显著的方位特征。各段岩体的块体化程度存在差异,最大的块体百分比为74.5%,最小块体百分比仅为0.14%,大多数块体体积小于1m3。各段岩体的三维块度模数均大于4.0,属较完整~完整岩体。右岸地下厂房的随机块体集中在厂房的顶拱部位,左岸随机块体主要位于边墙部位;块体以稳定块体为主,但可移动块体占50%以上,最大块体体积达152.0m3,块体最大埋深为8.8m,对地下厂房围岩进锚喷支护时,锚杆(锚索)的最小长度应大于8.8m,以充分保证地下厂房围岩的稳定性。
The Wudongde hydropower station is the most upstream ladder of fourworld-class hydropower stations—Wudongde, Baihetan, Xiluodu and Xiangjiaba,which are being constructed on the downstream of Jinshajiang River. The project willhas tremendous benefits such as electricity generation, flood control and sedimentdesilting. The dam is located in the Wudongde valley between Yunnan and Sichuanand the underground powerhouses are suited in the rock masses on the banks ofJinshajiang River. A curvature arch dam will be constructed and the layeredlimestones and marbles will serve as abutments. The rock fractures and blocks aremain factors endangering the whole project and hence being the focus.
     The dissertation studies the rock fractures and blocks in dam area in detail basedon the Wudongde hydropower station project. The main contents cover:(1) statisticalanalysis for the measured fractures and three-dimensional (3d) fracture networkmodeling by an inverse method;(2) evaluating the2d and3d fracture persistence byprojection method on the basis of fracture networks, and discussing the distributioncharacteristics and scale effect of fracture persistence;(3)computing the blockiness foreach rock mass and analyzing the assemblage characteristics of blocks;(4)expandingthe blockiness modulus into three dimensions,determining the3d block modulus foreach rock mass and its grade;(5) identification of the stochastic blocks inunderground powerhouses, quantification of their amount, sizes and stability, andproviding suggestion for the construction.
     The following conclusions can be drawn from the research:(1) two fracturegroups are developed in dam area, with west and northeast dip directions;the fracturetrace length is lognormally or exponentially distributed with average values ranging in1.0~4.0m; the average spacing is wide or very wide; the maximum3d frequency is0.251m-3.(2) the2d persistence value of flat-dipping fractures for each rock mass isless than10.0%, and that of medium and steep-dipping fractures are in8.0%~22.5%and0~11.6%,respectively; In three dimensions, the persistence values of horizontal andlateral slip surface are in the range of0.5~4.0%and1.9~23.4%, respectively; the3dpersistence of lateral slip surface is approximately normally distributed and exhibitsconsiderable scale effect and oriented-independent characteristics duo to the fracturefeatures.(3) the blockiness degree differs from each rock mass; the maximum andminimum values are74.5%and0.14%, respectively; the majority of blocks are less than1m3in volume.(4)the3d blockiness modulus for each rock mass is greater than4.0and therefore each rock mass is integral or sub-integral.(5) the stochastic blocksare largely suited in the vault of the right powerhouse and the sidewalls of the leftpowerhouse; the majority of blocks are stable but removable; the largest block is152.0m~3;the maximum embedded depth of blocks can be up to8.8m, so it issuggested that the anchor bolts supporting the surrounding blocks should be greaterthan8.8m in order to guarantee the stability of the powerhouses.
引文
Billaux D,Chiles J P,Hestir K,et al. Three-dimensional statistical modelling of a fractured rockmass–an example from the Fanay-Augeres mine[J].Int. J.Rock Mech. Min. Sci.&Geomech. Abstr.,1989,26:281-299.
    Cacus M C,Ledoux E,Marsily G DE,et al. Modeling fracture flow with a stochastic discretefracture network:calibration and validation1,1the flow model. Water Resources Research,1990,26(3):479-489.
    Dershowitz W S, Einstein H H. Characterizing rock joint geometry with joint systemmodels[J].Rock Mechanics and Rock Engineering,1988,21:21-51.
    Elmouttie M,Poropat G,Kr henbuhl G. Polyhedral modelling of rock mass structure[J].International Journal of Rock Mechanics&Mining Sciences,2010,47:544-552.
    Elmouttie M,Poropat G,Kr henbuhl G. Polyhedral modelling of underground excavations[J].Computers and Geotechniques,2010,37:529-535.
    Goodman R E,Shi G H. Block theory and its application to rock engineering[M].New Jersey:Prentice Hall,1985.
    Heliot D. Generating a blocky rock mass[J]. Int. J.Rock Mech. Min. Sci.&Geomech.Abstr.,1988,25(3):127-138.
    Hudson J A, Hurrison J P. Engineering rock mechanics: an introduction to theprinciples[M].Elsevier Ltd.,1997.
    Hudson J A, Priest S D. Discontinuity frequency in rock masses[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1983,20(2):73-89.
    Ikegawa Y. Hudson J A. A novel automatic identification system for three-dimensionalmulti-block systems[J]. Engineering Computations,1992,9(2):169-179.
    Itasca Consulting Group,Inc.3DEC-3dimensional distinct element code,version4.1,2007.
    Jafari A,Khishvand M,Rahami H. Developing an algorithm for reconstruction blocky systems indiscontinuous media:three-dimensional analysis[J]. International Journal for Numerical andAnalytical Methods in Geomechanics,2011,doi:10.1002/nag.1113
    Jager J C,Cook N G W,Zimmerman R W. Fundamentals of rock mechanics,4thedition[M].UK:Blackwell Publishing,2007.
    Jing L. Block system construction for three-dimensional discrete element models of fracturedrocks[J]. International Journal of Rock Mechanics&Mining Sciences,2007,37:645-659.
    Jing L,Stephansson O. Topological identification of block assemblages for jointed rock masses[J].Int. J.Rock Mech. Min. Sci.&Geomech.,1994,31(2):163-172.
    Khishvand M,Jafari A,Rahami H. Developing an algorithm for reconstruction blocky systems indiscontinuous media:two-dimensional analysis[J]. Geomechanics and Geoengineering:AnInternational Journal,2011,6(2):171-183.
    Kulatilake P H S W. Probabilistic modelling of joint orientation[J]. International Journal forNumerical and Analytical Methods in Geomechanics.1990,14:325-350.
    Kulatilake P H S W, Wathugala D N, Stephansson O. Joint network modelling with a validationexercise in Stripe mine, Sweden[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1993,30(5):503-526.
    Kulatilake P H S W, Wu T H. Estimation of mean trace length of discontinuities[J]. RockMechanics and Rock Engineering,1984,17:215-232.
    Kulatilake P H S W, Wu T H. Sampling bias on orientation of discontinuities[J].Rock Mechanicsand Rock Engineering,1984,17:243-253.
    Li J,Xue J,Xiao J,et al. Block theory on the complex combinations of free planes[J]. Computersand Geotechniques,2012,40:127-134.
    Lin D,Fairhurst C,Starfield A M. Geometrical identification of three-dimensional rock blocksystems using topological techniques[J]. Int. J.Rock Mech. Min. Sci.&Geomech.,1987,24(6):331-338.
    Long J C S,Billaux D M. From field data to fracture network modeling: an example incorporatingspatial structure[J]. Water Resources Research,1987,23(7):1201-1216.
    Lu J. Systematic identification of polyhedral rock blocks with arbitrary joints and faults[J].Computers and Geotechniques,2002,29:49-72.
    Lyman G J. Rock fracture mean trace length estimation and confidence interval calculation usingmaximum likelihood methods[J]. International Journal of Rock Mechanics&Mining Sciences,2003,40:825-832.
    Mauldon A D,Karasaki K,Martel S J,et al. An inverse technique for developing models for fluidflow in fracture systems using simulated annealing[J]. Water Resources Research,1993,29(11):3775-3789.
    Mauldon M. Estimating mean fracture trace length and density from observations in convexwindows[J]. Rock Mechanics and Rock Engineering,1998,31(4):201-216.
    Priest S D, Hudson J A. Discontinuity spacings in rock[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1976,13:135-148.
    Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scanlinesurveys[J].Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1981,18:183-197.
    Snow D T. Anisotropic permeability of fractured media[J]. Water Resources Research,1969,5(6):1273-1289.
    Snow D T. A parallel plate model of fractured permeable media:[Ph.D. dissertation],Berkeley:Univ. of Calif.,1965.
    Snow D T. A Discussion of Theme1, Proceedings of the First International Congress on RockMechanics,Lisbon,1967,3:243-244.
    Snow D T. The frequency and apertures of fractures in rock[J]. Int. J. Rock Mech. Min. Sci.,1970,7:23-40.
    Song J J. Estimation of areal frequency and mean trace length of discontinuities observed innon-planar surfaces[J]. Rock Mechanics and Rock Engineering,2006,39(2):131-146.
    Song J J,Lee C I. Estimation of joint length distribution using window sampling[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2001,38:519-528.
    Terzaghi R. Sources of error in joint surveys[J]. Geotechnique,1965,15(3):287-304.
    Villaescusa E, Brown E T. Maximum likelihood estimation of joint size from trace lengthmeasurements[J]. Rock Mechanics and Rock Engineering,1992,25:67-87.
    Warburton P M. Vector stability analysis of an arbitrary polyhedral rock block with any number offree faces[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1981,18(5):415-427.
    Wathugala D N, Kulatilake P H SW, Wathugala G W, et al. A general procedure to correctsampling bias on joint orientation using a vector approach[J]. Computers and Geotechniques,1990,10:1-31.
    Wu Q, Kulatilake P H S W, Tang H M. Comparison of rock discontinuity mean trace length anddensity estimation methods using discontinuity data from an outcrop in Wenchuan area,China[J]. Computers and Geotechnics,2011,38:258-268.
    Yu Q,Ohnishi Y,Xue G,et al. A generalized procedure to identify three-dimensional rock blocksaround complex excavations[J]. International Journal for Numerical and Analytical Methods inGeomechanics,2009,33:355-375.
    Zhang L, Einstein H H,Estimating the mean trace length of rock discontinuities[J]. RockMechanics and Rock Engineering,1998,31(4):217-235.
    Zhang Y,Xiao M,Chen J.A new methodology for block identification and its application in alarge scale underground cavern complex[J]. Tunnelling and Underground Space Technology,2012,25:168-180.
    Zhang Y,Xiao M,Ding X,et al. Improvement of methodology for identification using meshgridding technique[J]. Tunnelling and Underground Space Technology,2012,30:217-229.
    Zhang Z X,Lei Q H. Object-oriented modeling for three-dimensional multi-block systems[J].Computers and Geotechnics,2013,48:208-227.
    蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    长江水利委员会长江勘测规划设计研究院,中国水电顾问集团西北勘测设计研究院.金沙江乌东德水电站预可行性研究报告第四篇,工程地质.2010.
    陈德基,刘特洪.岩体质量评价的新指标—块度模数[C].全国首届工程地质学术会议论文选集,1979.
    陈剑平,卢波,谷宪民,等.节理岩体三维综合抗剪强度数值模拟研究[J].岩石力学与工程学报,2006,25(7):1463-1468.
    陈剑平,卢波,谷宪民,等.用投影法求算岩体结构面三维连通率[J].岩石力学与工程学报,2005,24(15):2617-2622.
    陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报,2001,23(4):397-402.
    杜景灿,陈祖煜,汪小刚.寻优方法在岩体结构面连通特性和综合抗剪强度研究中的应用[J].岩石力学与工程学报,2003,22(9):1441-1447.
    范留明,黄润秋.岩体结构面连通率估计的概率模型及其工程应用[J].岩石力学与工程学报,2003,22(5):723-727.
    范留明,黄润秋.一种估计结构面迹长的新方法及其工程应用[J].岩石力学与工程学报,2004,23(1):53-57.
    胡耀飞,张勇,靳晓光.基于现场实测的缓倾硬性结构面连通率统计[J].水文地质工程地质,2011,38(4):78-81.
    黄国明,黄润秋.基于交切条件下的不连续面迹长估算法[J].地质科技情报,1998,25(6):27-30.
    贾洪彪,马淑芝,唐辉明,等.岩体结构面网络三维模拟工程应用研究[J].岩石力学与工程学报,2002,22(5):976-979.
    贾洪彪,唐辉明,刘佑荣,等.岩体结构面三维网络模拟理论与工程应用[J].北京:科学出版社,2008.
    李浩,吴晓玲,朱焕春.岩体裂隙线贯通率的计算机模拟计算[J].岩土力学,2001,22(3):350-352.
    卢波,陈剑平,石丙飞,等.用遗传算法求解节理岩体三维连通率[J].岩石力学与工程学报,2004,23(20):3470-3474.
    潘别桐.岩体中不连续面网络的概率统计模型及其应用综述[J].四川水力发电,1985,1:52-62.
    荣冠,周创兵,朱焕春,等.三峡水库某库段岩体裂隙网络模拟研究[J].岩土力学,2004,25(7):1122-1126.
    徐光黎,潘别桐,唐辉明,等.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993.
    汪小刚,陈祖煜.应用蒙特卡洛法确定节理岩体的连通率和综合抗剪强度指标[J].岩石力学与工程学报,1992,11(4):345-355.
    王晓明,李会中,王吉亮,等.乌东德水电站右岸地下厂房随机块体特征研究[J].现代地质,2013,2(待刊).
    王晓明,黄孝泉,夏露,等.乌东德坝区拱座岩体三维裂隙连通率特征[J].地球科学—中国地质大学学报,2013(待刊).
    邬爱清,周火明,任放.岩体三维网络模拟技术及其在三峡工程中的应用[J].长江科学院院报,1998,15(6):15-22.
    伍法权.统计岩体力学原理[M].武汉:中国地质大学出版社,1993.
    夏露.三峡工程地下电站厂房岩石块体研究[D].北京:中国地质大学(北京),2001
    肖建勋,程远帆,王利丰.岩体结构面连通率研究进展及应用[J].地下空间与工程学报,2006,2(2):325-328.
    于青春,大西有三.岩体三维不连续裂隙网络及其逆建模方法[J].地球科学-中国地质大学学报,2003,28(5):522-526.
    于青春,刘丰收,大西有三.岩体非连续裂隙网络三维面状渗流模型[J].岩石力学与工程学报,2005,24(4):662-668.
    于青春,薛果夫,陈德基.裂隙岩体一般块体理论[M].北京:中国水利水电出版社,2007.
    张发明,汪小刚,贾志欣,等.三维结构面连通率的随机模拟计算[J].岩石力学与工程学报,2004,23(9):1486-1490.
    张雨霆,肖明,丁秀丽,等.复杂岩石块体识别的单元重构-聚合方法[J].岩石力学与工程学报,2012,31(3):507-523.
    张倬元,王士天,王兰生.工程地质分析原理,第二版[M].北京:地质出版社,1993.
    周维垣,杨若琼,尹建民,等.三维岩体构造网络生成的自协调法及工程应用[J].岩石力学与工程学报,1996,16(1):29-35.
    左东启,王世夏,林益才.水工建筑物[M].南京:河海大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700