用户名: 密码: 验证码:
混沌直扩信号检测与混沌同步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性科学是研究非线性现象共性的基础学科,非线性方法能够更为合理地描述客观事实。混沌是非线性科学中的重要一员,它对现代科学技术产生了巨大的影响。混沌通信是混沌理论在工程领域最杰出的应用之一。本文开展了混沌理论及其在非合作混沌信号检测、参数估计和混沌同步中的应用研究。混沌检测是针对混沌通信信号分析建模的先决条件,它包括实现对观测时间序列混沌特性识别的混沌识别和利用混沌系统进行弱信号检测的混沌系统检测。混沌同步是实现混沌通信的有力保障,也正是单向耦合混沌同步的电路实现使得混沌通信成为可能。广义混沌同步是实现基于混沌同步的通信信号分析的主要手段之一。混沌参数调制是混沌通信的主要方式,它利用不同参数集下的混沌信号来掩盖传输信息以达到保密通信的目的,混沌参数估计是实现信息解调的必要前提。本文的主要研究成果有:
     1、提出了一种有效区分混沌与噪声的方法。研究了随着嵌入维数的增长,相空间中相点间平均距离的变化趋势。根据混沌与噪声在相空间中的不同特性,从理论上推导出了区别噪声与混沌的方法。该方法可以在短数据和噪声环境中实现快速判决,不仅改善了传统方法需要人为选择多个主观参数,容易出现误判和计算量大等问题,而且在一定程度上改进了基于混沌系统特征量方法对噪声十分敏感和需要大量数据的缺点。
     2、研究了基带混沌直扩信号的检测。针对混沌直扩通信中的实值扩谱方式,提出了利用伪邻近点实现信号检测的方法。实值混沌扩谱信号的检测实质上是混沌与噪声的识别问题。在分析信息码对混沌动力学影响的基础上,将基于伪邻近点构造的识别算法应用到基带实值混沌直扩信号检测,不仅克服了传统基于混沌系统特征量对噪声十分敏感和数据量大的缺点,而且能够在一定程度上实现与传统直扩方式的区别。
     3、针对量化混沌直扩信号,提出了基于哈密顿量的定量Duffing振子信号检测方法。Duffing振子利用外加微扰信号使得系统动力学特性发生明显改变,而对噪声免疫来实现信号检测,极大地提高了微弱信号检测性能。本文分析了Duffing振子的动力学行为特性、时频特性、噪声免疫特性、状态跃迁阈值及微扰信号相差和频差对动力学行为的影响,分别利用相图的状态跃迁以及时序图的间歇混沌行为实现信号检测。考虑到当前基于Duffing振子微弱信号检测仍停留在定性分析和仿真分析阶段的现状,提出了利用哈密顿量构造统计量进行定量判决的方法。哈密顿量能够实时地表征系统状态的变化情况。该方法可以在低信噪比下实现微弱信号的定量判决。
     4、提出了自适应实现具有未知参数和不同结构混沌系统广义混合混沌同步方案。该方案能够实现两个不同结构混沌系统的同步跟踪。考虑到系统未知参数对同步流形稳定性的影响,基于自适应原理,本文利用Lyapunov理论解析地设计了控制信号和参数更新规则。该方法能够同时实现完全同步、镜像同步和投影同步,并可推广到更一般的广义同步。该方法的研究更接近于实际的非合作信号分析环境。数值方法验证了方法的有效性。
     5、提出了基于超前混沌同步的参数估计方法。考虑到混沌通信系统处在不同的地理位置,信号传输存在时延的影响,从观测数据中估计延迟耦合系统的未知参数具有重要意义。本文研究了具有时延耦合混沌系统的参数估计。基于Krasovskii-Lyapunov理论的系统稳定性分析可以导出时延独立的稳定性条件,但是时延与参数估计密切相关。本文利用数值方法研究了方案中各参数对估计方法的影响。该方案能够在时间延迟存在的情况下有效估计系统的未知参数,改进了传统基于完全同步的参数估计方法。
Nonlinear science is a basic subject which studies the common characteristics of nonlinear phenomena. Nonlinear method can describe the objective fact more reasonable. Chaos is the most important one in nonlinear science, which has generated a huge influence to modern science and technologies. Chaotic communication is one of the most excellence applications in engineering. This thesis studies the chaos theory and its application in non-cooperative chaos signal detection, chaos synchronization and parameters estimation of chaotic systems. Chaos detection is the precondition of the modeling of chaotic communication signal, which includes chaos identification and the signal detection based on chaos system. Chaos identification can identify the chaotic characters from the observed time series, and the signal detection based on chaotic system exploits a chaotic system to detect weak signal. Chaos synchronization is the powerful guarantee to implement chaotic communication. And just the achievement of the synchronization of two chaotic systems with unidirectional couple in electronic circuit, the chaotic communication becomes possible. The generalized chaos synchronization is one of the main methods to achieve the analysis of the chaotic communication signals based on chaos synchronization. Chaotic parameter modulation is the main way of chaotic communication, which uses the chaotic signal from different parameter set of the chaotic system to hide the transmit information and achieve secure communication. The parameters estimation of chaotic systems is the necessary precondition to information demodulate. The main results of this thesis are:
     1、An efficient method of distinguishing chaos from noise is proposed. The changing trend of the average distance between phase points in phase space is studied with the increase of the embedding dimension. According to the different characteristics between chaos and noise in phase space, this thesis deduces a method which can distinguish chaos from noise. This method can do decision quickly even when the data are short and contaminated. This method not only overcomes the shortage of the subjectivity of parametric choice and time consuming of traditional method, but also improves the shortcoming of both the requirement for a large number of data and the noise sensitivity of the invariant of chaotic system to some extent.
     2、The detection of baseband chaotic direct sequence spread spectrum signal(CDSSS) is studied. In allusion to the real number chaotic spread spectrum mode in CDSSS communication, this thesis proposes to do detection by false neighbor method. Essentially, the detection of the real number CDSSS signal is the problem of distinguishing chaos from noise. Based on the analysis of the influence of information code to chaotic dynamics, this paper uses the identification algorithm which based on false neighbor to detect the baseband real number CDSSS signal. This method not only overcomes the shortage of both the requirement for a large number of data and the noise sensitivity of the invariant of chaos system, but also can distinguish traditional DSSS signal to some extent.
     3、For quantization CDSSS signal, this thesis proposes a quantitative signal detection method by using Duffing oscillator based on Hamiltonian. Duffing oscillator exploits the characteristics that additional perturbation signals make the dynamics of the system change obviously and immune to noise to detect weak signal. This improves the performance of the weak signal detection greatly. According to the analysis of the dynamics characteristic, the time-frequency characteristic, the immune to noise characteristic, the state transition characteristic and the influence of the frequency and phase difference with the perturbation signal of Duffing oscillator, this paper proposes to use state transition of the phase portrait and intermittent chaos of the time series diagram to detect signal respectively. Considering most of the existing weak signal detection methods based on Duffing oscillator are stay on qualitative and simulative analysis also, this paper proposes to use Hamiltonian to construct statistic to do quantitative decision. Hamiltonian can depict the dynamics real time. This scheme can detect weak signal quantitatively in lower signal-noise-ratio. 4、An adaptive hybrid generalized synchronization of two different chaotic system with unknown parameters is proposed. This scheme can achieve synchronization and track of two different chaotic systems. Considering the influence of unknown parameters to the stability of the synchronization manifold, based on adaptive theory, this paper exploits the Lyapunov stability theory to design the control signals and parameters update laws analytically. This scheme can achieve complete synchronization, anti-synchronization, projective synchronization, simultaneously, and it can be extended to more general generalized chaos synchronization. The modeling circumstance is closer to the actual non-cooperative signal analysis. Numerical simulations verify the effectiveness of the proposed scheme.
     5、The anticipating chaotic synchronization based parameter estimation of chaotic system is proposed. Considering the communication systems are at difference places, the signal transmit has time delay to each other, the estimation of the unknown parameters of the delay coupled chaotic system from the observed time series is significant. This paper investigates the parameter estimation of time delay coupled chaotic systems. Although the Krasovskii-Lyapunov functional method often results in delay-independent stability condition, time delay closely relates to the parameter estimation. The numerical method is used to study the influence of the parameters of the proposed scheme to unknown parameter estimation scheme. This scheme can estimate the unknown parameter correctly even when the time delay exists, and improve the parameter estimation based on complete synchronization.
引文
[1] A. Abel, W. Schwarz. Chaos communications-principles, schemes, and system analysis. Proceedings of the IEEE, 2002, 90(5):691-710
    [2] L. Larson, J. Liu, L. Tsimring. Digital Communications Using Chaos and Nonlinear Dynamics. Springer, 2006
    [3] M. Kennedy, R. Rovatti, G. Setti. Chaotic electronics in telecommunications. CRC Press, 2000
    [4] R. Rovatti, G. Mazzini, G. Setti. Shannon capacities of chaos-based and conventional asynchronous. Electronics Letters, 2002, 38(10):478-480
    [5] A.P. Kurian, S. Puthusserypady, H. Su Myat. Performance enhancement of DS/CDMA system using chaotic complex spreading sequence. Wireless Communications, IEEE Transactions on, 2005, 4(3):984-989
    [6] C. Williams. Chaotic communications over radio channels. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 2001, 48(12):1394-1404
    [7] T.L. Carroll. Chaotic communications that are difficult to detect. Physical Review E, 2003, 67(2):026207
    [8] J. Yu, Y.-D. Yao. Detection performance of chaotic spreading LPI waveforms. Wireless Communications, IEEE Transactions on, 2005, 4(2):390-396
    [9] P. Christopher, M. Albert. Introduction to chaos-based communication and signal processing. 2002 IEEE Aerospace Conference proceedings, 279-299
    [10] A.R. Volkovskii, L.S. Tsimring. Spread spectrum communication system with chaotic frequency modulation. Chaos, 2005, 15:033101
    [11] L.M. Pecora, T.L. Carroll. Synchronization in chaotic systems. Physical Review Letters, 1990, 64(8):821-824
    [12] K.M. Cuomo, A.V. Oppenheim. Spread spectrum modulation and signal masking using synchronized chaotic systems. MIT research laboratory of electronics technical report, 1990, 570
    [13] G. Heidari-Bateni. Chaotic signals for digital communication:[Ph. D]. Pudue University, 1992
    [14] G. Heidari-Bateni, C.D. Mcgillem. A chaotic sequence for spread spectrum: an alternative to PN-sequences. 1992 Proceedings of IEEE international conference on selected topics ofwireless communications, 437-440
    [15] G. Heidari-Bateni, C.D. Mcgillem. A chaotic direct-sequence spread spectrum communication system. IEEE Transactions on communications, 1994, 42:1524-1527
    [16] N. Rulkov, M. Sushchik, L. Tsimring, et al. Digital communication using chaotic-pulse-position modulation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(12):1436-1444
    [17] V. Annovazzi-Lodi, M. Benedetti, S. Merlo, et al. Optical chaos masking of video signals. IEEE Photonics Technology Letters, 2005, 17(9):1995-1997
    [18] A. Argyris, D. Syvridis, L. Larger, et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 2005, 438(7066):343-346
    [19] A.S. Demiter. Basic principle of direct chaotic communications. Nonlinear phenomenon in system, 2002, 1:1-14
    [20] S. Azou, G. Burel. A chaotic-direct sequence spread spectrum system for underwater communications. IEEE oceans conference record, 2002, 4:2409-2415
    [21] H. Yu, H. Leung. A comparative study of different chaos based spread spectrum communication systems. IEEE international symposium on circuits and systems, 2001, 3:213-216
    [22] Z. Zhu, H. Leung. Adaptive blind equalization for chaotic communication systems using extended-kalman filter. IEEE Transactions on circuits and systems I: fundamental theory and application, 2001, 48(8):979-989
    [23]王亥.混沌扩频多址通信系统的研究:[博士学位论文].北京:北京邮电大学, 1997
    [24]王亥,胡健栋. Logistic-map混沌扩频序列.电子学报, 1997, 25(1):20-23
    [25]菱聪,孙松庚.用于CDMA的四相混沌扩频序列.通信学报, 1998, 19(3):40-44
    [26]安澄全,周廷显.二相混沌扩频序列的产生与性能分析.哈尔滨工业大学学报, 2003, 35(9):1117-1120
    [27] Y. Xia, X. Shan. Correlation properties of binary spatiotemporal chaotic sequences and their application to multiple access communication. Physical Review E, 2001, 64(6):067201
    [28]王琳.混沌扩频技术在CDMA通信系统中的应用研究:[博士学位论文].成都:电子科技大学, 2001
    [29]汪芙平.混沌背景下信号盲分离及其在混沌通信中的应用研究:[博士学位论文].北京:清华大学, 2001
    [30]汪芙平,郭静波,王赞基.强混沌干扰中的谐波信号提取.物理学报, 2001,50(6):1019-1023
    [31]胡进峰,郭静波.一种破译混沌直接序列扩频保密通信的方法.物理学报, 2008, 57(3):1477-1484
    [32]张森,肖先赐.混沌时间序列全局预测新方法—连分式法.物理学报, 2005, 54(11):5062-5067
    [33]郭双冰.混沌时间序列预测及其混沌理论在通信信号调制识别中的应用:[博士学位论文].成都:电子科技大学, 2003
    [34]张家树.混沌信号的非线性自适应预测技术及其应用研究:[博士学位论文].成都:电子科技大学, 2001
    [35] C. Nicolis, G. Nicolis. Is there a climatic attractor? Nature, 1984, 311:529-532
    [36] M. Cencini, M. Falcioni, E. Olbrich, et al. Chaos or noise: Difficulties of a distinction. Physical Review E, 2000, 62:427-435
    [37] A.R. Osborne, A. Provenzale. Finite correlation dimension for stochastic systems with power-law spectra. Physica D, 1989, 35:357-381
    [38] D.T. Kaplan, L. Glass. Direct test for determinism in a time series. Physical Review Letters, 1992, 68:427-430
    [39] M. Sano, Y. Sawada. Measurement of the Lyapunov spectrum from a chaotic time series. Physical Review Letters, 1985, 55(10):1082
    [40] A. Wolf, J. Swifta, H. Swinneya, et al. Determining Lyapunov exponents from a time series. Physica D, 1985, 16:285-317
    [41] M. Rosensteina, J. Collinsa, C.D. Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 1993, 65:117-134
    [42] H. Kantz, T. Schreiber. Nonlinear time series analysis. Cambridge: Cambridge University Press, 2004
    [43] P. Grassberger, I. Procaccia. Characterization of Strange Attractors. Physical Review Letters, 1983, 50:346-349
    [44] P. Grassberger, I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 1983, 9:189-208
    [45] J.P. Eckmann, D. Ruelle. Ergodic theory of chaos and strange attractors. Review of Modern Physics, 1985, 57:617
    [46] S. Pincus. Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88:2297-2301
    [47] J. Wang, Q. Ma. Multiscale entropy based study of the pathological time series. Chinese Physics B, 2008, 17(12):4424-4427
    [48] M. Costa, A. Goldberger, C.K. Peng. Multiscale entropy analysis of biological signals. Physical Review E, 2005, 71:021906
    [49] G. Boffetta, M. Cencini, M. Falcioni, et al. Predictability: a way to characterize complexity. Physics Reports, 2002, 356:367-474
    [50] J.B. Gao, J. Hu, W.W. Tung, et al. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Physical Review E, 2006, 74:066204
    [51] A.H. Omidvarnia, A.M. Nasrabadi. A new irregularity criterion for discrimination of stochastic and deterministic time series. Fractals, 2008, 16(2):129-140
    [52] J. Sun, T. Zhang, F. Liu. Modelling of chaotic systems based on modified weighted recurrent least squares support vector machines. Chinese Physics B, 2004, 13:2045-2052
    [53] J. Li, X. Ning, W. Wu, et al. Detecting dynamical complexity changes in time series using the base-scale entropy. Chinese Physics B, 2005, 14:2428-2432
    [54] G. Zheng, N. Jin. Multiscale entropy and dynamic characteristics of two-phase flow patterns. Acta Physica Sinica, 2009, 58(7):4485-4492
    [55] Y. Li, K. Xu, B. Yang, et al. Analysis of the geometric characteristic quantity of the periodic solutions of the chaotic oscillator system and the quantitative detection of weak periodic signal. Acta Physica Sinica, 2008, 57(6):3353-3358
    [56] R. Wayland, D. Bromley, D. Pickett, et al. Recognizing determinism in a time series. Physical Review Letters, 1993, 70:580
    [57] G. Ortega, E. Louis. Smoothness implies determinism in time series: A measure based approach. Physical Review Letters, 1998, 81:4345
    [58] G. Ortega, E. Louis. Using topological statistics to detect determinism in time series. Physical Review E, 2000, 62:3419
    [59] L. Salvino, R. Cawley. Smoothness implies determinism: A method to detect it in time series. Physical Review Letters, 1994, 73:1091
    [60] J. Jeong, J.C. Gore, B.S. Peterson. A method for determinism in short time series, and its application to stationary EEG. IEEE Transactions on Biomedical Engineering, 2002, 49(11):1374-1379
    [61] G. Gottwalda, I. Melbourneb. A new test for chaos in deterministic systems. Proceedings of the Royal Society of London-A, 2004, 460:603-611
    [62] G. Gottwalda, I. Melbourneb. Testing for chaos in deterministic systems with noise. Physica D, 2005, 212:100-110
    [63] J. Hu, W.W. Tung, J.B. Gao, et al. Reliability of the 0-1 test for chaos. Physical Review E, 2005, 72:056207
    [64] V. Rube?i?, I. Djurovi?, M. Dakovi?. Time-frequency representations-based detector of chaos in oscillatory circuits. Signal Processing, 2006, 86:2255-2270
    [65] I. Djurovi?, V. Rube?i?. Multiple STFT-based approach for chaos detection in oscillatory circuits. Signal Processing, 2007, 87:1772-1780
    [66] I. Djurovi?, V. Rube?i?. Chaos detection in chaotic systems with large number of components in spectral domain. Signal Processing, 2008, 88:2357-2362
    [67] J. Zhang, X. Luo, M. Small. Detecting chaos in pseudoperiodic time series without embedding. Physical Review E, 2006, 73:016216
    [68] L. Cao. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D, 1997, 110:43-50
    [69] S. Ramdani, J. Casties, F. Bouchara, et al. Influence of noise on the averaged false neighbors method for analyzing time series. Physica D, 2006, 223:229-241
    [70] S. Ramdani, F. Bouchara, J. Casties. Detecting determination in short time series using a quantified averaged false nearest neighbors approach. Physical Review E, 2007, 76:036204
    [71] D. Birx, S. Pipenberg. Chaotic oscillators and complex mapping feed forward networks (CMFFNS) for signal detection in noisy environments. 1992 IEEE International Joint Conference on Neural Network, Vol.2:881-888
    [72]王冠宇.混沌振子微弱信号检测的理论研究及实践:[博士学位论文].杭州:浙江大学, 1998
    [73] G. Wang, D. Chen, J. Lin, et al. The application of chaotic oscillators to weak signal detection. IEEE Transactions on Industrial Electronics, 1999, 46(2):440-444
    [74] G. Wang, S. He. A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, 50(7):945-953
    [75]聂春燕.混沌系统与弱信号检测.北京:清华大学出版社, 2009
    [76]李月,杨宝俊.混沌振子系统(L-Y)与检测.北京:科学出版社, 2007
    [77]李月,杨宝俊,石要武.色噪声背景下微弱正弦信号的混沌检测.物理学报, 2003, 52(3):526-530
    [78]李月,石要武,马海涛, et al.湮没在色噪声背景下微弱方波信号的混沌检测方法.电子学报, 2004, 32(1):87-90
    [79]金虎,王可人.基于Duffing振子的直接序列扩频信号检测及参数估计.系统工程与电子技术, 2007, 29(11):1823-1826
    [80] Y. Yuan, Y. Li, P. Danilo, et al. Regular nonlinear response of the driven Duffing oscillator to chaotic time series. Chinese Physics B, 2009, 18(3):958-968
    [81]李月,杨宝俊,邓小英, et al.谐波信号频率的混沌检测方法.电子与信息学报, 2005, 27(5):731-733
    [82] G. Wang, W. Zheng, S. He. Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator. Signal Processing, 2002, 82(1):103-115
    [83] E. Ott, C. Grebogi, J. Yorke. Controlling chaos. Physical Review Letters, 1990, 64(11):1196-1199
    [84] H. Fujisaka, T. Yamada. Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 1983, 69(1):32-47
    [85] A.S. Pikovsky. On the interaction of strange attractors. Zeitschrift fur Physik B Condensed Matter, 1984, 55(2):149-154
    [86] V. Afraimovich, N. Verichev, M. Rabinovich. Stochastic synchronization of oscillation in dissipative systems. Radiophysics and Quantum Electronics, 1986, 29(9):795-803
    [87] A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, 2001
    [88] N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, et al. Generalized synchronization of chaos in directionally coupled chaotic systems. Physical Review E, 1995, 51(2):980-994
    [89] C.-M. Kim, S. Rim, W.-H. Kye, et al. Anti-synchronization of chaotic oscillators. Physics Letters A, 2003, 320(1):39-46
    [90] R. Mainieri, J. Rehacek. Projective Synchronization In Three-Dimensional Chaotic Systems. Physical Review Letters, 1999, 82(15):3042-3045
    [91] H.U. Voss. Anticipating chaotic synchronization. Physical Review E, 2000, 61(5):5115-5119
    [92] M.G. Rosenblum, A.S. Pikovsky, J. Kurths. From phase to lag synchronization in coupled chaotic oscillators. Physical Review Letters, 1997, 78(22):4193-4196
    [93] T. Yang, L.-B. Yang, C.-M. Yang. Breaking chaotic switching using generalized synchronization: examples. Circuits and Systems I: Fundamental Theory and Applications,IEEE Transactions on, 1998, 45(10):1062-1067
    [94] G.álvarez, S. Li, F. Montoya, et al. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization. Chaos, Solitons & Fractals, 2005, 24(3):775-783
    [95] J. Hu, J. Guo. Breaking a chaotic secure communication scheme. Chaos, 2008, 18(1):013121
    [96] E.M. Elabbasy, M.M. El-Dessoky. Adaptive anti-synchronization of different chaotic dynamical systems. Chaos, Solitons & Fractals, 2009, 42(4):2174-2180
    [97] N. Noroozi, M. Roopaei, P. Karimaghaee. Adaptive control and synchronization in a class of partially unknown chaotic systems. Chaos, 2009, 19(2):023121
    [98] H. Zhang, W. Huang, Z. Wang, et al. Adaptive synchronization between two different chaotic systems with unknown parameters. Physics Letters A, 2006, 350(5-6):363-366
    [99] A. Al-Sawalha. Chaos anti-synchronization of two non-identical chaotic systems with known or fully unknown parameters. Chaos, Solitons & Fractals, 2009, 42(3):1926-1932
    [100] M.M. Al-Sawalha, M.S.M. Noorani. Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4):1036-1047
    [101] U. Parlitz, L. Junge, L. Kocarev. Synchronization-based parameter estimation from time series. Physical Review E, 1996, 54:6253
    [102] U. Parlitz. Estimating model parameters from time series by autosynchronization. Physical Review Letters, 1996, 76:1232
    [103] T. Stojanovski, L. Kocarev, U. PArlitz. A simple method to reveal the parameters of the Lorenz system. International Journal of Bifurcation and Chaos, 1996, 6:2465
    [104] A. Maybhate, R.E. Amritkar. Use of synchronization and adaptive control in parameter estimation from a time series. Physical Review E, 1999, 59:284
    [105] A. d'Anjou, C. Sarasola, F.J. Torrealdea, et al. Parameter-adaptive identical synchronization disclosing Lorenz chaotic masking. Physical Review E, 2001, 63:046213
    [106] H. Sakaguchi. Chaotic diffusion of particles with finite mass in oscillating convection flows. Physical Review E, 2002, 65:062201
    [107] D. Huang. Synchronization-based estimation of all parameters of chaotic systems from time series. Physical Review E, 2004, 69:067201
    [108] E. Solak. Partial identification of Lorenz system and its application to key space reduction of chaotic cryptosystems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2004,51:557- 560
    [109] W. Yu, G. Chen, J. Cao, et al. Parameter identification of dynamical systems from time series. Physical Review E, 2007, 75:067201
    [110] A.A. Zaher. Parameter identification technique for uncertain chaotic systems using state feedback and steady-state analysis. Physical Review E, 2008, 77:036212
    [111] D. Yu, U. Parlitz. Estimating parameters by autosynchronization with dynamics restrictions. Physical Review E, 2008, 77(6):066221
    [112] U. Parlitz, D. Yu, Synchronization and Control Based Parameter Identification, in Intelligent Computing Based on Chaos, L. Kocarev, Z. Galias, and S. Lian, Editors, Berlin: Springer. 2009, 227-249
    [113] R. Konnur. Synchronization-based approach for estimating all model parameters of chaotic systems. Physical Review E, 2003, 67(2):027204
    [114] C. Tao, Y. Zhang, G. Du, et al. Estimating model parameters by chaos synchronization. Physical Review E, 2004, 69(3):036204
    [115] V.F. Pisarenko, D. Sornette. Statistical methods of parameter estimation for deterministically chaotic time series. Physical Review E, 2004, 69(3):036122
    [116] T.-Y. Li, J.A. Yorke. Period three implies chaos. American mathematical monthly, 1975, 82(10):985-992
    [117] E. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 1963, 20:130-141
    [118] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations. Journal of Statistical Physics, 1978, 19(1):25-52
    [119] F. Takens, Detecting strange attractors in turbulence, in Dynamical systems and turbulence, D.A. Rand and L.-S. Young, Editors, Warwick: Springer. 1981, 366-381
    [120]宋卫东.微分流形基础.合肥:安徽人民出版社, 2005
    [121] C.T.C. Wall.拓扑学的几何导引(季文铎,张增喜译).北京:高等教育出版社, 1988
    [122]詹汉生.微分流形导引.北京:北京大学出版社, 1984
    [123]肖柳青,周石鹏.非线性离散动力系统理论与应用.上海:上海交通大学出版社, 2000
    [124] M.W. Hirsch, S. Smale, R.L. Davaney.微分方程、动力系统与混沌导论(甘少波译).北京:人民邮电出版社, 2008
    [125]韩敏.混沌时间序列预测-理论与方法.北京:中国水利水电出版社, 2007
    [126] R.C. Robinson.动力系统引论(韩茂安,邢业朋,毕平译).北京:机械工业出版社, 2007
    [127] R.H. Day. Irregular Growth Cycles. The American Economic Review, 1982, 72(3):406-414
    [128]黄润生,黄浩.混沌及其应用.武汉:武汉大学出版社, 2005
    [129] T. Sauer, J. Yorke, M. Casdagli. Embedology. Journal of Statistical Physics, 1991, 65(3):579-616
    [130] P. Grassberger, I. Procaccia. Characterization of Strange Attractors. Physical Review Letters, 1983, 50(5):346-349
    [131] D.T. Kaplan, L. Glass. Direct test for determinism in a time series. Physical Review Letters, 1992, 68(4):427-430
    [132] L.W. Salvino, R. Cawley. Smoothness Implies Determinism: A Method to Detect It in Time Series. Physical Review Letters, 1994, 73(8):1091-1094
    [133] D.S. Broomhead, G.P. King. Extracting qualitative dynamics from experimental data. Physica D, 1986, 20(2-3):217-236
    [134] L.A. Aguirre. A nonlinear correlation function for selecting the delay time in dynamical reconstructions. Physics Letters A, 1995, 203(2-3):88-94
    [135] A.M. Fraser, H.L. Swinney. Independent coordinates for strange attractors from mutual information. Physical Review A, 1986, 33(2):1134
    [136] A. Kraskov, H. St?gbauer, P. Grassberger. Estimating mutual information. Physical Review E, 2004, 69(6):066138
    [137] M.T. Rosenstein, J.J. Collins, C.J. De Luca. Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D, 1994, 73(1-2):82-98
    [138] H.S. Kim, R. Eykholt, J.D. Salas. Nonlinear dynamics, delay times, and embedding windows. Physica D, 1999, 127(1-2):48-60
    [139] J.P. Eckmann, D. Ruelle. Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 1985, 57(3):617-656
    [140] M. Sano, Y. Sawada. Measurement of the Lyapunov spectrum from a chaotic time series. Physical Review Letters, 1985:1082
    [141] R.O. Vallejos, C. Anteneodo. Theoretical estimates for the largest Lyapunov exponent of many-particle systems. Physical Review E, 2002, 66:1203-1218
    [142] H. Kantz. A robust method to estimate the maximal Lyapunov exponent of a time series. Physics Letters A, 1994, 185(1):77-87
    [143] Y. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Mathematical Surveys, 1977, 32(4):55-114
    [144] J. Kaplan, J. Yorke. Chaotic behavior of multidimensional difference equations. Functional Differential Equations and Approximation of Fixed Points, 1979:204-227
    [145] V.I. Oseledets. A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Transactions of the Moscow Mathematical Society, 1968, 19:197-231
    [146] P. Gaspard, X. Wang. Noise, chaos, and (ε,τ)-entropy per unit time. Physics Reports, 1993, 235:291-343
    [147] E. Aurell, G. Boffetta, A. Crisanti, et al. Predictability in the large: an extension of the concept of Lyapunov exponent. Journal of Physics A: Mathematical and Theoretical, 1997, 30(1):1-26
    [148] C.S. Poon, M. Barahona. Titration of chaos with added noise. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98:7107-7112
    [149] J. Theiler, S. Eubank, A. Longtin, et al. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 1992, 58:77-94
    [150] M.B. Kennel, R. Brownand, H. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 1992, 45:3403 - 3411
    [151] H. Abarbanel, M.B. Kennel. Local false nearest neighbors and dynamic dimensions from observed chaotic data. Physical Review E, 1993, 47:3057-3068
    [152] J. Gao, Z. Zheng. Direct dynamical test for deterministic chaos and optimal embedding of a chaotic times series. Physical Review E, 1994, 49:3807-3814
    [153] W. Liebert, H.G. Schuster. Proper choice of the time delay for the analysis of chaotic time series. Physics Letters A, 1989, 142:107-111
    [154] P. Stavroulakis. Chaos applications in telecommunications. CRC press, 2006
    [155] G. Wang, D. Chen, J. Lin, et al. The application of chaotic oscillators to weak signal detction. IEEE Transactions on industrial electronics, 1999, 46(2):440-444
    [156] G. Wang, W. Zheng, S. He. Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator. Signal Processing, 2002, 82(1):103-105
    [157] C. Nie, Y. Shi, Y. Wang. Method for Stochastic Resonance to Detect Weak Signal Based on Bi-stable Two Order Nonlinear System. 2005 The Seventh Iternational Conference on Electronic Measurement and Instruments, Vol.6:274-277
    [158] H.D.I. Abarbanel, M.B. Kennel. Local false nearest neighbors and dynamical dimensions from observed chaotic data. Physical Review E, 1993, 47(5):3057-3068
    [159] H. Chen, P.K. Varshney, S.M. Kay, et al. Theory of the stochastic resonance effect in signal detection: Part I-Fixed detectors. IEEE Transactions on Signal Processing, 2008, 55(7):3172-3184
    [160]刘曾荣.混沌的微扰判据.上海:上海科技教育出版社, 1994
    [161]胡岗.随机力与非线性系统.上海:上海科技教育出版社, 1994
    [162] Y. Li, B. Yang. Chaotic system for the detection of periodic signals under the background of strong noise. Chinese Science Bulletin, 2003, 48(5):508-510
    [163]周玲,田建生,刘铁军. Duffing混沌振子用于微弱信号检测的研究.系统工程与电子技术, 2006, 28(10):1477-1479
    [164] C. Li, L. Qu. Applications of chaotic oscillator in machinery fault diagnosis. Mechanical Systems and Signal Processing, 2007, 21(1):257-269
    [165] Y. Yuan, Y. Li, P.M. Danilo, et al. Regular nonlinear response of the driven Duffing oscillator to chaotic time series. Chinese Physics B, 2009, 18(3):958-968
    [166] G. Xiong, M. Lv, B. Tang. Direct sequence spread spectrum signal detection based on chaos theory. 2007 International Conference on Communications Circuits and Systems, 727-730
    [167] W. Yi, Y. Shi, J. Huang, et al. Research on The Methods of Duffing Chaotic Oscillator for Sin Wave Parameter Estimate. 2001 Proceedings of the Second International Conference on Information Technology and Applications, 246-249
    [168]路鹏,李月.微弱正弦信号幅值混沌检测的一种改进方案.电子学报, 2005, 33(3):527-529
    [169] E. Ott, C. Grebogi, J.A. Yorke. Controlling chaos. Physical Review Letters, 1990, 64(11):1196-1199
    [170] A.S. Pikovsky, M.G. Rosenblum, G.V. Osipov, et al. Phase synchronization of chaotic oscillators by external driving. Physica D, 1997, 104(3-4):219-238
    [171] M.G. Rosenblum, A.S. Pikovsky, J. Kurths. Phase Synchronization of Chaotic Oscillators. Physical Review Letters, 1996, 76(11):1804-1807
    [172] L. Kocarev, U. Parlitz. Generalized Synchronization, Predictability, and Equivalence of Unidirectionally Coupled Dynamical Systems. Physical Review Letters, 1996, 76(11):1816-1819
    [173] H.U. Voss. Dynamic Long-Term Anticipation of Chaotic States. Physical Review Letters, 2001, 87(1):014102
    [174] L.M. Pecora, T. Carroll. Synchronization in chaotic systems. Physical Review Letters, 1990,64:821-823
    [175] S. Sastry. Nonlinear Systems: Analysis, Stability and Control. New York: Springer, 1999
    [176] J. Hale. Theory of Functional Differential Equations. New York: Springer, 1977
    [177] S. Boccaletti, D.L. Valladares. Characterization of intermittent lag synchronization. Physical Review E, 2000, 62(5):7497-7500
    [178] L. Pecora, T. Carroll, G. Johnson, et al. Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos, 1997, 7(4):520-543
    [179] K. Ikeda, K. Matsumoto. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D, 1987, 29(1-2):223-235
    [180] M. Hu, Z. Xu, R. Zhang, et al. Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems. Physics Letters A, 2007, 361(3):231-237
    [181] Z.-M. Ge, C.-H. Yang. Pragmatical generalized synchronization of chaotic systems with uncertain parameters by adaptive control. Physica D, 2007, 231(2):87-94
    [182] Z.-L. Wang, X.-R. Shi. Anti-synchronization of Liu system and Lorenz system with known or unknown parameters. Nonlinear Dynamics, 2009, 57(3):425-430
    [183] U. Parlitz. Estimating Model Parameters from Time Series by Autosynchronization. Physical Review Letters, 1996, 76(8):1232-1235
    [184] M. Chen, J. Kurths. Chaos synchronization and parameter estimation from a scalar output signal. Physical Review E, 2007, 76(2):027203
    [185] Y. Li, W.K.S. Tang, G. Chen. Generating hyperchaos via state feedback control. International Journal of Bifurcation and Chaos, 2005, 15(10):3367-3375
    [186] U. Parlitz, L. Junge, L. Kocarev. Synchronization-based parameter estimation from time series. Physical Review E, 1996, 54(6):6253-6259
    [187] D. Yu, A. Wu. Comment on "Estimating Model Parameters from Time Series by Autosynchronization". Physical Review Letters, 2005, 94(21):219401
    [188] G. Heidari-Bateni, C.D. McGillem. A chaotic direct-sequence spread-spectrum communication system. Communications, IEEE Transactions on, 1994, 42(234):1524-1527
    [189] D. Huang. Synchronization-based estimation of all parameters of chaotic systems from time series. Physical Review E, 2004, 69(6):067201
    [190] W. Yu, G. Chen, J. Cao, et al. Parameter identification of dynamical systems from time series. Physical Review E, 2007, 75(6):067201
    [191] D. Huang, G. Xing, D. Wheeler. Multiparameter estimation using only a chaotic time series and its applications. Chaos, 2007, 17(2):023118
    [192] K. Pyragas. Synchronization of coupled time-delay systems: Analytical estimations. Physical Review E, 1998, 58(3):3067-3071
    [193] D. Ghosh, S. Banerjee, A. Chowdhury. Synchronization between variable time-delayed systems and cryptography. Europhysics Letters, 2007, 80:30006
    [194] S. Banerjee, D. Ghosh, A. Ray, et al. Synchronization between two different time-delayed systems and image encryption. Europhysics Letters, 2008, 81:20006
    [195] D. Ghosh, S. Banerjee. Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications. Physical Review E, 2008, 78(5):056211
    [196] D.V. Senthilkumar, J. Kurths, M. Lakshmanan. Stability of synchronization in coupled time-delay systems using Krasovskii-Lyapunov theory. Physical Review E, 2009, 79(6):066208
    [197] N.N. Krasovskii. Stability of motion. Stanford: Stanford University, 1963

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700