用户名: 密码: 验证码:
非线性系统的自适应学习控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
学习控制的目的是在固定的有限时间区间或在一个无限时间上通过重复地直接更新控制输入,从而实现期望的系统性能。学习控制方法一般包括迭代学习控制(ILC)和重复学习控制(RLC),前者是基于压缩映射理论,后者是基于可视为压缩映射理论在无限时间区间延伸的小增益定理。
     通过过引入参数的自适应机制,自适应控制系统在常参数不确定性存在的条件下,能够实现渐近跟踪收敛。然而,至今还没有自适应控制算法可以解决任意快的,非零变化的未知时变参数。当被控系统含有混合参数(时变和时不变参数)不确定性或时变增益系数时,如何充分利用优先的信息,通过自适应控制来设计迭代学习控制和重复学习控制,这是一个崭新的值得研究的课题.
     本文主要从自适应控制的角度来研究迭代学习控制(ILC)和重复学习控制(RLC),基于Lyapunov-like能量函数方法,避免了传统的学习控制的一些缺陷和严格的假设。其主要工作概括如下:
     1.针对一类含有结构不确定性和外部扰动的非线性系统,利用Backstepping方法,线性参数化和参数重构相结合,提出了一种自适应迭代学习控制方法。该方法由微分-差分型自适应律和学习控制律组成,保证对非一致目标的跟踪误差的平方在一个有限区间上的积分渐近收敛于零,克服了传统ILC对目标轨线的限制,可以跟踪非一致目标轨线。通过构造复合能量函数,给出了闭环系统收敛的一个充分条件。
     2.针对含有未知时变控制系数和混合参数的非线性不确定系统,提出了一种自适应迭代学习控制方法。该方法利用改进的Backstepping方法和参数重组技巧相结合,可以处理目标轨线迭代可变的跟踪问题,通过引入微分-差分混合型参数自适应学习律,设计了一种自适应控制策略,使得跟踪误差在一个有限区间上的积分渐近收敛于零,通过构造Lyapunov-like函数,给出了闭环系统收敛的一个充分条件。
     3.针对一类含有时变和时不变未知参数的非线性系统,利用分段积分机制,提出了一种新的自适应重复学习控制方法。该方法结合了反馈线性化,可以处理参数在一个未知紧集内周期性快时变的非线性系统,通过引进微分-差分参数自适应律,设计了一种自适应控制策略,使广义跟踪误差在误差平方范数意义下渐近收敛于零,通过构造Lyapunov函数,给出了闭环系统收敛的一个充分条件。
     4.针对含有时变和时不变未知参数的高阶非线性系统,提出了一种自适应重复学习控制器的设计方案。该方案利用Backstepping方法和分段积分机制相结合,可以处理参数是非零变化的周期性快时变的非线性系统,通过引进周期参数自适应律,设计了一种自适应控制策略,使跟踪误差在误差平方积分范数意义下渐近收敛于零,通过构造Lyapunov泛函,给出了闭环系统收敛的一个充分条件。
     5.针对一类含有未知控制系数和混合参数的非线性不确定系统,设计了一种自适应重复学习控制方案。该方案利用分段积分机制,参数重组技巧和改进的Backstepping方法相结合,可以处理参数在一个未知紧集内周期性快时变的非线性系统的跟踪问题。通过引入微分-差分自适应学习律,设计了一种自适应控制策略,使跟踪误差在误差平方积分范数意义下渐近收敛于零;通过构造Lyapunov泛函,给出了闭环系统收敛的一个充分条件。
     6.针对含有周期时变参数和时不变参数的非线性参数化系统,利用参数重组技巧,提出了一种新的自适应重复学习控制方法。该方法结合反馈线性化,可以处理非线性参数是非零变化的周期性快时变的非线性系统,通过引进微分-差分耦合型参数自适应律,设计了一种自适应控制策略,使广义跟踪误差在误差平方范数意义下渐近收敛于零;通过构造Lyapunov泛函,给出了闭环系统收敛的一个充分条件。结果被推广到一类含有未知时变控制系数和混合参数的非线性参数化系统的自适应学习控制。
     7.针对具有一般形式的非线性参数化系统,提出了一种新的自适应重复学习控制方法。该方法利用系统转换思想,分段积分机制和参数重组技巧相结合,可以处理非线性参数在一个未知紧集内周期性快时变的非线性系统,通过引进微分-差分耦合型参数自适应律,设计了一种自适应控制策略,使广义跟踪误差在误差平方范数意义下渐近收敛于零,通过构造Lyapunov泛函,给出了闭环系统收敛的一个充分条件。
     8.提出了一种自适应学习控制方法,应用于不同混沌系统由于未知的周期时变参数的广义投影同步(GPS)。该方法利用Lyapunov-Krasovskii泛函稳定性理论,构造了微分-差分混合参数学习律和自适应学习控制律,使得两个不同混沌系统的状态误差在一个周期区间上平方范数的积分意义下渐近同步。方案成功地应用于Lorenz系统和Chen系统的广义投影同步,而且,数值仿真结果验证了所提方案的有效性。
Learning control aims at achieving the desired system performance through directly updating the control input, either repeatedly over a fixed finite time interval, or repetitively over an infinite time interval periodicity.Learning control approaches can be in general classified into iterative learning control(ILC) and repetitive learning control(RLC). The former is based on contraction mapping theory, and the latter is based on the small gain theorem which can be viewed as the extension of contraction mapping theory to the infinite time interval.
     By introducing a parametric adaptation mechanism, the adaptive control system is able to achieve asymptotic tracking convergence in the presence of constant parametric uncertainties. However, no adaptive control algorithms developed hitherto can solve unknown parameters with arbitrarily fast and non-vanishing variations.When the plant has mixed parametric(time-varying and time-invariant parameters) uncertainties or the time-varying gain coefficient, how to make full use of the prior information and design ILC and RLC by adaptive control, have become a new subject worthwhile to research.
     This dissertation considers the ILC and RLC from an adaptive control viewpoint, based on the Lyapunov-like energy function approaches, which avoids some drawbacks and restricted assumptions of traditional learning control. The main contributions included in the dissertation are summarized as follows.
     1. A novel adaptive iterative learning control approach is proposed for high-order nonlinear systems with structure uncertainties and external distureances, by combining the Backstepping method, the linearly parametrized with the parameter regrouping technique. The approach consisted of a differential-deference type updating law and a learning control law, can deal with the non-uniform trajectory tracking problem,which avoids the restricted on the tracking trajectory in the traditional ILC. A sufficient condition of tracking error converging to zero in the means of mean-square on the finite interval is also given by constructing a novel composite energy function.
     2. An adaptive iterative learning control of nonlinear systems with mixed-type parameters and unknown time-varying control coefficients is developed by combining the modifying Backstepping approach with the parameter regrouping technique, which can handle the iteration-varying trajectory tracking problem. A differential-difference type adaptive law and an adaptive iterative learning controller are constructed to ensure the asymptotic convergence of tracking error in the sense of square error norm on the finite interval, by introducing a Lyapunov-like function, a sufficient condition of the convergence of the method is also given.
     3. Combining the pointwise integral mechanism with the feedback linearization approach, a novel adaptive repetitive learning control for nonlinear systems with time-varying and time-invariant parameters is proposed. It can be applied to the time-varying parametric uncertainty systems with unknown compact set, rapid time-varying, periodic and where the prior knowledge is the periodicity only. A differential-difference adaptive law and an adaptive repetitive learning control are constructed to ensure the asymptotic convergence of the extended tracking error in the sense of square error norm. Also, a sufficient condition of the convergence of the method is given.
     4. A design approach to the adaptive repetitive learning controller is proposed for a class of nonlinear systems with time-varying and time-invariant parameters by combining the Backstepping technique with the pointwise integral mechanism. It can be applied in the time-varying parametric uncertainty systems with unknown compact set, rapid time-varying, periodic and only the prior knowledge is the periodicity. A periodic mixed adaptive law and an adaptive control law are constructed to ensure the asymptotic convergence of the tracking error in the sense of square error norm. And a sufficient condition of the convergence of the method is also given.
     5. Combining the pointwise integral mechanism, the parameter regrouping technique with the modifying Backstepping approach, a novel adaptive repetitive learning control for high-order nonlinear systems with unknown control coefficients and mixed parameters is proposed. It can be applied to the time-varying parametric uncertainty systems with unknown compact set, rapid time-varying, periodic and where the prior knowledge is the periodicity only. A differential-difference mixed-type adaptive law and an adaptive repetitive learning control are constructed to ensure the asymptotic convergence of the tracking error in the sense of square error norm. Also, a sufficient condition of the convergence of the method is given.
     6. A design approach to the adaptive repetitive learning controller is proposed for a class of nonlinearly parameterized systems with time-varying and time-invariant parameters by combining the parameter regrouping technique with the feedback linearization approach, It can be applied to the time-varying parametric uncertainty systems with rapid time-varying, periodic and where the prior knowledge is the periodicity only. A differential-difference coupled-type adaptive law and an adaptive repetitive learning control are constructed to ensure the asymptotic convergence of the extended tracking error in the sense of square error norm. Also, a sufficient condition of the convergence of the method is also given. The results are extended to a class of high-order nonlinearly parameterized systems with unknown time-varying control coefficients and mixed parameters.
     7. A novel adaptive repetitive learning control for nonlinearly parameterized systems with unknown control coefficients and mixed parameters is proposed by combining the system replacement technique, the pointwise integral mechanism with the parameter regrouping approach, It can be applied to the time-varying parametric uncertainty systems with rapid time-varying, periodic and where the prior knowledge is the periodicity only. A differential-difference coupled-type adaptive law and an adaptive repetitive learning control are constructed to ensure the asymptotic convergence of the tracking error in the sense of square error norm. Also, a sufficient condition of the convergence of the method is given.
     8. The problem of a learning control approach is applied to the generalized projective synchronization of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov-Krasovskii functional stability theory, a differential-difference mixed-type parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronized. The scheme is successfully applied to the generalized projective synchronization between Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme.
引文
[1] Isidori A. Nonlinear control systems [M]. London: Springer, 1989.
    [2] Khalil H K. Nonlinear systems [M].Third Edition, London: Prentice- Hall, 2002.
    [3] Marino R, Tomei P. Nonlinear control design: Geometric, adaptive and robust [M]. London: Prentice-Hall, 1995.
    [4] Slotine J E, Li W P. Applied Nonlinear Control [M].Pearson Education, 1991.
    [5] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and adaptive control design [M].New York: Wiley, 1995.
    [6] Goodwin G. C and Sin K S. Adaptive filtering prediction and control [M].Englewood Cliffs, NJ: Prentice-Hall, Inc, 07632. 1984.
    [7] Benert S. A brinef history automatic control [J]. IEEE Control Systems Magazine, 1996,16(3):17-25.
    [8]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社, 2002.
    [9]关新平,范正平,陈彩莲等.混沌控制及其在保密通信中的应用[M].北京:国防工业出版社, 2002.
    [10]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社, 1990.
    [11] Narendra K S, Annaswamy A M. Stable Adaptive Systems [M]. Upper Saddle River, NJ: Prentice-Hall, 1989.
    [12]孙明轩,黄宝健.迭代学习控制[M].北京:国防工业出版社, 1999.
    [13] Wang L X. Adaptive fuzzy systems and control: Design and stability analysis [M]. Englewood Cliff: Prentice Hall, 1994.
    [14] Ge S S, Hang C C, Lee T.H, etc. Stable Adaptive Neural Network Control [M]. Boston, Kluwer Academic, 2001.
    [15] Sastry S S, Boston M. Adaptive Control: Stability, Convergence and Robustness [M]. Upper Saddle River, NJ: Prentice-Hall, 1989.
    [16] Ioannou P A, Sun J. Robust Adaptive Control [M]. Upper Saddle River, NJ: Prentice-Hall, 1996.
    [17]陈新海,李言俊,周军.自适应控制及应用[M].西安:西北工业大学出版社, 1995.
    [18] Kokotovic K P V. Foundations of Adaptive Control [M]. New York: Springer-Verlag, 1991.
    [19] Ge S S , Li G Y, Lee T H. Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems [J]. Automatica, 2003, 39(5): 807-819.
    [20] Marino R and Tomei P. Adaptive control of linear time-varying systems [J].Automatica, 2003.39(5):651-659.
    [21] Kanellakopoulos I. A discrete-time adaptive nonlinear system [J]. IEEE Transactions on Automatic Control, 1994, 39(11): 2362-2365.
    [22] Ge S S, Hong F, Lee T H. Adaptive neural network control of nonlinear systems with unknown time delays [J]. IEEE Transactions on Automatic Control, 2003, 48(11): 2004-2010.
    [23] Ge S S, Hong F, Lee T H. Robust adaptive control of nonlinear systems with unknown time delays [J]. Automatica, 2005, 41(7): 1181-1190.
    [24] Hong F, Ge S S, Lee T H. Practical adaptive neural control of nonlinear systems with unknown time delays [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2005, 35(4): 849-854.
    [25] Zhou S, Feng G, Feng C B. Robust control for a class of uncertain nonlinear systems: adaptive fuzzy approach based on backstepping [J]. Fuzzy Sets and Systems, 2005, 151(1): 1-20.
    [26] Yang Y, Zhou C. Robust adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems via small-gain approach [J]. Information Sciences, 2005, 170(2): 211-234.
    [27] Middleton R.H and Goodwin G.G.C. Adaptive control of time-varying linear systems [J].IEEE Transactions Automatica Control, 1988, 33(2): 150-155.
    [28] Zhou J, Er M J, Zurada J M. Adaptive neural network control of uncertain nonlinear systems with nonsmooth actuator nonlinearities [J]. Neurocomputing , 2007, 70(6): 1062-1070.
    [29] Hsu C F, Lin C M, Lee T T. Wavelet adaptive backstepping control for a class of nonlinear systems [J]. IEEE Transactions on Neural Networks, 2006, 17(5): 1175-1183.
    [30] Zhang J, Ge S S, Lee T H. Output feedback control of a class of discrete MIMO nonlinear systems with triangular form inputs [J]. IEEE Transactions on Neural Networks, 2005, 16(6): 1491-1503.
    [31] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of Adaptive controllers for feedback linearizables systems [J]. IEEE Transactions on Automatic Control, 1991, 36(11): 1241-1253.
    [32] Ge S S, Wang J. Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems [J]. IEEE Transactions on Neural Networks, 2002, 13(6): 1409-1419.
    [33] Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems [J]. IEEE Transactions on Automatic Control, 1996, 41(3): 447-451.
    [34] Wang C. An ISS-modular approach for adaptive neural control of pure-feedback systems [J].Automatica, 2006, 42(5): 723-731.
    [35] Polycarpou M M, Mears M J. Stable adaptive tracking of uncertain systems using nonlinearly parameterized on-line approximators [J]. International Journal of Control, 1998, 70(3): 363-384.
    [36] Jiang Z P, Praly L. Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties [J]. Automatica, 1998, 34(7): 825-840.
    [37] Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design [J]. Automatica, 1995, 32(3): 423-427.
    [38] Krstic M, Kanellakopoulos I, Kokotovic P V. Adaptive nonlinear control without over- parameterization [J]. Systems & Control Letters, 1992, 19(3): 177-185.
    [39] Ge S S. Advanced control techniques of robtic manipulators [C]. Proceedings of the 1998 American Control Conference, 1998, 2185-2199.
    [40] Marino R, Tomei P. Global adaptive output-feedback control of nonlinear system, Part I:Linear parameterization [J].IEEE Transactions on Automatic Control, 1993, 38(1): 17-32.
    [41] Taylor D G, Kokotovic P V, Marino R, etc. Adaptive regulation of nonlinear systems with unmodeled dynamics [J]. IEEE Transactions on Automatic Control, 1989, 34(4): 405-412.
    [42] Wang D, Huang J. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form [J]. IEEE Transactions on Neural Networks, 2005, 16(1): 195-202.
    [43] Choi J Y, Farrell J A. Adaptive observer backstepping control using neural networks [J]. IEEE Transactions on Neural Networks, 2001, 12(5): 1103-1112.
    [44] Marino R, Tomei P. Global adaptive output-feedback control of nonlinear system, Part II: nonlinear parameterization [J]. IEEE Transactions on Automatic Control, 1993, 38(1):33-48.
    [45] Boskovic J D. Adaptive Control of a Class of Nonlinearly Parameterized Plant [J]. IEEE Transactions on Automatic Control, 1998, 43(7): 930-934.
    [46] Annaswamy A M, Skantze F P, Loh A P. Adaptive control of continuous time system with convex/concave parameterization [J]. Automatica, 1998, 34(1): 33-49.
    [47] Zhang T, Ge S S,Hang C C. etc. Adaptive Control of First-Order Systems with Nonlinearly Parameterization [J]. IEEE Transactions on Automatic Control, 2000, 45(8): 1512-1516.
    [48] Ding Z T. Adaptive Control of Triangular Systems With Nonlinear Parameterizations [J]. IEEE Transactions on Automatic Control, 2001, 46(12):1963-1968.
    [49] Han H G, Su C Y, Stepanenko Y. Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Paramctcrized Fuzzy Approximators [J].IEEE Transactions On Fuzzy Systems, 2001, 9(2):315-323.
    [50] Lin W, Qian C. Adaptive control of nonlinearly parameterized systems: The smooth feedback case [J]. IEEE Transactions on Automatic Control, 2002, 47(8): 1249-1265.
    [51] Lin W, Qian C. Adaptive control of nonlinearly parameterized systems: A nonsmooth feedback framework [J]. IEEE Transactions on Automatic Control, 2002, 47(5): 757-774.
    [52] Ye X D. Global adaptive control of nonlinearly parametrized systems [J]. IEEE Transactions on Automatic Control, 2003, 48(1): 169-173.
    [53] Ye X D. Global Switching adaptive output-feedback control of nonlinearly parametrized systems [J]. Automatica, 2005, 41(6): 983-989.
    [54] Qu Z H, Hull R A, Wang J. Global Stabilizing Adaptive Control Design for Nonlinearly Parameterized Systems [J]. IEEE Transactions on Automatic Control, 2006, 51(6):1073-1079.
    [55] Netto M, Annaswamy A M, Mammar S, etc. A new adaptive control algorithm for systems with multilinear parameterization [C]. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA, 2006, 4100-4105.
    [56] Sklansky J. Learning systems for automatic control [J]. IEEE Transactions on Automatic Control 1966, 11(1): 6-19.
    [57] Uchiyama M. Formulation of high-speed motion pattern of a mechanical arm by trial [J]. Transactions of the Society of Instrumentation and Control Engineers 1978, 14(6): 706-712.
    [58] Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning [J]. Journal of Robotic Systems 1984, 1(2): 123-140.
    [59] Xu J-X, Tan Y. Linear and Nonlinear Iterative Learning Control [M]. Berlin Heidelberg, Springer-Verlag , 2003.
    [60] Bien Z, Xu J-X. Iterative Learning Control: Analysis, Design, Integration and Applications [M]. Kluwer Academic Publishers, 1998.
    [61] Chen Y Q, Wen C Y. Iterative Learning Control: Convergence, Robustness and Applications. [M]. London, Springer-Verleg, 1999.
    [62] Moore K L. Iterative Learning Control for Deterministic Systems [M]. London, Springer-Verlag, 1993.
    [63]林辉,王林.迭代学习控制理论[M].西安:西北工业大学出版社, 1998.
    [64]谢胜利,田森平,谢振东.迭代学习控制的理论与应用[M].北京:科学出版社, 2005.
    [65] Ahn H S, Chen Y Q, Moore K L. Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems [M]. Communications and Control Engineering, London, Springer-Verlag, 2007.
    [66] Xu J-X, Panda S K, Lee T H. Real-time Iterative Learning Control , Design and Applications [M]. Advances in Industrial Control, London, Springer-Verlag, 2009.
    [67] Rogers E, Galkowski K, Owens D H. Control Systems Theory and Applications for Linear Repetitive Processes [M]. Berlin Heidelberg, Springer-Verlag, 2007.
    [68] Xu J-X (ed). Asian Journal of Control [J]. 2002, 4(1).
    [69] Moore K L, Xu J-X (ed). Special issue on iterative learning control [J]. International Journal of Control, 2000, 73(10).
    [70]谢振东,谢胜利,刘永清.非线性系统学习控制理论的发展与展望[J].控制理论与应用,2000, 17(1): 4-8.
    [71]许建新,侯忠生.学习控制的现状与展望[J].自动化学报,2005, 31(6): 943-955.
    [72]张丽萍,杨富文.迭代学习控制理论的发展动态[J].信息与控制,2002, 31(5): 425-429.
    [73] French M, Munde G, Rogers E, etc. Recent developments in adaptive iterative learning control [C]. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, 1999, 264-269.
    [74]方忠,韩正之,陈彭年.迭代学习控制新进展[J].控制理论与应用,2002, 19(2): 161-166.
    [75]李仁俊,韩正之.迭代学习控制综述[J].控制与决策,2005, 20(9): 961-966.
    [76] Bristow D A, Tharayil M, Alleyne A G. A survey of iterative learning control [J]. IEEE Control Systems Magazine, 2006, 26(3):96-114.
    [77] Ahn H S, Chen Y Q, Moore K L. Iterative Learning Control: Brief Survey and Categorization [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C, Applications and Reviews, 2007, 37(6): 1099-1121.
    [78] Xu J-X. Recent Advances in Iterative Learning Control [J].自动化学报,2005, 31(1): 132-142.
    [79] Owens D H, H?t?nen J. Iterative learning control-An optimization paradigm [J].Annual Reviews in Control, 2005, 29(1): 57-70.
    [80] Saab S S. Selection of the learning gain matrix of an iterative learning control algorithm in presence of measurement noise [J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1761-1774.
    [81] Xu J-X, Ying Tan. On the P-type and Newton-type ILC schemes for dynamic systems with non-affine-in-input factors [J]. Automatica, 2002, 38(7): 1237-1242.
    [82] Saab S S. Stochastic P-type/D-type iterative learning control algorithms [J]. International Journal of Control, 2003, 76(2): 139-148.
    [83] Sulikowski B, Galkowski K, Rogers E. PI output feedback control of differential linear repetitive processes [J]. Automatica, 2008, 44(5): 1442-1445.
    [84]宋召青,毛剑琴,戴邵武.未知相对度非线性系统的一阶D型迭代学习控制[J].自动化学报,2005, 31(4): 555-561.
    [85] Sun M X, Huang B, Zhang X. PD-type iterative learning control for a class of uncertain time-delay systems with based initial state [J]. Control Theory and Applications, 1998, 15(6): 853-858.
    [86] Shi Z. Iterative learning control method for nonlinear discrete-time systems [J]. Control Theory and Applications, 1998, 15(3): 327-332.
    [87] Park K H, Bine Z, Hwang D H. A study on the robustness of a PID-type iterative learning controller against initial state error [J]. International Journal of Systems Science, 1999, 30(1): 49-59.
    [88] Tan K K, Zhao S, Xu J-X. Online automatic tuning of a proportional integral derivative controller based on an iterative learning control approach [J]. IET Control Theory and Applications, 2007, 1(1): 90-96.
    [89] Fang X, Chen P, Shao J. Optimal higher-order iterative learning control of discrete-time linear systems [J]. IEE Proceedings-Control Theory and Applications, 2005, 152(1): 43-48.
    [90] Gunnarsson S, Norrl?f M. On the disturbance properties of high order iterative learningcontrol algorithms [J]. Automatica, 2006, 42(11): 2031-2034.
    [91]侯忠生,晏静文.带有迭代学习前馈的快速路无模型自适应入口匝道控制[J].自动化学报,2009, 35(5): 588-595.
    [92]侯忠生,许建新.一种新的非线性离散时间系统迭代学习控制的前馈-反馈机制[J].自动化学报,2007, 33(3): 323-326.
    [93] Arimoto S, Naniwa T, Suzuki H. Selective learning with a forgetting factor for robotic motion control [C]. Proceedings of the IEEE International conference Robotics and Automation, Sacramento, CA, 1991, 728–733.
    [94] Wu H S. Decentralized iterative learning control for a class of large scale interconnected systems [J]. Journal of Mathematical Analysis and Applications, 2007, 327(1): 233-245.
    [95] Ruan X E, Bien Z, Park K-H. Decentralized Iterative Learning Control to Large-Scale Industrial Processes for Nonrepetitive Trajectory Tracking [J].IEEE Transactions on Systems,Man, and Cybernetics-Part A, 2008, 38(1): 238-252.
    [96]阮小娥,陈凤敏,万百五.非线性大系统的跟踪具有不同幅值轨线的分散型迭代学习控制器[J].自动化学报,2008, 34(4): 426-432.
    [97] Meng D, Jia Y, Du J, etc. Feedback approach to design fast iterative learning controller for a class of time-delay systems [J]. IET Control Theory and Applications, 2009, 3(2): 225-238.
    [98] Li X-D, Chow T W S, Ho J K L. Iterative learning control for a class of nonlinear discrete-time systems with multiple input delays [J].International Journal of Systems Science, 2008, 39(4): 361-369.
    [99] Park K H, Bien Z, Huang D H. Design of an iterative learning control for a class of linear dynamic systems with time delay [J]. IEE Proceedings-Control Theory and Applications,1998, 145(6): 507-512.
    [100] Saab S S. A stochastic iterative learning control algorithm with application to an induction motor [J]. International Journal of Control, 2004, 77(2): 144-163.
    [101] Chen H-F, Fang H-T. Output tracking for nonlinear stochastic systems by iterative learning control [J]. IEEE Transactions on Automatic Control, 2004, 49(4): 583-588.
    [102] Yang S Y, Qu Z H, Fan X P, etc. Novel iterative learning controls for linear discrete-time systems based on a performance index over iterations [J].Automatica, 2008, 44(5): 1366-1372.
    [103] Saab S S. A discrete-time learning control algorithm for a class of linear time-invariantsystems [J]. IEEE Transactions on Automatic Control, 1995, 40 (6): 1138-1142.
    [104]朴凤贤,张庆灵.线性广义系统的迭代学习控制[J].控制与决策,2009,22(3): 349-351+356.
    [105] Tayebi A, Xu J-X. Observer-based iterative learning control for a class of time-varying nonlinear systems [J].IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, 2003, 50(3): 452-455.
    [106] Xu J-X, Xu J, Lee T H. Iterative learning control for systems with input deadzone [J]. IEEE Transactions on Automatic Control, 2005, 50(9): 1455-1459.
    [107] Ye Y Q, Tayebi A, Liu X P. All-pass filtering in iterative learning control [J].Automatica, 2009, 45(1): 257-264.
    [108] Chi R H, Hou Z S. Dual-stage Optimal Iterative Learning Control for Nonlinear Non-affine Discrete-time Systems [J].Acta Automatica Sinica, 2007, 33(10): 1061-1065.
    [109] Moore K L, Ahn H-S, Chen Y Q. Iteration domain H -optimal iterative learning controller Design [J]. International Journal of Robust and Nonlinear Control 2008, 18(10): 1001-1017.
    [110] Sun M X,Wang D W. Anticipatory iterative learning control for nonlinear systems with arbitrary relative degree [J]. IEEE Transactions on Automatic Control, 2001, 46(5): 783- 788.
    [111] Zhang R D, Xue A, Wang J H, etc. Neural network based iterative learning predictive control design for mechatronic systems with isolated nonlinearity [J].Journal of Process Control, 2009, 19(1): 68-74.
    [112]张君海,石成英,林辉.基于向量图分析的一种迭代学习控制算法及其鲁棒性[J].控制理论与应用,2007,24(1): 155-159.
    [113]谢胜利,田森平,谢振东.基于向量图分析的迭代学习控制非线性算法[J].控制理论与应用,2004,21(6): 951-955.
    [114] Zhang B, Wang D W, Ye Y Q. Cutoff-Frequency Phase-In Iterative Learning Control [J].IEEE Transactions on Control Systems Technology, 2009, 17(3): 681-687.
    [115] Geng Z, Carrill R, Xies J. Two-dimensional model and algorithm analysis for a class of Iterative learning control systems [J]. International Journal of Control, 1990, 52(4):833-862.
    [116] Kurek J E, Zaremba M B. Iterative learning control synthesis based on 2 -D system theory [J].IEEE Transactions on Automatic Control, 1993, 38(1): l2l-125.
    [117] Fang Y, Chow T W S. 2-D analysis for iterative learning controller for discrete-time systems with variable initial conditions [J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2003, 50(5): 722-727.
    [118] Li X-D, Chow T W S, Ho J K L. 2-D system theory based iterative learning control for linear continuous systems with time delays [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(7):1421-1430.
    [119] Galkowski K, Paszke W, Rogers E, etc. Stability and control of Diferential linear repetitive processes using an LMI Seting [J]. IEEE Transactions on Circuits And Systems-II:Analog and Digital Signal Processing,2003, 150(9): 662-666.
    [120]黄彧伟,张国山.受扰动2-D线性时变系统的迭代学习控制[J].控制理论与应用,2007, 24(6): 999-1004.
    [121] Li X-D, Ho J K L, Chow T W S. Iterative learning control for linear time-variant discrete systems based on 2-D system theory [J]. IEE Proceedings-Control Theory and Applications, 2005, 152(1):13-18.
    [122] Ham C, Qu Z H, Kaloust J. Nonlinear learning control for a class of nonlinear systems [J].Automatica, 2001,l(37): 419-428.
    [123] French M, Rogers E. Non-linear iterative learning by an adaptive technique [J]. International Journal of Control, 2000, 73(10): 840-850.
    [124] Owens D H. Universal iterative learning control using adaptive high-gain feedback [J]. International Journal ofAdaptive control an dsignal processing, 1993, 7(5): 383-388.
    [125] Owens D H, munde G. Universal Adaptive iterative learning control [C]. Proceedings of the 37th IEEE conference on Decision and Control,Tampa,Florida USA ,1998,181-185.
    [126] Xu J-X, Viswanathan B, Adaptive robust iterative learning control with dead zone scheme [J].Automatica, 2000, 36(1): 91-99.
    [127] Park B H, Kuc T-Y, Lee J-S. Adaptive learning control of uncertain robotic systems [J].International Journal of Control, 1996, 65(5): 725-744.
    [128] Chien C J, Fu L-C. An Iterative Learning Control of Nonlinear Systems Using Neural Network Design [J]. Asian Journal of Control 2002, 4(1): 21-29.
    [129] Wang Y C, Chien C J, Teng C-C. Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network [J].IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2004, 34(3): 1348-1359.
    [130] Chien C-J, Hsu C-T, Yao C-Y. Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors [J]. IEEE Transactions on Fuzzy Systems 2004,12(5): 724-732.
    [131] Chien C-J. A sampled-data iterative learning control using fuzzy network design [J]. International Journal of Control, 2000, 73(10): 902-913.
    [132] Wang Y-C, Chien C-J, Lee D-T. A hybrid adaptive scheme of fuzzy-neural iterative learning controller for nonlinear dynamic systems [J]. International Journal of Fuzzy Systems, 2005, 7(4):147-157.
    [133] Xu J-X, Xu J. A new fuzzy logic learning control scheme for repetitive trajectory tracking problems [J]. Fuzzy Sets and Systems, 2003, 133(1): 57-75.
    [134]杨小军,李俊民.基于神经网络的鲁棒自适应滑模迭代学习控制[J].西安电子科技大学学报,2002, 29(3): 382-386.
    [135]杨小军,李俊民.一类未知非线性系统的智能迭代学习控制[J].控制与决策,2002, 17(3): 360-363.
    [136] Jiang P, Unbehauen R. Iterative learning Neural Network control for nonlinear system trajectory tracking [C]. Proceedings-European Symposium on Artificial NNs, Bruges, 2000, 153-158.
    [137] Amakita M Y, Ueno M, Sadahiro T. Trajectory tracking controlby an adaptive iterative learning control with artificial neural networks [C]. Proceeding of the 2001 American control conference, 2001, 1253-1255.
    [138]朱胜,孙明轩.具有未知死区输入非线性系统的迭代学习控制[J].控制与决策,2009, 24(1): 96-100.
    [139] Kuc T-Y, Han W-Q. An adaptive PID learning control of robot manipulators [J].Automatica, 2000, 36(5): 717-725.
    [140] Gorinevsky D. An approach to parametric nonlinear least square optimization and application to task-level learning control [J]. IEEE Transactions on Automatic Control, 1997, 42(7): 912-927.
    [141] Cao W-J, & Xu J-X. On functional approximation of the equivalent control using learning variable structure control [J]. IEEE Transactions on Automatic Control, 2002, 47(5): 824-830.
    [142] Xu J-X, Cao W-J. Learning variable structure control approaches for repeatable tracking control tasks [J].Automatica, 2001, 37(7): 997-1006.
    [143] Jeon D, Tomizuka M. Learning hybrid force and position control of robot manipulators [J].IEEE Journal of Robotics and Automation ,1993,9(4): 423-431.
    [144] Xu J-X, Badrinath V, Qu Z H. Robust learning control for robotic manipulators with an extension to a class of non-linear systems [J]. International Journal of Control, 2000, 73(10): 858-870.
    [145] Xu J-X, Qu Z. H. Robust iterative learning control for a class of nonlinear systems [J]. Automatica, 1998, 34(8): 983-988.
    [146] Seo W G, Park B H, Lee J S. Intelligent learning control for a class of nonlinear dynamic systems [J].IEE Proceedings-Control Theory and Applications, 1998, 146(2): 165-170.
    [147] Yamakita M, Ueno M, Sadahior T. Trajectory tracking control by an adaptive iterative learning control with artificial neural networks [C]. Proceeding of the 2001 American control conference, 2001, 1253-1255.
    [148]陈华东,将平.基于未知高频增益的非线性系统自适应迭代学习控制[J].控制与决策,2002, 17(11): 715-718.
    [149]陈华东,将平.基于未知控制增益的非线性系统自适应迭代反馈控制[J].控制理论与应用,2003,20(5): 691-694.
    [150] Choi J-Y, Lee J-S. Adaptive iterative learning control of uncertain robotic systems [J]. IEE Proceedings-Control Theory and Applications, 2000, 147(2): 217-223.
    [151] Ham C, Qu Z H, Kaloust J. A new framework of learning control for a class of nonlinear systems [C]. Proceeding of the 1995 American control conference, 1995, 3024-3028.
    [152] Xu J-X, Tan Y. A composite energy function based learning control approach for nonlinear systems with time-varying parametric uncertainties [J]. IEEE Transactions on Automatic Control, 2002, 47(99): 1940-1945.
    [153] Xu J-X, Tan Y. A suboptimal learning control scheme for nonlinear systems with time-varying parametric uncertainties [J]. Optimal Control Application and Methods, 2001, 22(3):111-126.
    [154] Xu J-X, Tan Y, Lee T-H. Iterative learning control design based on composite energy function with input saturation [J].Automatica 2004, 40(8): 1371-1377.
    [155] Xu J-X, Yan R. Iterative learning control design without a priori knowledge of the control direction [J]. Automatica 2004, 40(10): 1803-1809.
    [156] Xu J-X, Xu J. On iterative learning for different tracking tasks in the presence of time-varying uncertaintie [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B,2004, 34(1): 589-597.
    [157]杨胜跃,罗安,樊晓平.不确定性机器人系统自适应鲁棒迭代学习控制(英文) [J].控制理论与应用,2003, 20(5): 707-712.
    [158] Tayebi A. Adaptive iterative learning control for robot manipulators [J].Automatica, 2004, 40(7): 1195-1203.
    [159] Er M J, Xu J.Iterative learning control for systems with both parametric and non-parametric uncertainties [C]. Control, Automation, Robotics and Vision Conference, 2004, 30-35.
    [160] Chein C-J. A New Adaptive Fuzzy Iterative learning Control for Nonlinear Systems with Repeatable Control Tasks [C].Proceedings of the 44th IEEE conference on Decision and Control and the European Control Conference Sevillo,Spain,2005,7834-7839.
    [161] Xu J, Er M J. A Kind of Learning Gain Design Method for Energy-Function -Based Iterative Learning Control [C]. Proceedings of the 2005 IEEE International Symposium on Mediterrean Conference on Control and Automatic, 2005, 1229-1233.
    [162]张冬梅,孙明轩,俞立.基于观测器跟踪非一致轨迹的迭代学习控制器设计[J].控制理论与应用,2006,23(5): 795-799.
    [163]孙明轩,何熊熊,俞立.迭代学习控制器设计:一种有限时间死区方法[J].控制理论与应用,2007,24(3): 349-355.
    [164] Quan Q, Wang X H, Cai K Y. Higher-order Adaptive Iterative Control for Uncertain Robot Manipulators [C]. 26th Chinese Control Conference (CCC), 2007, 825-829.
    [165] Tayebi A, Chien C-J. A Unified Adaptive Iterative Learning Control Framework for Uncertain Nonlinear Systems [J]. IEEE Transactions on Automatic Control, 2007, 52(10): 1907-1913.
    [166] Tayebi A. Analysis of Two Particular Iterative Learning Control Schemes In Frequency and Time Domains [J]. Automatica, 2007, 43(9): 1565-1572.
    [167]郭毓,申晓宁,胡维礼.一类线性时变系统组合自适应迭代学习辨识[J].控制与决策, 2008,23(8): 637-642+646.
    [168] Chien C-J, Tayebi A. Further results on adaptive iterative learning control of robot manipulators [J].Automatica, 2008, 44(3): 830-837.
    [169] Chi R H, Hou Z S, Sui S L, etc. A New Adaptive Iterative Learning Control Motivated By Discrete-Time Adaptive Control [J].International Journal of Innovative Computing, Information and Control, 2008,4(6): 1267-1274.
    [170]池荣虎,隋树林,侯忠生.非线性时变参数不确定系统的自适应迭代学习控制[J].自动化学报,2008, 34(7): 805-808.
    [171] Chi R H, Hou Z S, Xu J-X. A Discrete-Time Adaptive ILC for Systems with Iteration-Varying Trajectory and Random Initial Condition [J]. Automatica, 2008, 44(8): 2207-2213.
    [172]王大庆,丁崇生,葛思华.渐变类周期轨迹的迭代学习控制研究.[J].机械工程学报,2002, 38(1): 42-46.
    [173] Saab S S, Vogt W G , Mickle M H. Learning control algorithms for tracking slowly varying trajectories [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B,1997, 27(4): 657-670.
    [174] Moore K L, Chen Y-Q. On monotonic convergence of high order iterative learning update laws [C]. Proceedings of the 15th Triennial World Congress, Barcelona, Spain, 2002, 1-6.
    [175] Tayebi A. Model reference adaptive iterative learning control for linear systems [J]. International Journal of Adaptive Control and Signal Processing 2006, 20(9): 475-489.
    [176] Chien C-J. A Combined Adaptive Law for Fuzzy Iterative Learning Control of Nonlinear Systems With Varying Control Tasks [J]. IEEE Transactions on Fuzzy Systems, 2008, 16(1): 40-51.
    [177] Madady A. A self-tuning iterative learning controller for time variant systems [J].Asian Journal of Control 2008, 10(6): 666-677.
    [178] Xu J-X, Zhu T. Dual-scale direct learning of trajectory tracking for a class of nonlinear uncertain systems [J] IEEE Transactions on Automatic Control, 1999, 44(10): 1884-1888.
    [179] Xu J-X, Viswanathan B. Recursive direct learning of control efforts for trajectories with different magnitude scales [J]. Asian Journal of Control, 2001, 4(1): 49-59.
    [180] Lee H S, Bien Z. Study of robustness of iterative learning control with non-zero initial error [J]. International Journal of Control, 1996, 64(3): 345-359.
    [181] Park K H, Bien Z, Hwang D H. A study on the robustness of a PID-type iterative learning controller against initial state error [J]. International Journal of Systems Science, 1999, 30(1): 49-59.
    [182] Sun M X, Wang D. Iterative learning control with initial rectifying action [J]. Automatica, 2002, 38(7): 1177-1182.
    [183]孙明轩.初态学习下的迭代学习控制[J].控制与决策,2007,22(8): 848-852.
    [184] Xu J-X, Yan R. On initial conditions in iterative learning control [J]. IEEE Transactions on Automatic Control, 2005, 50(9): 1349-1354.
    [185] Inoue T, Iwai S, Nakano M. High accuracy control of a proton synchrotron magnet power supply [C]. Proceedings of the 8th IFAC World Congress, Oxford Pergamon, 1981, 3137- 3142.
    [186] Hara S, Yamamoto Y, Omata T, etc. Repetitive control system: a new type servo system for periodic exogenous signals [J]. IEEE Transactions on Automatic Control, 1988, 33(7): 659-668.
    [187]李翠艳,庄显义.重复学习控制及其在一类非线性系统中的应用[J].控制与决策,2005, 20(8): 921-925.
    [188]吴敏,陈诗桓,佘锦华等.基于二维混合模型的改进型重复控制系统保性能设计方法[J].自动化学报,2009, 35(1): 54-64.
    [189]吴敏,兰永红,佘锦华.基于二维混合模型的重复控制系统设计新方法[J].自动化学报,2008, 34(9): 1208-1214.
    [190] Sun M X, Wang Y Y, Wang D.Variable-structure repetitive control: a discrete-time strategy [J]. IEEE Transactions on Industrial Electronics, 2005, 52(2): 610-616.
    [191] Kasac J,Novakovic B, Majetic D, etc.Passive Finite-Dimensional Repetitive Control of Robot Manipulators [J].IEEE Transactions on Control Systems Technology, 2008, 16(3): 570-576.
    [192] Dixon W E, Zergeroglu E, Dawson D M, etc. Repetitive learning control: A Lyapunov-based approach [J].IEEE Transactions on Systems, Man, Cybernetics-Part B, 2002, 32(4): 538-545.
    [193] Tian Y-P, Yu X H. Robust learning control for a class of nonlinear systems with periodic and aperiodic uncertainties [J]. Automatica, 2003, 39(11): 1957-1966.
    [194] Sun M X, Ge S S. Adaptive repetitive learning control of servo mechanisms [C]. Proceeding of the 5th world congress on intelligent control and Automation, 2004, 1212-1216.
    [195] Xu J-X. A new periodic adaptive control approach for time-varying parameters with known periodicity [J]. IEEE Transactions on Automatic Control, 2004, 49(4): 579-583.
    [196] Xu J-X, Xu J. Observer based learning control for a class of nonlinear systems with time-varying parametric uncertainties [J]. IEEE Transactions on Automatic Control, 2005, 49(2): 275-281.
    [197] Xu J-X, Yan R. On repetitive learning control for periodic tracking tasks [J]. IEEE Transactions on Automatic Control, 2006, 51(11):1842-1848.
    [198] Sun M X, Ge S S, Mareels I M Y. Adaptive repetitive learning control of robotic manipulators without the requirement for initial repositioning [J]. IEEE Transactions on Robotics, 2006, 22(3): 563-568.
    [199]孙云平,刘赟,李俊民.一类二阶时变非线性系统的混合自适应重复学习控制[J].西安电子科技大学学报,2006,33(3): 495-499.
    [200] Liuzzo S, Marino R, Tomei P. Adaptive learning control of linear systems by output error feedback [J].Automatica, 2007, 43(4): 669-676.
    [201] Liuzzo S, Marino R, Tomei P. Adaptive Learning Control of Nonlinear Systems by Output Error Feedback [J]. IEEE Transactions on Automatic Control, 2007, 52(7):1232-1248.
    [202] Liuzzo S, Tomei P. Global adaptive learning control of robotic manipulators by output error feedback [J]. International Journal of Adaptive Control and Signal Processing 2009, 23(1): 97-109.
    [203] Sun M X, He X X, Chen B Y. Repetitive Learning Control for Time-varying Robotic Systems: A Hybrid Learning Scheme [J].Acta Automatica Sinica, 2007, 33(11): 1189-1195.
    [204] Yan R, Er M J, Pan Y-J. Multi-period repetitive learning control for a class of unmatched systems with unknown control direction [C], Proceeding of the 2006 American Control Conference, USA, 2006, 238-143.
    [205] Pan Y-J, Sheng L. Predictor-based repetitive learning control for a class of remote control nonlinear systems [J]. International Journal of Robust and Nonlinear Control 2007, 17(16): 1455-1473.
    [206] Abidi K, Xu J-X.A Discrete-Time Periodic Adaptive Control Approach for Time-Varying Parameters With Known Periodicity [J]. IEEE Transactions on Automatic Control, 2008,53(2):575-581.
    [207] Sun M X, Ge S S. Adaptive repetive control for a class of nonlinearly parametrized systems [J]. IEEE Transactions on Automatic Control, 2006, 51(10): 1684-1688.
    [208] Fang Y, Xiao X, Ma B, etc.Adaptive Learning Control of Complex Uncertain Systems with Nonlinear Parameterization [C].Proceeding of the 2006 American Control Conference Minneapolis, Minneaota, USA,2006, 3385-3390.
    [209]陈为胜,王元亮,李俊民.周期时变时滞非线性参数化系统的自适应学习控制[J].自动化学报,2008, 34(12): 1556-1560.
    [210] Xu J-X, Yan R. Synchronization of chaotic systems via learning control [J]. InternationalJournal of Bifurcation and Chaos, 2005, 15(2): 4035-4041.
    [211] Song Y X, Yu X H, G R Chen, etc. Time delayed repetitive learning control for chaotic systems [J]. International Journal of Bifurcation and Chaos, 2002, 12(5), 1057-1065.
    [212] Chen M Y, Zhou D H, Shang Y. A simple time-delayed method to control chaotic systems[J]. Chaos, Solitons and Fractals, 2004, 22(5):1117-1125.
    [213] Norrlof M. An adaptive iterative learning control algorithm with experiments on an industrial robot [J]. IEEE Transactions on Robotics and Automation 2002, 18(2): 245-251.
    [214] Tayebi A, Abdul S, Zaremba M B, etc.Robust Iterative Learning Control Design: Application to a Robot Manipulator [J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(5): 608-613.
    [215] Cheung J W F, Hung Y S. Robust learning control of a high precision planar parallel manipulator [J]. Mechatronics, 2009, 19(1): 42-55.
    [216] Yen I-Y, Yeh Y-C, Peng Y-H, etc. Application of the continuous no-reset switching iterative learning control on a novel optical scanning system [J]. Mechatronics, 2009, 19(1): 65-75.
    [217] Xu J-X, Lee T-H, Tan Y. Enhancing trajectory tracking for a class of process control problems using iterative learning [J].Engineering Applications of Artificial Intelligence, 2002, 15(1): 53-64.
    [218] Choi J Y, Do H M. A learning approach of wafer temperature control in a rapid thermal processing systems [J].IEEE Transactions on Semiconductor Manufacturing, 2001, 14(1): 1-10.
    [219] Chen Y Q, Moore K L, Yu J, etc. Iterative learning control and repetitive control in hard disk drive industry - A tutorial [J]. International Journal of Adaptive Control and Signal Processing 2008, 22(4): 325-343.
    [220]邵诚,高福荣,杨毅.最优迭代学习控制的鲁棒稳定性及其在注塑机控制中的应用[J].自动化学报,2003, 29(1): 72-79.
    [221]姚仲舒,杨成梧.迭代学习控制在烟叶发酵系统中的应用[J].自动化仪表,2002, 23(12): 41-43.
    [222]吴怀宇,周兆英,熊沈蜀. D-型迭代学习控制及其在FNS肢体运动控制系统中应用[J].控制理论与应用,2001, 18(3): 409-413.
    [223] Hou Z S, Xu J-X, Yan J W. An iterative learning approach for density control of freeway traffic flow via ramp metering [J]. Transportation Research Part C, Emerging Technologies,2008, 16(1): 71-97.
    [224]阮小娥,万百五,高红霞.非线性工业过程控制系统的迭代学习控制与收敛性分析[J].控制理论与应用,2002,19(1): 73-79.
    [225] Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990; 64(8): 821-824.
    [226]姚利娜,高金峰,廖旎焕.实现混沌系统同步的非线性状态观测器方法[J].物理学报,2006, 55(1): 35-41.
    [227]贾飞蕾,徐伟,都林.参数未知的不同阶数混沌系统广义同步及参数估计[J].物理学报,2007, 56(10): 5640-5647.
    [228] Wei D Q, Luo X S, Qin Y H. Random shortcuts induce phase synchronization in complex Chua systems [J]. Chinese Physics B, 2009, 18(6): 2184-2187.
    [229] Park J H. Chaos synchronization of between two different chaotic dynamical systems [J]. Chaos, Solitons and Fractals, 2006, 27(2): 549-554.
    [230] Paula A S D, Savi M A. A multiparameter chaos control method based on OGY approach [J].Chaos, Solitons and Fractals, 2009, 40(3): 1376-1390.
    [231] Cao J, Li H, Ho D. Synchronization criteria of Lur’e systems with time-delay feedback control [J].Chaos, Solitons and Fractals, 2005, 23(4): 1285-1298.
    [232] Yu D C, Xia L H, Wang D Q. An observer based asymptotic trajectory control using a scalar state for chaotic systems [J]. Chinese Physics B, 2006, 15(7): 1454-1459.
    [233] Gao M, Cui B T. Adaptive synchronization in an array of asymmetric coupled neural networks [J]. Chinese Physics B, 2009, 18(1): 76-83.
    [234] Jia Z, Lu J A, Deng G M, etc.Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters [J]. Chinese Physics B, 2007 16(5): 1246-1251.
    [235] Li R H, Xu W, Li S. Adaptive generalized projective synchronization in different chaotic systems based on parameter identification [J]. Physics Letters A, 2007, 367(3): 199-206.
    [236] Zhang R X, Yang S P. Adaptive generalized projective synchronization of two different chaotic systems with unknown parameters [J]. Chinese Physics B, 2008, 17(11):4073-4079.
    [237]闵富红,王执铨.两个四维混沌系统广义投影同步[J].物理学报,2007,56(11): 6238-6244.
    [238] Salarieh H, Shahrokhi M. Adaptive synchronization of two different chaotic systems withtime varying unknown parameters [J].Chaos, Solitons and Fractals, 2008, 37(1): 125-136.
    [239] Sun F Y, Zhao Y, Zhou T S. Identify fully uncertain parameters and design controllers based on synchronization [J]. Chaos, Solitons and Fractals, 2007, 34 (5): 1677-1682.
    [240] Park J H. Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter [J]. Chaos, Solitons and Fractals, 2007, 34(5): 1552-1559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700