用户名: 密码: 验证码:
蛋白质折叠的网络方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质折叠在生命科学领域是一项重要的前沿课题。蛋白质只有当其链折叠到一个特定的三维结构才能发挥其生物学功能。如果蛋白质折叠错误,就会造成病态。大家熟悉的疯牛病,就是因为pnon蛋白折叠成致病空间结构所导致的。因此研究蛋白质折叠的路径、局域稳定态以及过渡态有着重要的意义。
     本论文在蛋白质折叠的网络研究上主要做了以下三个工作:
     第一,折叠网络是一种研究多肽链和蛋白质折叠高维自由能曲面的有效方法。该方法避免了将自由能曲面投影到二维序参数上的局限性。我们对基于马尔科夫聚类(Markov Cluster (MCL) algorithm)算法的网络方法进行了改进,并用这种改进的方法研究了β发卡trpzip2的折叠自由能曲面。通过分析,我们发现改进的马尔科夫聚类方法相对于二维自由能曲面投影方法,能够更加清晰准确的描述蛋白质局域稳定态和折叠路径。
     第二,确定过渡态(transition state)结构对研究蛋白质折叠路径和折叠动力学非常重要。蛋白质折叠过程中过渡态结构不能直接从实验中测得,然而用分子动力学模拟方法可以有效的研究。目前用自由能投影方法和Pfold等方法确定过渡态都有它们自己的局限性。因此,我们提出一种基于网络的新方法来更加有效的确定过渡态结构。该方法将高维自由能曲面投射到蛋白质折叠网络的路径长度上,并且使用优先广度搜索方法计算路径长度。我们称这种方法为FEPL(free energy along path length)方法。我们用这种方法研究了β发卡trpzip2折叠过程中的过渡态。通过比较该方法与其它方法获得的过渡态,我们发现FEPL方法能更加准确而且全面的确定折叠过程中的过渡态。
     第三,用网络的方法研究蛋白质的下坡折叠过程。用本文提出的基于网络的FEPL方法研究了β发卡trpzip2的折叠路径,其结果表明在相同的折叠条件下p发卡trpzip2有三种折叠机制:第一种是多态折叠过程;第二种是二态折叠过程;而第三种则是以前没有发现的下坡折叠过程。该结果更进一步证明了网络方法能更加有效全面的研究蛋白质折叠过程。
The protein folding is an important problem in the life science. A protein molecule can fulfill their biological function, only when they fold into their specific three-dimensional structure. Protein misfolding can lead to disease, e.g., misfolding and aggregate prion protein leads to the mad cow disease. Therefore, understanding the protein folding mechanism would greatly help us to study the protein self-assembling and protein design. Therefore it is very significant to study the protein folding pathways and transition states efficiently and accurately.
     The main works in this thesis is as follows:
     (1)Protein folding network analysis is an effective approach to investigate the high-dimensional free energy surface of peptide and protein folding and the method can avoid the limitations of simple projection of free energy surface based on a few order parameters. We present improvements in the effectiveness and accuracy to the folding network analysis method based on Markov Cluster (MCL) algorithm. We applied this approach to investigate the folding free energy landscape of the beta-hairpin peptide trpzip2 and found that the folding network method is able to determine the basins and folding paths of trpzip2 more clearly and accurately than the two-dimensional free energy projection method.
     (2) Identifying folding transition state structures is crucial to study protein folding pathways and folding dynamics. Protein folding transition state structures cannot be obtained directly from experiments but can be investigated by using molecular dynamics simulations. Although, there are various methods that utilize data from molecular dynamics simulations to identify the folding transition state structures their results often different notably. In this paper we present a novel approach to find the folding transition state structures based on the free energy along the generalized path length of the folding network. By using this approach we analyzed the folding transition state structures of the beta-hairpin peptide trpzip2 and the results show that our method can find different kinds of the folding transition state structures identified by other methods. This shows that our method can provide more complete information for the folding transition states of proteins.
     (3) The FEPL method based on the folding network has also been applied to study the downhill folding process of the beta-hairpin trpzip2. The results show that there are three types of folding mechanisms of the trpzip2 in the same folding conditions:the multistate folding, two-state folding and downhill folding. The downhill folding process of trpzip2 has not been discovered in the previous studies. The result further demonstrates that the network approach can study the protein folding completely.
引文
[1]Krivov S. V.;Karplus M. Hidden complexity of free energy surfaces for peptide (protein) folding; Proceedings of the National Academy of Sciences of the United States of America 2004,101(41),14766-14770.
    [2]Rao F.;Caflisch A. The protein folding network; Journal of Molecular Biology 2004,342(1),299-306.
    [3]Gfeller D.;De Los Rios P.;Caflisch A., et al. Complex network analysis of free-energy landscapes; Proceedings of the National Academy of Sciences of the United States of America 2007,104(6),1817-1822.
    [4]Dill K. A.;Bromberg S.;Yue K., et al. Principles of protein folding--a perspective from simple exact models; Protein Science 1995,4(4),561-602.
    [5]Gutin A. M.;Abkevich V. I.;Shakhnovich E. I. Is burst hydrophobic collapse necessary for protein folding?; Biochemistry 1995,34(9),3066-3076.
    [6]Zhou R.;Huang X.;Margulis C.J.,et al. Hydrophobic collapse in multidomain protein folding; Science 2004,305(5690),1605-1609.
    [7]Arai M.;Kondrashkina E.;Kayatekin C.,et al. Microsecond hydrophobic collapse in the folding of Escherichia coli dihydrofolate reductase, an alpha/beta-type protein; Journal of Molecular Biology 2007,368(1),219-229.
    [8]Otzen D. E.;Itzhaki L. S.;elMasry N. F., et al. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding; Proc Natl Acad Sci U S A 1994,91(22), 10422-10425.
    [9]Kim P. S.;Baldwin R. L. Intermediates in the folding reactions of small proteins; Annual Review of Biochemistry 1990,59,631-660.
    [10]Wright P. E.;Dyson H. J.;Lerner R. A. Conformation of peptide fragments of proteins in aqueous solution:implications for initiation of protein folding; Biochemistry 1988,27(19),7167-7175.
    [11]Ptitsyn O. B.;Pain R. H.;Semisotnov G. V.,et al. Evidence for a molten globule state as a general intermediate in protein folding; FEBS Letters 1990,262(1), 20-24.
    [12]Karplus M.;Weaver D. L. Protein folding dynamics:the diffusion-collision model and experimental data; Protein Science 1994,3(4),650-668.
    [13]Bashford D.;Weaver D.L.;Karplus M. Diffusion-collision model for the folding kinetics of the lambda-repressor operator-binding domain; Journal of Biomolecular Structure & Dynamics 1984,1(5),1243-1255.
    [14]Vasilkoski Z.;Weaver D. L.Diffusion-collision model algorithms for protein folding kinetics; Journal of Computational Chemistry 2004,25(8),1101-1107.
    [15]Wetlaufer D. B.Nucleation, rapid folding, and globular intrachain regions in proteins; Proc Natl Acad Sci U S A 1973,70(3),697-701.
    [16]Gassner N. C.;Baase W. A.;Matthews B.W. A test of the "jigsaw puzzle" model for protein folding by multiple methionine substitutions within the core of T4 lysozyme; Proc Natl Acad Sci U S A 1996,93(22),12155-12158.
    [17]Banerjee R.;Sen M.;Bhattacharya D.,et al. The jigsaw puzzle model:search for conformational specificity in protein interiors; Journal of Molecular Biology 2003, 333(1),211-226.
    [18]Leopold P. E.;Montal M.;Onuchic J. N. Protein folding funnels:a kinetic approach to the sequence-structure relationship; Proc Natl Acad Sci U S A 1992, 89(18),8721-8725.
    [19]Mirny L.;Shakhnovich E. Protein folding theory:From lattice to all-atom models; Annual Review of Biophysics and Biomolecular Structure 2001,30,361-396.
    [20]Bryngelson J. D.;Onuchic J. N.;Socci N. D.,et al. Funnels, pathways, and the energy landscape of protein folding:A synthesis; Proteins:Structure, Function, and Genetics 1995,21(3),167-195.
    [21]Frauenfelder H.;Sligar S. G.; Wolynes P.G The energy landscapes and motions of proteins; Science 1991,254(5038),1598-1603.
    [22]Becker O. M.;Karplus M. The topology of multidimensional potential energy surfaces:Theory and application to peptide structure and kinetics; Journal of Chemical Physics 1997,106(4),1495-1517.
    [23]Karplus M. The Levinthal paradox:yesterday and today; Fold Des 1997,2(4), S69-75.
    [24]Wales D. J. Energy landscapes and properties of biomolecules; Phys Biol 2005, 2(4),S86-93.
    [25]Gfeller D.;De Los Rios P.;Caflisch A.,et al. Complex network analysis of free-energy landscapes; Proc Natl Acad Sci U S A 2007,104(6),1817-1822.
    [26]Du R.;Pande V. S.;Grosberg A. Y.,et al. On the transition coordinate for protein folding; Journal of Chemical Physics 1998,108(1),334-350.
    [27]Rao F.;Caflisch A. The protein folding network; J Mol Biol 2004,342(1), 299-306.
    [28]Krivov S.V.;Karplus M. Free energy disconnectivity graphs:Application to peptide models; Journal of Chemical Physics 2002,117(23),10894-10903.
    [29]Rylance G J.;Johnston R. L.;Matsunaga Y.,et al. Topographical complexity of multidimensional energy landscapes; Proceedings of the National Academy of Sciences of the United States of America 2006,103(49),18551-18555.
    [30]Caflisch A. Network and graph analyses of folding free energy surfaces; Curr Opin Struct Biol 2006,16(1),71-78.
    [31]Hethcote H. W. The Mathematics of Infectious Diseases; SIAM Review 2000, 42(4),599-653.
    [32]Pastor-Satorras R.;Vespignani A. Epidemic dynamics and endemic states in complex networks; Phys Rev E Stat Nonlin Soft Matter Phys 2001,63(6 Pt 2), 066117.
    [33]Barthelemy M.;Barrat A.;Pastor-Satorras R., et al.Velocity and hierarchical spread of epidemic outbreaks in scale-free networks; Phys Rev Lett 2004,92(17), 178701.
    [34]Stelling J.;Klamt S.;Bettenbrock K., et al. Metabolic network structure determines key aspects of functionality and regulation; Nature 2002,420(6912), 190-193.
    [35]Ravasz E.;Somera A. L.;Mongru D. A., et al. Hierarchical Organization of Modularity in Metabolic Networks; Science 2002,297(5586),1551-1555.
    [36]Han J.-D. J.;Bertin N.;Hao T.,et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network; Nature 2004, 430(6995),88-93.
    [37]Jeong H.;Mason S. P.;Barabasi A. L.,et al. Lethality and centrality in protein networks;Nature 2001,411(6833),41-42.
    [38]Xenarios I.;Salwinski L.;Duan X. J., et al. DIP, the Database of Interacting Proteins:a research tool for studying cellular networks of protein interactions; Nucleic Acids Res 2002,30(1),303-305.
    [39]Schwikowski B.;Uetz P.;Fields S.A network of protein-protein interactions in yeast; Nat Biotech 2000,18(12),1257-1261.
    [40]Krivov S.V.;Karplus M. One-dimensional free-energy profiles of complex systems:Progress variables that preserve the barriers; Journal of Physical Chemistry B 2006,110(25),12689-12698.
    [41]Krivov S.V.;Muff S.;Caflisch A., et al. One-dimensional barrier-preserving free-energy projections of a beta-sheet miniprotein:New insights into the folding process; Journal of Physical Chemistry B 2008,112(29),8701-8714.
    [42]Duan Y.;Kollman P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution; Science 1998,282(5389), 740-744.
    [43]Karpen M. E.;Tobias D. J.;Brooks C. L. Statistical clustering techniques for the analysis of long molecular dynamics trajectories:analysis of 2.2-ns trajectories of YPGDV; Biochemistry 1993,32(2),412-420.
    [44]Bravi G; Gancia E.; Zaliani A., et al. SONHICA (simple optimized non-hierarchical cluster analysis):A new tool for analysis of molecular conformations; Journal of Computational Chemistry 1997,18(10),1295-1311.
    [45]Schutte C.;Fischer A.;Huisinga W., et al. A direct approach to conformational dynamics based on hybrid Monte Carlo; Journal of Computational Physics 1999, 151(1),146-168.
    [46]Amadei A.;Linssen A. B. M.;Berendsen H. J. C. Essential dynamics of proteins; Proteins:Structure,Function, and Genetics 1993,17(4),412-425.
    [47]Huisinga W.;Best C.;Roitzsch R.,et al. From simulation data to conformational ensembles:Structure and dynamics-based methods; Journal of Computational Chemistry 1999,20(16),1760-1774.
    [48]Gomory R. E.;Hu T. C. Multi-Terminal Network Flows; SIAM Journal on Applied Mathematics 1961,9(4),551-570.
    [49]Hubner I. A.;Deeds E. J.;Shakhnovich E. I. High-resolution protein folding with a transferable potential; Proceedings of the National Academy of Sciences of the United States of America 2005,102(52),18914-18919.
    [50]Zondervan K. T.;Cardon L.R. The complex interplay among factors that influence allelic association;Nature Reviews Genetics 2004,5(2),89-U14.
    [51]Newman M. E. J. The structure of scientific collaboration networks; Proceedings of the National Academy of Sciences of the United States of America 2001,98(2), 404-409.
    [52]Gibson D.;Kleinberg J.;Raghavan P. Inferring Web Communities from Link Topology; ACM New York,1999.
    [53]Newman M. E. J.;Girvan M. Finding and evaluating community structure in networks; Physical Review E 2004,69(2),026113-026127.
    [54]Newman M. E. J. Fast algorithm for detecting community structure in networks; Physical Review E 2004,69(6),066133-066137.
    [55]Newman M. E. J. Finding community structure in networks using the eigenvectors of matrices; Physical Review E 2006,74(3),036104-036122.
    [56]Vragovic I.; Louis E. Network community structure and loop coefficient method; Physical Review E 2006,74(1),16105-16110.
    [57]Chen J. C.;Yuan B.Detecting functional modules in the yeast protein-protein interaction network;Bioinformatics 2006,22(18),2283-2290.
    [58]Andreopoulos B.;An A. J.;Wang X. G., et al. Clustering by common friends finds locally significant proteins mediating modules; Bioinformatics 2007,23(9), 1124-1131.
    [59]Luo F.;Yang Y. F.;Chen C. F.,et al. Modular organization of protein interaction networks;Bioinformatics 2007,23(2),207-214.
    [60]Muff S.;Caflisch A. Identification of the protein folding transition state from molecular dynamics trajectories; Journal of Chemical Physics 2009,130(12), 125104-125114.
    [61]Reichardt J.;Bornholdt S.Detecting fuzzy community structures in complex networks with a Potts model; Physical Review Letters 2004,93(21), 218701-218704.
    [62]Clauset A.;Newman M. E. J.;Moore C. Finding community structure in very large networks; Physical Review E 2004,70(6),066111-066116.
    [63]Gfeller D.;de Lachapelle D. M.;Rios P. D. L., et al. Uncovering the topology of configuration space networks; Physical Review E 2007,76(2),026113-026121.
    [64]Huang J. T.;Cheng J. P.Prediction of folding Transition-state position (beta(T)) of small, two-state proteins from local secondary structure content; Proteins:
    Structure Function and Bioinformatics 2007,68(1),218-222.
    [65]Matouschek A.;Kellis J. T.;Serrano L., et al. Mapping the transition state and pathway of protein folding by protein engineering; Nature 1989,340(6229), 122-126.
    [66]Dobson C. M.;Sali A.;Karplus M. Protein folding:A perspective from theory and experiment; Angewandte Chemie-International Edition 1998,37(7),868-893.
    [67]Ihalainen J. A.;Bredenbeck J.;Pfister R., et al. Folding and unfolding of a photoswitchable peptide from picoseconds to microseconds; Proceedings of the National Academy of Sciences of the United States of America 2007,104(13), 5383-5388.
    [68]Royer C. A. The nature of the transition state ensemble and the mechanisms of protein folding:A review; Archives of Biochemistry and Biophysics 2008,469(1), 34-45.
    [69]Shea J. E.;Brooks C. L. From folding theories to folding proteins:A review and assessment of simulation studies of protein folding and unfolding; Annual Review of Physical Chemistry 2001,52,499-535.
    [70]Sanbonmatsu K. Y.;Garcia A. E. Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics; Proteins-Structure Function and Genetics 2002,46(2),225-234.
    [71]Chavez L. L.;Onuchic J. N.;Clementi C. Quantifying the roughness on the free energy landscape:Entropic bottlenecks and protein folding rates; Journal of the American Chemical Society 2004,126(27),8426-8432.
    [72]Onuchic J. N.;Wolynes P. G. Theory of protein folding; Current Opinion in Structural Biology 2004,14(1),70-75.
    [73]Best R. B.;Hummer G. Reaction coordinates and rates from transition paths; Proceedings of the National Academy of Sciences of the United States of America 2005,102(19),6732-6737.
    [74]Snow C. D.;Rhee Y. M.;Pande V.S. Kinetic definition of protein folding transition state ensembles and reaction coordinates; Biophys J 2006,91(1),14-24.
    [75]Zhang J.;Qin M.;Wang W. Folding mechanism of beta-hairpins studied by replica exchange molecular simulations; Proteins:Structure Function and Bioinformatics 2006,62(3),672-685.
    [76]Snow C. D.; Rhee Y. M.;Pande V. S. Kinetic definition of protein folding transition state ensembles and reaction coordinates; Biophysical Journal 2006, 91(1),14-24.
    [77]Ding F.;Dokholyan N. V.;Buldyrev S.V.,et al. Direct molecular dynamics observation of protein folding transition state ensemble; Biophysical Journal 2002, 83(6),3525-3532.
    [78]Davis R.;Dobson C.M.;Vendruscolo M. Determination of the structures of distinct transition state ensembles for a beta-sheet peptide with parallel folding pathways; Journal of Chemical Physics 2002,117(20),9510-9517.
    [79]Bolhuis P.G.;Chandler D.;Dellago C., et al. Transition path sampling:Throwing ropes over rough mountain passes, in the dark; Annual Review of Physical Chemistry 2002,53,291-318.
    [80]Bolhuis P. G Transition-path sampling of beta-hairpin folding;Proceedings of the National Academy of Sciences of the United States of America 2003,100(21), 12129-12134.
    [81]Hummer G. From transition paths to transition states and rate coefficients; Journal of Chemical Physics 2004,120(2),516-523.
    [82]Li L.;Shakhnovich E. I.Constructing, verifying, and dissecting the folding transition state of chymotrypsin inhibitor 2 with all-atom simulations; Proceedings of the National Academy of Sciences of the United States of America 2001,98(23),13014-13018.
    [83]Singhal N.;Snow C. D.;Pande V. S.Using path sampling to build better Markovian state models:Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin; Journal of Chemical Physics 2004,121(1), 415-425.
    [84]Rao F.;Settanni G.;Guarnera E., et al. Estimation of protein folding probability from equilibrium simulations; Journal of Chemical Physics 2005,122(18), 184901-184905.
    [85]Klimov D. K.;Thirumalai D. Progressing from folding trajectories to transition state ensemble in proteins; Chemical Physics 2004,307(2-3),251-258.
    [86]Swope W. C.;Pitera J. W.;Suits F. Describing protein folding kinetics by molecular dynamics simulations.1.Theory; Journal of Physical Chemistry B 2004,108(21),6571-6581.
    [87]Enright A. J.;Van Dongen S.;Ouzounis C. A. An efficient algorithm for large-scale detection of protein families; Nucleic Acids Research 2002,30(7), 1575-1584.
    [88]Enright A. J.; Ouzounis C.A. BioLayout-an automatic graph layout algorithm for similarity visualization; Bioinformatics 2001,17(9),853-854.
    [89]Enright A. J.;Ouzounis C. A. GeneRAGE:a robust algorithm for sequence clustering and domain detection; Bioinformatics 2000,16(5),451-457.
    [90]Van Dongen S.Graph clustering via a discrete uncoupling process; Siam Journal on Matrix Analysis and Applications 2008,30(1),121-141.
    [91]Gfeller D.;Chappelier J. C.;De Los Rios P. Finding instabilities in the community structure of complex networks; Physical Review E 2005,72(5), 056135-056140.
    [92]Chen C. J.;Xiao Y. Molecular dynamics simulations of folding processes of a beta-hairpin in an implicit solvent; Physical Biology 2006,3(3),161-171.
    [93]Chen C.;Xiao Y. Observation of multiple folding pathways of beta-hairpin trpzip2 from independent continuous folding trajectories; Bioinformatics 2008, 24(5),659-665.
    [94]Kokkonen M.;Kalliojarvi K. Soft-decision decoding of binary linear block codes using reduced breadth-first search algorithms; Ieee Transactions on Communications 2000,48(6),905-907.
    [95]Brodal G S.;Fagerberg R.;Meyer U., et al. Cache-oblivious data structures and algorithms for undirected breadth-first search and shortest paths;Algorithm Theory-Swat 2004 2004,3111,480-492.
    [96]Xiao Y.;Chen C.;He Y. Folding Mechanism of Beta-Hairpin Trpzip2: Heterogeneity, Transition State and Folding Pathways; International Journal of Molecular Sciences 2009,10(6),2838-2848.
    [97]Dinner A. R.;Lazaridis T.;Karplus M. Understanding beta-hairpin formation; Proceedings of the National Academy of Sciences of the United States of America 1999,96(16),9068-9073.
    [98]Bryngelson J. D.;Onuchic J. N.;Socci N. D., et al. Funnels, Pathways and the Energy Landscape of Protein Folding:A Synthesis; Proteins:Structure, Function, and Genetics 1995,21,167-195.
    [99]Zhou R. H.;Berne B.J.;Germain R. The free energy landscape for beta hairpin folding in explicit water; Proceedings of the National Academy of Sciences of the United States of America 2001,98(26),14931-14936.
    [100]Maisuradze G G.;Liwo A.;Scheraga H. A. How Adequate are One-and Two-Dimensional Free Energy Landscapes for Protein Folding Dynamics?; Physical Review Letters 2009,102(23),238102-238105.
    [101]Jiang X. W.;Chen C. J.;Xiao Y. Improvements of network approach for analysis of the folding free energy surface of peptides and proteins; J Comput Chem 2010, DOI 10.1002/jcc.21544.
    [102]Bour P.;Keiderling T. A. Vibrational spectral simulation for peptides of mixed secondary structure:Method comparisons with the TrpZip model hairpin; Journal of Physical Chemistry B 2005,109(49),23687-23697.
    [103]Ganim Z.;Tokmakoff A. Spectral signatures of heterogeneous protein ensembles revealed by MD simulations of 2DIR spectra; Biophysical Journal 2006,91(7), 2636-2646.
    [104]Wang J. P.;Zhuang W.;Mukamel S.,et al. Two-dimensional infrared spectroscopy as a probe of the solvent electrostatic field for a twelve residue peptide; Journal of Physical Chemistry B 2008,112(19),5930-5937.
    [105]Jansen T. L. C.;Knoester J. Two-dimensional infrared population transfer spectroscopy for enhancing structural markers of proteins; Biophysical Journal 2008,94(5),1818-1825.
    [106]Jansen T. L. C.;Ruszel W. M. Motional narrowing in the time-averaging approximation for simulating two-dimensional nonlinear infrared spectra; Journal of Chemical Physics 2008,128(21),214501-214510.
    [107]Hornak V.;Abel R.;Okur A., et al. Comparison of multiple amber force fields and development of improved protein backbone parameters; Proteins-Structure Function and Bioinformatics 2006,65(3),712-725.
    [108]Chen J. H.;Im W. P.;Brooks C. L.Balancing solvation and intramolecular interactions:Toward a consistent generalized born force field; Journal of the American Chemical Society 2006,128(11),3728-3736.
    [109]Xu Z. T.;Luo H. H.;Tieleman D. P. Modifying the OPLS-AA force field to improve hydration free energies for several amino acid side chains using new atomic charges and an off-plane charge model for aromatic residues; J Comput Chem 2007,28(3),689-697.
    [110]Shell M. S.;Ritterson R.;Dill K. A. A test on peptide stability of AMBER force fields with implicit solvation; Journal of Physical Chemistry B 2008,112(22), 6878-6886.
    [111]Roitberg A. E.;Okur A.;Simmerling C.Coupling of replica exchange simulations to a non-Boltzmann structure reservoir; Journal of Physical Chemistry B 2007, 111(10),2415-2418.
    [112]Yang L. J.;Shao Q.;Gao Y. Q. Thermodynamics and Folding Pathways of Trpzip2:An Accelerated Molecular Dynamics Simulation Study; Journal of Physical Chemistry B 2009,113(3),803-808.
    [113]Du D. G.;Zhu Y. J.;Huang C. Y,et al. Understanding the key factors that control the rate of beta-hairpin folding; Proceedings of the National Academy of Sciences of the United States of America 2004,101(45),15915-15920.
    [114]He Y.;Chen C.;Xiao Y United-residue (UNRES) Langevin dynamics simulations of trpzip2 folding; J Comput Biol 2009,16(12),1719-1730.
    [115]Frauenfelder H.;Sligar S.;Wolynes P. The energy landscapes and motions of proteins; Science 1991,254(5038),1598-1603.
    [116]Garcia-Mira M. M.;Sadqi M.;Fischer N., et al. Experimental identification of downhill protein folding; Science 2002,298(5601),2191-2195.
    [117]Onuchic J. N.;Luthey-Schulten Z.;Wolynes P. G THEORY OF PROTEIN FOLDING:The Energy Landscape Perspective; Annual Review of Physical Chemistry 1997,48(1),545-600.
    [118]Eaton W. A. Searching for "downhill scenarios" in protein folding; Proceedings of the National Academy of Sciences of the United States of America 1999, 96(11),5897-5899.
    [119]Munoz V. Thermodynamics and kinetics of downhill protein folding investigated with a simple statistical mechanical model; International Journal of Quantum Chemistry 2002,90(4-5),1522-1528.
    [120]Munoz V. Conformational Dynamics and Ensembles in Protein Folding; Annual Review of Biophysics and Biomolecular Structure 2007,36(1),395-412.
    [121]Neuweiler H.;Sharpe T. D.;Johnson C. M.,et al. Downhill versus Barrier-Limited Folding of BBL 2:Mechanistic Insights from Kinetics of Folding
    Monitored by Independent Tryptophan Probes; Journal of Molecular Biology 2009,387(4),975-985.
    [122]Settanni G.;Fersht A. R. Downhill versus Barrier-Limited Folding of BBL 3. Heterogeneity of the Native State of the BBL Peripheral Subunit Binding Domain and Its Implications for Folding Mechanisms; Journal of Molecular Biology 2009, 387(4),993-1001.
    [123]Lia P.;Oliva F. Y.;Naganathan A. N., et al. Dynamics of one-state downhill protein folding; Proceedings of the National Academy of Sciences of the United States of America 2009,106(1),103-108.
    [124]Liu F.;Gruebele M. Downhill dynamics and the molecular rate of protein folding; Chemical Physics Letters 2008,461(1-3),1-8.
    [125]Liu F.;Du D. G.;Fuller A. A., et al. An experimental survey of the transition between two-state and downhill protein folding scenarios; Proceedings of the National Academy of Sciences of the United States of America 2008,105(7), 2369-2374.
    [126]Sabelko J.; Ervin J.;Gruebele M. Observation of strange kinetics in protein folding; Proceedings of the National Academy of Sciences of the United States of America 1999,96(11),6031-6036.
    [127]Yang W. Y.;Gruebele M. Folding lambda-repressor at its speed limit; Biophysical Journal 2004,87(1),596-608.
    [128]Liu F.;Gruebele M. Tuning lambda(6-85) towards downhill folding at its melting temperature; Journal of Molecular Biology 2007,370(3),574-584.
    [129]Yang W. Y.;Gruebele M. Folding at the speed limit; Nature 2003,423(6936), 193-197.
    [130]Leeson D. T.;Gai F.;Rodriguez H. M., et al. Protein folding and unfolding on a complex energy landscape; Proceedings of the National Academy of Sciences of the United States of America 2000,97(6),2527-2532.
    [131]Chung H. S.;Ganim Z.;Jones K. C., et al. Transient 2D IR spectroscopy of ubiquitin unfolding dynamics; Proceedings of the National Academy of Sciences 2007,104(36),14237-14242.
    [132]Dumont C.;Emilsson T.;Gruebele M. Reaching the protein folding speed limit with large, sub-microsecond pressure jumps; Nat Meth 2009,6(7),515-519.
    [133]Ferguson N.;Schartau P. J.;Sharpe T. D.,et al. One-state downhill versus conventional protein folding; Journal of Molecular Biology 2004,344(2), 295-301.
    [134]Ferguson N.;Sharpe T. D.;Schartau P. J., et al. Ultra-fast Barrier-limited Folding in the Peripheral Subunit-binding Domain Family; Journal of Molecular Biology 2005,353(2),427-446.
    [135]Ferguson N.;Sharpe T. D.;Johnson C. M., et al. Structural biology-Analysis of 'downhill'protein folding; Nature 2007,445(7129), E14-E15.
    [136]Sadqi M.;Fushman D.;Munoz V. Atom-by-atom analysis of global downhill protein folding; Nature 2006,442(7100),317-321.
    [137]Zuo G H.;Wang J.;Wang W. Folding with downhill behavior and low cooperativity of proteins; Proteins-Structure Function and Bioinformatics 2006, 63(1),165-173.
    [138]Wu L.;Li W. F.;Liu F., et al. Understanding protein folding cooperativity based on topological consideration; Journal of Chemical Physics 2009,131(6), 065105-065114.
    [139]Zhu Y.;Alonso D. O. V.;Maki K., et al. Ultrafast folding of a3D:A de novo designed three-helix bundle protein; Proceedings of the National Academy of Sciences of the United States of America 2003,100(26),15486-15491.
    [140]Kubelka J.;Eaton W. A.;Hofrichter J. Experimental Tests of Villin Subdomain Folding Simulations; Journal of Molecular Biology 2003,329(4),625-630.
    [141]Wang T.;Zhu Y.;Gai F. Folding of A Three-Helix Bundle at the Folding Speed Limit; The Journal of Physical Chemistry B 2004,108(12),3694-3697.
    [142]Xu Y.;Purkayastha P.;Gai F. Nanosecond Folding Dynamics of a Three-Stranded (3-Sheet; Journal of the American Chemical Society 2006,128(49),15836-15842.
    [143]Kubelka J.;Chiu T. K.;Davies D.R.,et al. Sub-microsecond Protein Folding; Journal of Molecular Biology 2006,359(3),546-553.
    [144]Nguyen H.;Jager M.;Moretto A.,et al. Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation; Proceedings of the National Academy of Sciences of the United States of America 2003,100(7), 3948-3953.
    [145]Ma H. R.;Gruebele M. Kinetics are probe-dependent during downhill folding of an engineered lambda(6-85) protein; Proceedings of the National Academy of Sciences of the United States of America 2005,102(7),2283-2287.
    [146]Dumont C.;Matsumura Y.;Kim S.J., et al. Solvent-tuning the collapse and helix formation time scales of lambda 6-85;Protein Science 2006,15(11),2596-2604.
    [147]Jager M.;Zhang Y.;Bieschke J.,et al. Structure-function-folding relationship in a WW domain; Proceedings of the National Academy of Sciences 2006,103(28), 10648-10653.
    [148]Liu F.;Gruebele M.Tuning [lambda]6-85 Towards Downhill Folding at its Melting Temperature;Journal of Molecular Biology 2007,370(3),574-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700