用户名: 密码: 验证码:
机载相控阵雷达STAP及目标参数估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空时二维自适应处理能够有效提高机载相控阵雷达的地杂波抑制性能和动目标检测性能。理论上,全空时自适应处理可以实现最优处理,但是其计算量和实现的复杂度令人们难以接受,并且难以获得估计协方差矩阵所需的足够多的样本数。后来的研究重点就转移到降维处理算法上。研究人员在降维算法的研究上做了大量的工作,提出了很多种方法,发表了大量的文章。随着空时二维处理研究的不断深入,研究人员对强孤立杂波和强运动目标等非均匀环境的杂波抑制问题、杂波二维分布随距离变化的非平稳杂波抑制问题以及运动目标检测后的运动目标参数估计问题进行了广泛的研究,得到了很多有效的方法。降维处理、非均匀杂波抑制、非平稳杂波抑制和运动目标参数估计是空时自适应处理工程化必须解决的四个主要问题。本文主要围绕这四个方面做了一些工作,概括如下:
     利用Kronecker积的性质,提出了采用一维FFT实现自适应方向图和一维输出信杂噪比的快速计算,采用二维FFT实现空时二维频率响应和二维输出信杂噪比的快速计算。
     在滑窗距离样本选取方法的基础上,提出了滑窗递推QR分解方法。它采用样本矩阵QR分解得到空时处理的自适应权,这样矩阵条件数比较小,不容易受到有限字长等因素的影响,具有更好的数值稳定性。它通过双曲线Householder变换实现滑窗距离样本选取方法的权值递推,可以明显减少空时自适应处理权值计算所需的计算量。
     利用机载非正侧阵雷达的近程杂波和目标在俯仰角度域可以区分的特点,提出了两种近程杂波抑制方法:第一种方法是基于DOA估计的俯仰投影矩阵方法,它首先采用DOA估计方法估计出近程杂波的俯仰角,然后通过投影方法抑制该近程杂波,相比于直接计算近程杂波俯仰角度的俯仰非自适应处理方法,该方法不需要先验信息,可以避免地形起伏对近程杂波俯仰角度计算的影响;第二种方法是稳健的俯仰自适应波束形成方法。由于目标俯仰角度的任意性,我们不可能对某一个具体的俯仰角度保持固定增益,只能是对目标可能出现的一个俯仰角度范围保持一个稳定的增益,然后尽可能地抑制其它俯仰角度的杂波,此时在俯仰角度上离目标比较远的近程杂波就会被抑制。在没有阵元幅相误差的情况下第二种方法的性能不如第一种方法,但是在有阵元幅相误差的情况下该方法的性能要明显好于第一种方法。
     提出了一种适合于相邻距离单元统计特性完全不同的极端非同态环境的运动目标检测方法。不同于一般的空时自适应处理方法,该方法直接在功率谱进行运动目标检测。该方法首先采用空间滑动和时间滑动来获得样本用于协方差矩阵估计,然后用估计得到的协方差矩阵进行功率谱估计。为了减少功率谱估计的计算量,我们提出了采用二维FFT实现功率谱估计。估计得到数据功率谱后,利用杂波功率谱能量比较大的特点,提取出功率谱中的大能量点用于杂波谱线拟合。拟合出杂波谱线后,利用目标到杂波谱线的距离不为零的特点进行目标检测,同时实现目标参数估计。在这个过程中需要对原始的数据功率谱进行两次门限检测,第一次门限检测是提取出大能量的杂波谱用于杂波谱线拟合,第二次门限检测是提取出所有可能的目标用于目标检测。
     提出了两种针对均匀线阵的目标角度估计方法。第一种方法是基于实多项式求根的最小二乘方法,它首先采用空时自适应处理方法得到多个杂波抑制后的空间通道,然后用这些空间通道的数据进行最小二乘目标角度估计。为了避免复杂的角度搜索,该方法采用实多项式求根将角度搜索转化为代价函数的极值搜索,大大减少了角度估计的计算量。第二种方法是基于实多项式求根的最大似然方法,它直接利用数据的最大似然函数来估计目标角度,为了避免复杂的角度搜索,它同样采用了实多项式求根方法。
     提出了两种针对平面阵的目标方位角度和目标俯仰角度估计方法。第一种方法是基于交替最大化和实多项式求根的最小二乘方法,它首先采用空时自适应处理方法得到多个杂波抑制后的空间方位通道和空间俯仰通道,然后用这些空间通道的数据进行最小二乘目标角度估计。为了避免复杂的二维角度搜索,该方法采用交替最大化方法将方位角和俯仰角联合估计转化为方位角和俯仰角分别迭代估计,然后采用实多项式求根将角度搜索转化为代价函数的极值搜索,大大减少了角度估计的计算量。第二种方法是基于交替最大化和实多项式求根的最大似然方法,它直接利用数据的最大似然函数来估计目标方位角度和俯仰角度,为了避免复杂的二维角度搜索,它同样采用了交替最大化方法和实多项式求根方法。
Space-time adaptive processing (STAP) provides great potential over improving the performance of the planar array radar on clutter suppression and moving target detection. Fully STAP can obtain the optimal performance in theory. However, the computation load and the implementation complexity of Fully STAP are too expensive to be accepted and it is really very difficult to obtain enough secondary data to estimate the covariance matrix. The focus of successive research is concentrated on the reduced-dimensional algorithms and many reduced-dimensional methods have been proposed. With the development of STAP, clutter suppression in nonhomogeneous environment, such as strong moving targets and strong isolated clutter, nonstationary clutter suppression and target parameters estimation are widely investigated and various methods are developed. The aforementioned aspects are mainly concerned in this dissertation, and they are summarized as follows:
     Utilizing the characteristic of the kronecker product, fast evaluation of the adaptive direction diagram and the output signal-to-clutter-plus-noise ratio (SCNR) using 1D-FFT are presented, and fast implementation of the two dimensional frequency response and the two dimensional output SCNR using 2D-FFT are also developed.
     Based on the sliding window range secondary selection method, the sliding window recursive QR decomposition method is presented. The presented method computes adaptive weight by QR decomposition of the secondary data matrix. Since the condition number of a covariance matrix is the square of that of a secondary data matrix, and thus the numerical stability of STAP based on QR decomposition of the secondary data matrix is much better than that of STAP based on covariance matrix inversion. Moreover, the presented method realizes weight recursion by the hyperbolic Householder transformation and greatly reduces the computational load of the computation of the weight vector.
     Considering the fact that the near-range clutter and moving targets are distinguishable in elevation space, two methods for range-dependent clutter suppression are developed, where the first method is based on the projection matrix method, the second method is based on the robust beamforming method. The former method estimates the elevation angle of the near-range clutter by spectral Capon rooting method, and the projection matrix is then constructed for suppressing the near-range clutter according to the estimated elevation angle. Compared to the nonadaptive method for range dependent clutter suppression, the method is free of priori knowledge. Due to the arbitrary of the moving target, the elevation angle of the moving target can not be accurately determined. The target signal will be treated as an unwanted interference signal by the adaptive processor and therefore will tend to be suppressed. It dramatically degrades the output signal-to-interference-plus-noise ratio (SINR). In order to avoid the target signal cancellation, the latter method is presented for improving the robustness of the elevation adaptive beamformer. Thus, the near-range clutter will be suppressed, while the far-range clutter and the moving target will be preserved. Under the ideal case that no array errors are occurred, the performance of the first method is slightly better than that of the second method. However, under the non-ideal case that array errors are occurred, the performance of the second method is much better than that of the first method.
     A moving target detection method based on power spectrum suitable to the extremely nonhomogeneous environment is proposed. Different to the general STAP methods, the presented method realizes moving target detection in the spatial-temporal spectrum domain. The secondary data obtained by spatial smoothing and temporal smoothing in single range unit can be considered identically distributed. Therefore, these secondary data can be used for covariance matrix estimation and then the power spectrum is estimated from the estimated covariance matrix. To alleviate the computation load of the power spectrum computation, 2D FFT is proposed to estimate the power spectrum. Utilizing the fact that the mainlobe clutter energy is much stronger than the noise power and the target power, the points with strong energy in the power spectrum can be extracted to fit the clutter ridge. Next, considering the fact that the distance between the moving target and the clutter spectrum is larger than zero, moving target detection can be implemented in the power spectrum. In this method, twice threshold detection are implemented, where one is implemented to extract the clutter with strong energy for clutter ridge fitting, the other is implemented to extract the targets for moving target detection.
     Two methods of target parameters estimation for uniform linear array (ULA) are developed. The first method estimates the target angle from the clutter-suppressed data using the least squares method. To avoid the grid search, the real polynomial rooting method is employed to convert the grid search to the extreme value search. The second method estimates the target angle from the likelihood function. Similarly, to avoid the grid search, the real polynomial rooting method is also used.
     Two methods of target parameters estimation for planar array are developed. The first method is the least squares method employing the alternating maximization method and the real polynomial rooting method. The second method is the maximum likelihood method employing the alternating maximization method and the real polynomial rooting method. The first method estimates the target angle from the clutter-suppressed data using the least squares method. To avoid the two-dimensional grid search, the alternating maximization method is used here to convert the joint estimation of the azimuth angle and the elevation angle to the iterating estimation. Furthermore, the real polynomial rooting method is employed to estimate the target angle instead of the grid search. The second method estimates the target angle from the likelihood function. Similarly, to avoid the two-dimensional grid search, the alternating maximization method and the real polynomial rooting method are also utilized.
引文
[1] L. E. Brennan, J. D. Mallett, I. S. Reed. Theory of adaptive radar. IEEE Trans. AES. 1973, 9(2): 237-251.
    [2] I. S. Reed, J. D. mallett, and L. E. Brennan. Rapid convergence rate in adaptive arrays. IEEE Trans. AES. 1974, 10(6): 853-863.
    [3] R. Klemm. Optimum clutter suppression in airborne phased array radar. Proc. of IEEE ICASSP. Paris, France. 1982: 1509-1512.
    [4] R. Klemm. Suboptimum clutter suppressing for airborne phased array radar. Proc. of IEE Int. Conf. on Radar’82, London, UK, 1982: 473-476.
    [5] R. Klemm. Adaptive clutter suppression for airborne phased array radars. IEE Pt. F, 1983, 130(1): 125-132.
    [6] R. Klemm. Some properties of space-time covariance matrices. Int. Conf Radar, Paris, 1986: 357-362.
    [7] R.Klemm. Adaptive airborne MTI: an auxiliary channel approach. IEE Proc. F, 1987, 134(3): 269-276.
    [8] R. Klemm. Airborne MTI via subgroup processing. Proc. of Intel. Conf. On Radar’89, Paris, France, 1989: 43-48.
    [9] R. Klemm, J. Ender J. New aspects of airborne MTI. Proc. IEEE Int. Conf. On Radar, Arlington, USA, 1990: 335-340.
    [10] R. Klemm, J. Ender J. Two-dimensional filters for radar and sonar applications. Proc. of IASTED, Lugano, Switzerland, 1990: 2023-2026.
    [11] R. Klemm. Adaptive airborne MTI with two dimensional motion compensation. IEE Proc. F, 1991, 138(6): 551-558.
    [12] R. Klemm. Adaptive air- and spaceborne MTI under jamming conditions. Proc. of 1993 IEEE National Radar Conf., Boston, USA, 1993: 167-172.
    [13] R. Klemm. Adaptive airborne MTI: comparison of sideways and forward looking radar. Proc. of 1995 IEEE Int. Radar Conf., Alexandria, VA, USA: 614-618.
    [14] R. Klemm. Forward looking radar/SAR: clutter and jammer rejection with STAP. Proc. of EUSAR’96, Konigswinter, Germany: 485-488.
    [15] R. Klemm. Real-time adaptive airborne MTI, Part I: space-time processing. Proc. of 1996 CIE Int. Conf. On Beijing. 1996: 755-760.
    [16] R. Klemm. Real-time adaptive airborne MTI, Part II: space-frequency processing. Proc. of 1996 CIE Int. Conf. On Beijing. 1996: 430-433.
    [17] R. Klemm, Space-time adaptive processing: principles and applications. IEE Radar, Sonar, Navigation and Avionics 9, IEE Press, 1998.
    [18] R. Klemm. Ambiguities in bistatic STAP radar. Proc. of IEEE International Geoscience and Remote Sensing Symposium, 2000, 3: 1009-1011.
    [19] R. Klemm. Commparison between monstatic and bistatic antenna configurations for STAP. IEEE Trans. AES., 2000, 36(2): 596-608.
    [20] R. Klemm. Prospectives in STAP research. Proc. of IEEE Sensor Array and Multichannel Signal Processing Workshop, 2000: 7-11.
    [21] W. Koch and R.Klemm,“Ground target tracking with STAP radar, IEE Proc.-Radar, Sonar Navig., June 2001, 47(3): 173-185.
    [22] R. Klemm. Applications of space-time adaptive processing. IEE Radar, Sonar, Navigation and Avionics 9, IEE Press, 2002.
    [23]廖桂生.相控阵天线AEW雷达时空二维自适应处理.西安电子科技大学博士学位论文, 1992. 9.
    [24]王永良.新一代机载预警雷达的空时二维自适应信号处理.西安电子科技大学博士学位论文, 1994. 1.
    [25]保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时空维自适应滤波.电子学报, 1993, 21(9): 1-7.
    [26]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载雷达空时二维信号处理.现代雷达, 1994, 16(1): 38-48, 16(2): 17-27.
    [27] Y. L. Wang, Y. N. Peng and Z. Bao. Space-time adaptive processing for airborneradar with various array orientations. IEE Proc. Radar, Sonar Navigation, Dec. 1997, 144(6): 330-340.
    [28] Y. L. Wang, Z. Bao and G. S. Liao. Three united configurations on adaptive spatial-temporal processing for airborne surveillance radar system. Proc. Of ICSP, Beijing, 1993.
    [29]许志勇.AEW雷达空时二维自适应降维方法的研究.西安电子科技大学博士学位论文, 1997.
    [30]吴仁彪.机载相控阵雷达时空二维自适应滤波的理论与实现.西安电子科技大学博士学位论文, 1993. 12.
    [31]刘青光,彭应宁,孙欣,马樟萼,路大金.机载雷达自适应杂波抑制的联合通道变换方法.电子学报, 1994, 22(6): 1-9.
    [32]孙欣,刘青光,彭应宁,马樟萼.一种时空二维杂波抑制的准最佳处理方法.中国电子学会雷达学会第六界年会论文集.北京, 1993: 360-363.
    [33]张良.机载相控阵雷达降维STAP研究.西安电子科技大学博士学位论文, 1999.
    [34]王彤.机载雷达简易STAP方法及其应用.西安电子科技大学博士学位论文, 2001.
    [35] R. Dipietro. Extended factored space-time processing for airborne radar systems. Proceedings of the 26th Asilomar Conference On Signals, Systems, and Computing, Pacific Grove, CA, October, 1992:425-430.
    [36] H. Wang. Space-time Processing for airborne radar. Digital Signal Processing Handbook. Boca Raton, FL: CRC Press, 1997.
    [37] L. E. Brennan, D. J. Piwinski, F. M. Standaher. Comparision of space-time adaptive processing approaches using experimental airborne radar data. The record of 1993 IEEE National Radar Conf., Massachusetts, USA, Apr. 1993: 176-181.
    [38] H. Wang, L. Cai. On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE. Trans. AES, 1994, 30(3): 660-669.
    [39]王永良,吴志文,彭应宁.适于非均匀环境的空时自适应处理方法.电子学报,1999,27(9):63-66.
    [40] R. D. Brown, M. C. Wicks, Y. Zhang, H. Wang. A space-time adaptive processing approach for improved performance and affordability. Proc. IEEE 1996 National Radar Conf., 1996: 321-326.
    [41] J. R. Roman, M. Rangaswamy, D. W. Davis. Parametric adaptive matched filter for airborne radar applications. IEEE Trans. AES, 2000, 36(2): 677-692.
    [42] A. M. Hainovich. Y.B.Ness. An eigenanalysis interference canceler. IEEE Trans. SP, 1991, 9(1): 76-84.
    [43] A. M. Haimovich. The Eignecanceler: Adaptive Radar by Eigenanalysis Methods. IEEE Trans. AES, Apr. 1996, 32(2): 532-542.
    [44] A. M. Haimovich. Asymptotic Distribution of the Conditional Signal-to-Noise Ratio in an Eigenanalysis-Based Adaptive Array. IEEE Trans. AES, July, 1997, 33(3): 988-996.
    [45] A. M. Haimovich. Eigenanalysis-based space-time adaptive radar: performance analysis. IEEE Trans. AES, 1997, 33(4): 1170-1179.
    [46] J. S. Goldstein, P. A. Zulch, I. S. Reed. Reduced rank space-time adaptive radar processing. Conference Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996, 2: 1173-1176.
    [47] J. S. Goldstein, I. S. Reed. Reduced rank adaptive filtering. IEEE Trans. SP, 1997, 45(2): 493-496.
    [48] J. S. Goldstein, I. S. Reed. Subspace selection for partially adaptive sensor array processing. IEEE Trans. AES, 1997, 33(2): 539-554.
    [49] J. S. Goldstein, I. S. Reed. Theory of partially adaptive radar. IEEE Trans. AES, 1997, 33(4): 1309-1325.
    [50] J. S. Goldstein, I. S. Reed, and L. L. Scharf. A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans. IT, 1998, 44(7): 2943-2959.
    [51] P. A. Zulch, J. S. Goldstein, J. R. Guerci, I. S. Reed. Comparison of reduced-rank signal processing techniques. Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems & Computers, 1998, 1: 421-425.
    [52] J. S. Goldstein, I. S. Reed, P. A. Zulch. Multistage partially adaptive STAP CFAR detection algorithm. IEEE Trans. AES, 1999, 35(2):645-661.
    [53] C. D. Peckham, A. M. Haimovich, T. F. Ayoub, J. S. Goldstein, I. S. Reed. Reduced-rank STAP performance analysis. IEEE Trans. AES, 2000, 36(2): 664-676.
    [54] R. Klemm. Adaptive airborne MTI: comparison of sideways and forward looking radar. Proc. of IEEE Int. Radar Conf., Alexandria, VA, USA, 1995: 614-618.
    [55] P. G. Richardson and S. D. Hayward. Adaptive space-time processing for forward looking radar. IEEE International Radar Conference, 1995: 629-634.
    [56] T. C. James, B. H. Todd. Space-time adaptive processing for forward looking arrays. IEEE International Radar Conference, 2004: 514-519.
    [57] O. Kreyenkamp and R. Klemm. Doppler compensation in forward-looking STAP radar. IEE Proc. Radar, Sonar Navig., 2001, 148(5): 253-258.
    [58]王彤,保铮,廖桂生.机载火控雷达近距离地面慢速目标检测.电子学报, 2001,29(6): 721-725.
    [59] F. D. Lapierre, M. V. Droogenbroeck and J. G. Verly. New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars. Proc. of ICASSP, 2003: 73-76.
    [60] M.Zatman. Performance Analysis of the Derivative Based Updating Method. 9th Annual Adaptive Sensor Array Processing Workshop, March 2001:1-34.
    [61] B. Sophie and M. Sylvie. Range-recursive pre-Doppler STAP algorithm to reject range dependent clutter in airborne radar. ICASSP, 2008: 2613-2616.
    [62] R. Badeau, B. David and G. Richard. Fast approximated power iteration subspace tracking. IEEE Trans. SP, Aug. 2005, 53(2): 2931-2941.
    [63] M. C. Phillip, B. H. Todd. 3-Dimensional STAP performance analysis using the cross-spectral metric. IEEE International radar conference, 2004:610-615.
    [64] J. T. Caldwell. Forward looking radar: Interference modelling, characterization, and suppression. Thesis, School of Engineering and Management, Air Force Institute of Technology (AETC), 2950 Hobson Way, Bldg 640, Wright-Patterson AFB, OH 45433-7765, March 2004. AFIT/GE/ENG/04-02.
    [65] T. B. Hale. Airborne Radar Interference suppression using adaptive three-dimensional techniques. Dissertation, School of Engineering and Management, Air Force Institute of Technology (AETC), 2950 Hobson Way, Bldg 640, Wright-Patterson AFB, OH 45433-7765, June 2002. AFIT/GE/ENG/02-02.
    [66] T. Hale, M. Temple, and J. Raquet. Localised three-dimensional adaptive spatial-temporal processing for airborne radar. IEE Proceedings Radar, Sonar and Navigation, 2003, 150(1): 18-22.
    [67] L. B. Fertig and S. I. Krich. Benefits of 3D-STAP for X-band GMTI airborne radars. 2005 Adaptive Sensor Array Processing Workshop, Linclon Lab, MA, June 2005: 1-5.
    [68] P. Richardson and S. Hayward. Adaptive space time processing for forward looking radar. Record of the IEEE 1995 International, 1995: 629-634.
    [69] M. C. Phillip, J. P. Jimmie and R. Muralidhar. Enhancing GMTI performance in non-stationary clutter using 3D STAP. IEEE international radar conference, 2007: 647-652.
    [70] W. Melvin, M. Wicks, and P. Antonik. Knowledge-basded space-time adaptive processing for airborne early warning rada. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(4): 37-42.
    [71] P. R. Gurram, N. A. Goodman. Spectral-domain covariance estimation with a priori knowledge,”IEEE Trans. AES, Jul. 2006, 42(3): 1010-1020.
    [72] B. Friedlander. A subspace method for space time adaptive processing. IEEE Trans. SP, Jan. 2005, 53(1): 74-82.
    [73] R. Philippe, L. Marc, D. L. Fabian, G. V. Jacques. Knowledge-aided array calibration for registration-based range-dependence compensation in airborne STAP radar with conformal antenna arrays. Proceedings of the 4th European Radar Conference, Oct. 2007: 67-70.
    [74] D. B. Shannon, G. Karl, R.Muralidhar. STAP using knowledge-aided covariance estimation and the FRACTA algorithm. IEEE Trans. AES, Jul. 2006, 42(3): 1043-1057.
    [75] C. W. Michael, R. Muralidhar, A. Raviraj. Space-time adaptive processing: a knowledge-based perspective for airborne radar. IEEE Signal Processing Magazine, Jan. 2006: 51-65.
    [76] Y. L. Wang, Z. Bao and Y. N. Peng. STAP with medium PRF mode for non-side-looking airborne radar. IEEE Trans. on AES, 2000, 36(2): 609-620.
    [77] T. K. Sarkar, H. Wang, S. Park, R. J. Adve, et al. A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans. AP, January 2001, 49(1): 91-103.
    [78] T. K. Sarkar, J. Koh, R. S. Adove. A pragmatic approach to adaptive antennas. IEEE Antennas Propagation Magazine, 2000, 42(2),: 39-55.
    [79] S. M. Kogon and M. A. Zatman. Bistatie STAP for airbome radar systems. Proc. IEEE SAMZOOO, Lexington, MA, March 2000: 1-4.
    [80] R. Klemmn. Comparison between monostatic and bistatic antenna configurations for STAP. IEEE Trans. AES, April 2000, 36(2): 596-608.
    [81] B. Himed, Y. Zhan and A. Hajjari. STAP with angle-Doppler compensation for birtatic airbome radars. 2002 IEEE International Radar Conference, Long Beach, CA, 22-25 April 2002: 123-127.
    [83] B. Himed. Effects of bistatic clutter dispersion on STAP system. Proc. 2002 IEEE Radar Conference, Edinburgh, UK, 15-17 Oct 2002: 360-364.
    [83] W. Melvin, B. Himed, and M. Davis. Doubly adaptive bistatic clutter filtering. Proc. IEEE Radar Conf., May 2003: 171–178.
    [84] F. Peanon and G. Borsari. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars. Proc. 2001 ASAP Symp., Lexington, MA, March 2001: 1-6.
    [85] F. Lapierre, X. Neyt, and J. Verly. Performance evaluation of a registration-based range-dependence compensation method for bistatic STAP radar using simulated snapshots. IEEE International Radar Conference 2004, Toulouse, France, October2004:1204-1209.
    [86] F. Lapierre and J. Verly. Registration-based solutions to the range- dependence problem in STAP radars. Adaptive Sensor Array Process- ing Workshop, MIT Lincoln Laboratory, Lexington, MA, March 2003: 1341-1245.
    [87] F. Lapierre and J. Verly. Computationally-efficient range-dependence compensation method for bistatic radar STAP. IEEE International Radar Conference 2004, Toulouse, France, October 2005: 1209-1214.
    [88] V. Vijay and K.Jeffrey. Joint Space-Time Interpolation for Bistatic STAP. Proceedings of IEEE 2003 National Radar Conference, RadarCon03, Huntsville, May 2003: 60-65.
    [89] A. P. Douglas and B. Himed. Improving STAP Performance in Bistatic Space-Based Radar Systems using an efficient expectation-maximization technique. Proceedings of IEEE 2005 National Radar Conference, May 2005: 1-6.
    [90] C. H. Lim and B. Mulgrew. Prediction of inverse co-variance matrix (PICM) sequences for STAP. IEEE Signal Processing Letters, April 2006, 13(4): 236-239.
    [91] C. H. Lim and B. Mulgrew. Non-linear prediction of inverse covariance matrix for STAP. ICASSP, 2007:921-924.
    [92] Fabiola Colone, Marco Fornari, Pierfrancesco Lombardo. A spectral slope-based approach for mitigating bistatic STAP clutter dispersion. IEEE International Radar conference, 2007: 408-413.
    [93] W. L. Melvin, M. J. Callahan and M. C. Wicks. Adaptive clutter cancellation in bistatic radar. IEEE Radar conference, 2000: 1125-1130.
    [94] G. M. Herbert and P. G. Richardson. Benefits of space-time adaptive processing (STAP) in bistatic airborne radar. IEE Proc. Radar Sonar Navig., 2003, 150(1): 13-17.
    [95] B. Himed, J. H. Michels, Y. H. Zhang. Bistatic STAP performance analysis in radar applications. IEEE National Radar Conference, 2001: 198-203.
    [96] W. L. Melvin, M. J. Callahan and M. C. Wicks. Bistatic STAP: Application to airborne radar. IEEE National Radar Conference, 2002: 1-7.
    [97] N. Xavier, A. Marc, and G.V. Jacques. Maximum likelihood range dependence compensation for STAP. ICASSP, 2007: 913-916.
    [98] P. H. Michael. Bistatic surveillance concept of operations. IEEE International Radar Conference, 2001: 75-80.
    [99]王永良,魏进武,陈建文.双基地机载预警雷达空时二维杂波建模及杂波特性分析.电子学报, 2001, 29(12): 1940-1943.
    [100]魏进武,王永良,陈建文.双基地机载预警雷达空时自适应处理方法.电子学报,2001, 29(12): 1936-1939.
    [101] C. Heng, E. Aboutanios, B. Mulgrew. Modified JDL with Doppler compensation for airborne bistatic radar. IEEE Radar Conference, 2005:1-5.
    [102] Y. Y. Lu, P. Zhang. Comparison on mitigating techniques to enhance bistatic STAP. IEEE Radar Conference, 2005: 1971-1974.
    [103] F. Colone, M. Labriola, F. Poli, P. Lombardo. A pre-Doppler approach for reduced loss bistatic STAP. IEEE Radar Conference, 2006: 1-4.
    [104] A. P. Douglas, B. Himed, M. E. Davis. High order clutter mitigation in bistatic space-based radar systems using a knowledge-aided STAP approach. IEEE Radar Conference, 2006: 459-454.
    [105] H. Li, J. Tang, Y. N. Peng. The clutter range-ambiguity in hybrid bistatic space-based radar. IEEE Radar Conference, 2006: 618-621.
    [106] D. Marshall. Evaluation of STAP training strategies with Mountaintop data. MIT Lincoln Lab, TR MTP-5, 1996.
    [107] D.J. Rabideau and A.O. Steinhardt. Improving the performance of adaptive arrays in nonstationary environments through data-adaptive training. Proc. 30th Asilomar Conf on Signal, Systems und Computers, Pacific Grove, CA, 1996: 1-6.
    [108] P. Chen. Partitioning procedure in radar signal processing problems. Final Report for AFOSR Summer Faculty Research Program, Rome Laboratory, Rome, NY, August 1995.
    [109] W.L. Melvin, M.C. Wicks, and R.D. Brown. Assessment of multichannel airbome radar measurements for analysis and design of space-time processing architectures and algorithms. Proc. 1996 IEEE International Radar Conf., Ann Arbor, 1996: 130-135.
    [110] K. Gerlach , S. D. Blunt, and M. L. Picciolo. Robust adaptive matched filtering using the FRACTA algorithm. IEEE Trans. AES, 2004, 30(3): 929-945.
    [111] D. B. Shannon, G. Karl. Efficient robust AMF using the FRACTA algorithm. IEEE Trans. AES, 2005, 41(2): 537-548.
    [112] D. B. Shannon, G. Karl and R. Muralidhar. STAP using knowledge-aided covariance estimation and the FRACTA algorithm. IEEE Trans. AES, 2006, 42(3): 1043-1057.
    [113] D. J. Rabideau, A. O. Steinhardt. Improved adaptive clutter cancellation through data-adaptive training. IEEE Trans. AES, 1999, 35(3): 879-891.
    [114] C. Cpararo, G. Capraro, D. Weiner, and M. Wicks. Improved STAP performance using knowledge-aided secondary data selection. Proceedings of the 2004 IEEE radar conference, Philadelphia, PA, Apr. 2004: 361-365.
    [115] G. K. Borsari, A. O. Steinhardt. Cost-efficient training strategies for space-time adaptive processing algorithm. Proceedings of the 29th Asilomar conference on Signals, Systems and Computing, Pacific Grove, CA, 1995: 650-654.
    [116] M. K. Stephen. Adaptive weight training for post-Doppler STAP algorithms in non-homogeneous clutter, IEE Proc. Radar, Sonar, Navigation and Avionics Series 14, Chapter 11.
    [117] A. K. Shackelford, K. Gerlach, S. D. Blunt. Performance enhancement of the FRACTA algorithm via dimensionality reduction: Results from KASSPER I. IEEE Radar Conference, 2006: 525-532.
    [118]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000.
    [119] X. M. Li, D. Z. Feng, H. W. Liu, Z. Bao. Spatial-temporal separable filter for adaptive clutter suppression in airborne radar. IET Electronics Letters, Feb. 2008, 44(5):380-381.
    [1] I. S. Reed, J. D. Mallett, and L. E. Brennan. Rapid convergence rate in adaptive arrays. IEEE Trans. AES, 1974, 10(6): 853-863.
    [2] W. L. Melvin. A STAP overview. IEEE Aerosp. Electron. Syst. Mag., 2004, 19(1): 19-35.
    [3] R. Klemm. Applications of space-time adaptive processing. IEE Publishing, UK, 2004.
    [4] J. T. Caldwell, T. B. Hale. Space-time adaptive processing for forward looking arrays. Proceedings of the IEEE Radar Conference, 2004:514-519.
    [5] M. E. Davis, B. Himed. L-band wide area surveillance radar design alternatives. Proceedings of the International Radar Conference, 2003:554-559.
    [6] J. Ward. Space-time adaptive processing for airborne radar. Tech. Rep. 1015, Lincoln Laboratory, 1994.
    [7] D. J. Zywicki, W. L. Melvin, and G. A. Showman. STAP performance in site-specific clutter environments. Aerospace Conference, 2003: 1-16.
    [8] C. Chen, P. P. Vaidyanathan. MIMO radar space-time adaptive processing using prolate spheroidal wave functions, IEEE Trans. SP, 2008, 56(2): 623-635.
    [9] W. L. Melvin, M. E. Davis. Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments. IEEE Trans. AES, 2007, 43(2): 651-672.
    [10] R. Klemm. Tilted omnidirectional array antennas in range ambiguous STAP radar. Signal Processing, 2004, 84(9): 1581-1592.
    [11] C. H. Lim, B. Mulgrew. Prediction of inverse covariance matrix (PICM) sequences for STAP. IEEE Signal Processing Letters, 2006, 13(4): 236-239.
    [12] D. A. Leatherwood, W. L. Melvin, R. Acree. Configuring a sparse aperture antenna for spaceborne MTI radar. Proceedings of the IEEE Radar Conference, 2003:139-146.
    [13] D. A. Page, B. Himed, M. E. Davis. Improving STAP performance in bistatic space-based radar systems using an efficient expectation maximization technique. IEEE International Radar Conference, 2005: 1-6.
    [14] P. Zulch. Performance metric issues for space time adaptive processing methods. IEEE international Radar Conference, 2008: 1-8.
    [15] R. C. DiPietro. Extended factored space-time processing for airborne radar systems. Proc. 26th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, 1992: 425-430.
    [1] I. S. Reed, J. D. mallett, and L. E. Brennan. Rapid convergence rate in adaptive arrays. IEEE Trans. AES. 1974, 10(6): 853-863.
    [2] W. L. Melvin. Eigenbased modeling of nonhomogeneous airborne radar environments. IEEE Radar Conference, 1998: 171-176.
    [3] W. L. Melvin and M. C. Wicks. Improvig practical space-time adaptive radar. In Proc. 1997 IEEE National Radar Conference, Syracuse, NY, May 1997: 48-53.
    [4] R. Klemm. Adaptive airborne MTI: comparison of sideways and forward looking radar. Proc. of IEEE Int. Radar Conf., Alexandria, VA, USA, 1995: 614-618.
    [5] P. G. Richardson and S. D. Hayward. Adaptive space-time processing for forward looking radar. IEEE International Radar Conference, 1995: 629-634.
    [6]王彤,保铮,廖桂生.机载火控雷达近距离地面慢速目标检测.电子学报, 2001, 29(6): 721-725.
    [7]王永良.新一代机载预警雷达的空时二维自适应信号处理.西安电子科技大学博士学位论文,1994.
    [8]廖桂生,雄军,吴顺君.机载雷达空时二维信号处理自适应权值训练的距离分段递推算法.信号处理, 1998, 14(3): 233-239.
    [9]王彤.机载雷达简易STAP方法及其应用.西安电子科技大学博士学位论文, 2001.
    [10] G. K. Borsari, A. O. Steinhardt. Cost-efficient training strategies for space-time adaptive processing algorithms. Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, 1995, Vol.1: 650-654.
    [11] A. A. Rontogiannis. New Fast QR Decomposition Least Squares AdaptiveAlgorithms. IEEE Trans. SP, 1998, 46(8):2113-2121.
    [12]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000.
    [13]张良.机载雷达STAP方法降维研究. .西安电子科技大学博士学位论文,1999.
    [14] C. M. Rader, A. O. Steinhardt. Hyperbolic Householder Transformations. IEEE Trans.on ASSP, 1986, 34(6):1589-1602.
    [15]张贤达.矩阵分析与应用.北京:清华大学出版社,2004.
    [1] R. Klemm. Applications of space-time adaptive processing. UK: IEE Publishing, 2004.
    [2] Y. L. Wang, Y. N. Peng, Z. Bao. Adaptive space-time processing for non-sidelooking airborne radar. IEEE international radar conference, 1995: 91-95.
    [3] R.Klemm. Adaptive airborne MTI: Comparison of sideways and forward looking radar. IEEE international radar conference, 1995: 614-618.
    [4]王彤,保铮,廖桂生.机载火控雷达近距离地面慢速目标检测.电子学报, 2001,29(6): 721-725.
    [5] O. Kreyenkamp and R. Klemm. Doppler compensation in forward-looking STAP radar. IEE Proc. Radar, Sonar Navig., 2001, 148(5): 253-258.
    [6] F. D. Lapierre, M. V. Droogenbroeck and J. G. Verly. New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars. Proc. Of ICASSP, 2003: 73-76.
    [7] M. Zatman. Circular Array STAP. Proc. Of NRC, 1999: 108-113.
    [8] M. C. Phillip, B. H. Todd. 3-Dimensional STAP performance analysis using the cross-spectral metric. IEEE international radar conference, 2004: 610-615.
    [9] J. T. Caldwell. Forward looking radar: Interference modelling, characterization, and suppression. Thesis, School of Engineering and Management, Air Force Institute of Technology (AETC), 2950 Hobson Way, Bldg 640, Wright-Patterson AFB, OH 45433-7765, March 2004. AFIT/GE/ENG/04-02.
    [10] T. B. Hale, Airborne Radar Interference suppression using adaptive three-dimensional techniques. Dissertation, School of Engineering and Management, Air Force Institute of Technology (AETC), 2950 Hobson Way, Bldg 640, Wright-Patterson AFB, OH 45433-7765, June 2002. AFIT/GE/ENG/02-02.
    [11] T. Hale, M. Temple, J. Raquet. Localised three-dimensional adaptive spatial-temporal processing for airborne radar. Radar, Sonar and Navigation, IEE Proceedings, 2003, 150(1): 18-22.
    [12] L.B. Fertig and S. I. Krich. Benefits of 3D-STAP for X-band GMTI airborne radars. 2005 Adaptive Sensor Array Processin (ASAP) Workshop, Linclon Lab, MA, June 2005: 1-6.
    [13] P. Richardson and S. Hayward. Adaptive space time processing for forward looking radar. Record of the IEEE 1995 International, 1995: 629-634.
    [14] M. C. Phillip, J. P. Jimmie and R. Muralidhar. Enhancing GMTI performance in non-stationary clutter using 3D STAP. IEEE international radar conference, 2007: 647-652.
    [15] J. Ward. Space-time adaptive processing for airborne radar. Lincoln Lab., Lexington, MA, Tech. Rep. 1015, Dec. 1994.
    [16] B. D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. AES, 1988, 24(4): 397-401.
    [17] J. Li, P. Stoica, and Z. Wang. On robust capon beamforming and diagonal loading. IEEE Trans. SP, 2003, 51(7): 1702-1714.
    [18] R. G. Lorenz and S. P. Boyd. Robust minimum variance beamforming. IEEE Trans. SP, May 2005, 53(5): 1684-1696.
    [19] K. L. Bell, Y. Ephraim, and H. L. V. Trees. A bayesian approach to robust adaptive beamforming. IEEE Trans. SP, 2000, 48(2): 386-398.
    [20] S. Shahbazpanahi, A. B. Gershman, Z. Q. Luo. Robust adaptive beamforming for general-rank signal models. IEEE Trans. SP, 2003, 51(9): 2257-2269.
    [21] J. Li and P. Stoica. Robust Adaptive Beamforming. New York: Wiley, 2006.
    [22] N. Ma, J. T. Goh. Efficient method to determine diagonal loading value. ICASSP, 2003: 341-344.
    [23] C.Y. Chen, P. P. Vaidyanathan. Quadratically constrained beamforming robust against direction-of-arrival mismatch. IEEE Trans. SP, 2007, 55(8): 4139-4150.
    [24] R. Wu, Z. Bao, and Y. Ma. Control of peak sidelobe level in adaptive arrays. IEEE Trans. AP, 1996, 44: 1341-1347.
    [25] R. Klemm. Adaptive airborne MTI: an auxiliary channel approach. IEEE Proc. F,Mar. 1987, 134: 269-276.
    [26] H. Wang and L. Cai. On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Trans. AES, 1994, 30(2): 660-670.
    [27] L. E. Brennan, D. J. Piwinski, and F. M. standaher. Comparision of space-time adaptive processing approaches using experimental airborne radar data.The Record of 1993 IEEE National Radar Conference, Massachusetts, USA, Apr. 1993: 176-181.
    [28] R. C. DiPietro. Extended factored space-time processing for airborne radar systems. Proc. 26th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, 1992: 425-430.
    [29] W. Melvin, M. Wicks, and P. Antonik. Knowledge-basded space-time adaptive processing for airborne early warning radar. IEEE Aerospace and Electronic Systems Magazine, Apr. 1998, 13(4): 37-42.
    [30] P.R. Gurram, N. A. Goodman.Spectral-domain covariance estimation with a priori knowledge. IEEE Trans. AES, Jul. 2006, 42(3): 1010-1020.
    [31] B. Friedlander. A subspace method for space time adaptive processing. IEEE Trans. SP, Jan. 2005, 53(1): 74-82.
    [32] R. Philippe, L. Marc, D. L. Fabian. Knowledge-aided array calibration for registration-based range-dependence compensation in airborne STAP radar with conformal antenna arrays. Proceedings of the 4th European Radar Conference, Oct. 2007: 67-70.
    [33] D. B. Shannon, G. Karl, R.Muralidhar. STAP using knowledge-aided covariance estimation and the FRACTA algorithm. IEEE Trans. AES, Jul. 2006, 42(3): 1043-1057.
    [34] C. W. Michael, R. Muralidhar, A. Raviraj. Space-time adaptive processing: a knowledge-based perspective for airborne radar. IEEE Signal Processing Magazine, Jan. 2006: 51-65.
    [1] R. Klemm. Principles of space-time adaptive processing. IEE Publishing,UK,2002.
    [2] J. Ward. Space-time adaptive processing for airborne radar. Technical report no.1015, MIT Lincoln Laboratory, December 1994.
    [3]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理.现代雷达,1994,16(1):1-22.
    [4] R. Klemm. Applications of space-time adaptive processing. IEE Publishing, UK, 2004.
    [5] I. S. Reed, J. D. Mallett and L. E. Brennan. Rapid convergence in adaptive arrays. IEEE Trans. AES. 1974,10(6):853-863.
    [6] R. Nitzberg. An effect of range-heterogeneous clutter on adaptive Doppler filters. IEEE Trans. AES. 1990, 26(3):475-480.
    [7] B. C. Armstrong, H. D. Griffiths, C. J. Banker. Performance of adaptive optimal Doppler processors in heterogeneous clutter. IEE Proc.-Radar, Sonar Navig. 1995, 142(4):179-190.
    [8] W. L. Melvin. Space-time adaptive radar performance in heterogeneous clutter. IEEE Trans AES, 2000,36(2):621-633.
    [9] J. R. Guerci, J. S. Bergin. Principal components, covariance matrix tapers, and the subspace leakage problem. IEEE Trans. AES, 2002,38(1):152-162.
    [10] J. R. Guerci. Theory and application of covariance matrix tapers for robust adaptive beamforming. IEEE Trans. SP, 1999,47(4):977-985.
    [11] T. K. Sarkar, H. Wang, S. Park. A deterministic least-squares approach to space-time adaptive processing. IEEE Trans. AP, 2001, 49(1):91-103.
    [12] D. J. Rabideau, A. O. Steinhardt. Improved adaptive clutter cancellation through data-adaptive training. IEEE Trans. AES, 1999, 35(3):879-891.
    [13] W. L. Melvin. A STAP Overivew. IEEE Trans. AES,2004,19(1):19-35.
    [14] R. Klemm. Adapitve Airborne MTI: Comparison of sideways and forward looking radar. Proceedings of IEEE international radar conference, Alexandria, VA, May 1995:614-618.
    [15] Y. L. Wang, Y. N. Peng and Z. Bao. Space-time adaptive processing for airborneradar with various array orientations. IEE Proc., Radar Sonar Navig., 1997, 144(6):330-340.
    [16] O. Kreyenkamp, R. Klemm. Doppler compensation in forward-looking STAP radar. IEE Proc. Radar, Sonar Navig., 2001, 148(5):253-258.
    [17] D. L. Fabian. and G. V. Jacques. New Solutions to the Problem of Range Dependence in Bistatic STAP Radars. Proceedings of IEEE 2003 National Radar Conference, Huntsville.2003:452-459.
    [18] M. Zatman. Performance analysis of the derivative based updating method. The 9th Annual Adaptive Sensor Array Processing Workshop, March 2001: 1-4.
    [19] V. Vijay and L. K. Jeffrey. Joint space-time interpolation for distorted linear and bistatic array geometries. IEEE Trans. SP, 2006,54(3):848-860.
    [20] C. H. Lim and B. Mulgrew. Prediction of inverse co-variance matrix (PICM) sequences for STAP. IEEE Signal Processing Letters, April 2006, 13(4): 236-239.
    [21] J. Bergin, P. Techau, W. L. Melvin. GMTI STAP in target-rich environments: site-specific analysis. Proceedings of 2002 IEEE Radar conference, Long Beach,CA, 2002: 1-6.
    [22] W. L. Melvin and M. C. Wicks. Improving practical space-time adaptive radar. Proceedings of 1997 IEEE International Radar Conference, Syracuse, New York,1997:48-53.
    [23] M. C. Wicks, W. L. Melvin, P. Chen. An efficient architecture for nonhomogeneity detection in space-time adaptive processing airborne early warning radar. Proceedings of 1997 IEEE national Radar conference, Syracuse, New York,1997:295-299.
    [24] S. U. Pillai, Y. L. Kim and J. R. Guerci. Generalized forward/backward subaperture smoothing techniques for sample starved STAP. IEEE Trans. SP, 2000, 48(12):3569-3574.
    [25] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 1969, 57(2): 1408-1418.
    [1] E. Yadin. Evaluation of noise and clutter induced relocation errors in SAR MTI. IEEE International Radar Conference, 1995: 650-655.
    [2]H. Mendelson. An alternative approach to multichannel radar detection and location. IEEE Aerospace Conference, 2005: 1-10.
    [3] C. O. William, H. Mendelson and A. Z. Peter. An application of advanced spectrum estimation to mult-channel radar detection and location. IEEE Aerospace Conference, 2005:1-7.
    [4] C. Wang and X. G. Xia. Detection, location and imaging of fast moving targets using multifrequency antenna array SAR. IEEE Trans. AES, 2004, 40(1): 345-355.
    [5] X. Zhang, P. Willett and B. S. Yaakov. Dynamic Cramer-Rao bound for target tracking in clutter. IEEE Trans. AES, 2005, 41(4):1154-1167.
    [6] X. Zhang, P. Willett and B. S. Yaakov. Uniform versus nonuniform sampling when tarcking in clutter. IEEE Trans. AES, 2006, 42(2): 388-400.
    [7] X. R. Li. Tracking in clutter with strongest neighbor measurements-part I: theoretical analysis. IEEE Trans. AC, 1998, 43(11):1560-1578.
    [8] S. S. Blackman. Multiple target tracking with radar applications. Norwood, MA: Artech, 1986.
    [9] R. Klemm. Applications of space-time adaptive processing. IEE Publishing,UK, 2004.
    [10] W. Koch and R. Klemm. Ground target tracking with STAP radar. IEE Proc. Radar, Sonar Navig., 2001,148(3): 173-185.
    [11] U. Nickel. Monopulse estimation with adaptive arrays. IEE Proceedings-F, 1993, 140(5): 303-308.
    [12] U. Nickel. Monopulse estimation with subarray adaptive arrays and arbitrary sum and difference beams. IEE Proc Radar, Sonar and Navigation, 1996, 143(4): 232:238.
    [13] A. S. Paine. A minimum variance monopulse technique for severe main beam jamming. Proceedings of the International Radar Symposium, 1998: 907-912.
    [14] A. S. Paine. Minimum variance monopulse technique for an adaptive phased arrayradar. IEE Proceedings of Radar, Sonar and Navigation, 1998, 145(6):374-380.
    [15] A. S. Paine. Application of the minimum variance monopulse technique to space-time adaptive processing. IEEE International Radar Conference, 2000: 596-601.
    [16] Y. Seliktar, E. J. Holder and D. B. Williams. An adaptive monopulse processor for angle estimation in a mainbeam jamming and coherent interference scenario. ICASSP, 1998: 2037-2040.
    [17] U. Nickel. Performance analysis of space-time adaptive monopulse. Signal processing, 2004, 84(9): 1561-1579.
    [18]L. E. Brennan, and J. D. Mallet. Angle estimation and scattered jamming cancellation in adaptive digital array radars. Adaptive Sensors Incorporated, Report ASI-J114F, Aug. 1992.
    [19] J. Ward. Cramer-Rao Bounds for target angle and Doppler estimation with space-time adaptive processing radar. Proc. 29th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, 1995: 1198-1202.
    [20] J. Ward. Maximum likelihood angle and velocity estimation with space-time adaptive processing radar. Proc. 30th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, 1996: 1265-1267.
    [21] L. C. Palmer. Coarse frequency estimation using the discrete fouriertransform. IEEE Trans. IT, 1974, 20: 104–109.
    [22] D. C. Rife and R. R. Boorstyn. Single-tone parameter estimation from discrete-time observations. IEEE Trans. IT, 1974, 20: 591–598.
    [23] S. A. Tretter. Estimating the frequency of a noisy sinusoid by linear regression. IEEE Trans. IT, 1985, 31: 832–835.
    [24] S. Kay. A fast and accurate single frequency estimator. IEEE Trans. ASSP, 1991, 39: 1203–1205.
    [25] T. Brown and M. M. Wang. An iterative algorithm for single-frequency estimation. IEEE Trans. SP, 2002, 50: 2671–2682.
    [26] V. Clarkson, P.J.Kootsookos, and B.G.Quinn. Analysis of the variance threshold of Kay’s weighted linear predictor frequency estimator. IEEE Trans. SP, 1994, 42: 2370–2379.
    [27] P. Handel. On the performance of the weighted linear predictor frequency estimator. IEEE Trans. SP, 1995, 43: 3070–3071.
    [28] M. L. Fowler and J. A. Johnson. Extending the threshold and frequency range for phase-based frequency estimation. IEEE Trans. SP, 1999, 47: 2857–2863.
    [29] D. Kim, M. J. Narasimha, and D. C. Cox. An improved single frequency estimator.IEEE SP Letter, 1996, 3: 212–214.
    [30] Z. Zhang, A. Jakobsson, M. D. Macleod. A hybrid phase-based single frequency estimator. IEEE SP Letter, 2005, 12: 657–660.
    [31] P. F. Michael. Further results in the fast estimation of a single frequency. IEEE Trans. Communications, 1994, 42(3): 862-864.
    [32] S. Kay and R. Nekovei. An efficient two-dimensional frequency estimator. IEEE Trans. ASSP, 1990, 38(10): 1807-1809.
    [33] A. Sourice, G. Plantier and J. L. Saumet. Two-dimensional frequency estimation using autocorrelation phase fitting. ICASSP, 2003:445-448.
    [34] Y. Hua. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans. SP, 1992, 40(9): 2267-2280.
    [35] C. R. Rao, L. Zhao, and B. Zhou. Maximum likelihood estimation of 2-D superimposed exponential signals. IEEE Trans. SP, 1994, 42(7): 1795-1802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700