用户名: 密码: 验证码:
太空诱变宫颈癌细胞差异表达基因的筛选及其功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究利用前期构建的地面对照和太空诱变宫颈癌CaSki细胞株消减文库,筛选在地面对照和太空诱变宫颈癌CaSki细胞中差异表达的基因,并对其功能进行研究。
     方法:利用消减杂交文库制备反向Northern杂交膜,对48A9CaSki细胞和对照CaSki细胞进行同位素探针标记,而后反向Northern杂交,通过放射性自显影筛选差异性表达基因。通过RNAi方法和构建真核表达载体方法,分别抑制和增加差异性表达基因的表达,利用MTT、流式细胞术、裸鼠成瘤等实验检测CaSki细胞生物学性状的变化,进而检测细胞对抗肿瘤药物的敏感性,用RT-PCR和Western blot检验此基因作用机制。
     结果:1.我们筛选到33个差异表达基因,涉及细胞骨架、细胞分化凋亡、基因转录等。我们利用太空这一特殊环境得到了和肿瘤发生发展相关的基因,为研究肿瘤发生发展的机制奠定了基础。其中STC1基因是我们比较感兴趣的一个差异表达基因。
     2.STC1基因在宫颈癌组织中的表达弱于正常组织。MTT实验检测发现,STC1基因沉默组(CaSki/siSTC1)细胞生长速度比阴性对照组(CaSki/siNC)细胞的生长速度明显加快,集落形成实验表明集落形成率明显上升,流式细胞分析显示基因沉默组细胞G1期细胞减少,细胞迁移侵袭实验表明STC1表达减少后,CaSki细胞的侵袭迁移能力均上升。裸鼠成瘤实验表明沉默组细胞成瘤能力增强,这些表明STC1基因可能抑制CaSki细胞的生长、转移,诱导细胞凋亡。
     3.在CaSki细胞转染STC1真核表达载体后,MTT实验检测发现,STC1基因转染组(CaSki/STC1)细胞生长速度比阴性空载体转染对照组(CaSki/NC)细胞的生长速度明显减慢,集落形成实验表明集落形成率明显下降。流式细胞分析显示基因转染组细胞G1期细胞增加。细胞迁移侵袭实验表明STC1表达增加后,CaSki细胞的侵袭迁移能力均下降。裸鼠成瘤实验表明STC1基因转染组成瘤能力下降。以上观测表明,STC1基因转染CaSki细胞后抑制了CaSki细胞的生长、转移,诱导了细胞的凋亡。所以STC1基因转染有可能用于肿瘤的治疗。
     4.顺铂、毒胡萝卜素和雷帕霉素均抑制了CaSki细胞的增殖,诱导了细胞凋亡,当CaSki细胞增加STC1基因含量时,顺铂、毒胡萝卜素和雷帕霉素对细胞的抑制增强,凋亡细胞增加,这些表明STC1基因增强了CaSki细胞对顺铂、毒胡萝卜素和雷帕霉素药物的敏感性,为肿瘤的治疗提供了新的途径。
     5.无论在mRNA水平还是蛋白水平,当CaSki细胞内STC1表达水平下降时(RNAi),NF-κB水平随之下降;当STC1表达水平上升时(真核转染STC1-pcDNA3.1 (+)), NK-κB表达水平也随之上升,表明STC1与NF-κB在表达水平上呈正相关。当用顺铂(2μg/ml)或毒胡萝卜素(3μM)刺激CaSki和HeLa细胞时,Caspase-3 mRNA表达量逐渐增加,而STC1与NF-κB也呈现表达上升趋势,且呈正比。染色质免疫共沉淀实验发现,NF-κB可在细胞内与STC1的启动子发生结合。这些结果表明,核转录因子NF-κB在宫颈癌细胞中和STC1基因启动子结合启动了STC1的表达,从而诱导了宫颈癌细胞的凋亡。
     结论:通过构建抑制性消减杂交文库结合反向Northern dot blot筛选差异性表达基因的方法,是一种高通量高效率的筛选方法。STC1在宫颈癌细胞的表达可抑制细胞的增殖,诱导细胞的凋亡,并且通过核转录因子NF-κB的启动发挥作用。这为进一步探讨肿瘤的发生发展机制奠定了基础,并有可能成为临床治疗肿瘤的一条新途径。
AIM:This study will use the suppression subtractive hybridization library in the ground and space cervical cancer CaSki cells to select the differentially expressed genes and investigate the functions of the genes.
     METHODS:The hybridization membrane was made by the library, and 48A9Caski and ground CaSki were labed P32 before the reverse Northern hybridization. The differentially expressed genes were screened by autoradiography. The gene expression was inhibited or enhanced by the method of RNA interference or constructing eukaryotic expression vector. MTT, flow cytometry and in vivo tumor growth assay were used to investigate the biologic change of CaSki cells. The sensitivity of CaSki cells to anti-tumor drugs was checked. The mechanism of the gene was further studied by RT-PCR and Western blot.
     RESULTS:1.We found 33 differentially expressed genes which were associated with cytoskeleton, cell differentiation, apoptosis, and gene transcription and so on. The differentially expressed genes associated with tumor established the foundation for tumorigenesis and development. STC1 was one of most significant genes.
     2. The expression of STC1 in cervical cancer tissues was low compared with normal tissues. MTT assay showed that the speed of CaSki/siSTC1 cells was quick compared to negative control CaSki/siNC. The colony conforming assay showed the colony numbers of CaSki/siRNA cells were elevated. Flow cytometry demonstrated the G1 phase cells of CaSki/siRNA cells reduced. Transwell assay showed the invasion ability of CaSki/siRNA cells enhanced. In vivo tumor growth assay showed that the tumor growth of CaSki/siRNA cells enhanced.
     3. MTT assay showed that the speed of CaSki/STC1 cells transfected with pcDNA3.1-STC1 vector was slow compared to negative control CaSki/NC. The colony conforming assay showed the colony numbers of CaSki/STC1 cells were reduced. Flow cytometry demonstrated the G1 phase cells of CaSki/STC1 cells enhanced. Transwell assay showed the invasion ability of CaSki/STC1 cells decreased. In vivo tumor growth assay showed that the tumor growth of CaSki/STC1 cells reduced. STC1 might be used to treat the tumor.
     4. Cisplatin, thapsin, and rapamycin inhibited the proliferation and induced the apoptosis of CaSki cells. When the expression of STC1 gene enhanced, these drugs readily suppressed the cell proliferation and induced the cell apoptosis. These demonstrated that STC1 sensitized CaSki cells to cisplatin, thapsin, and rapamycin, and provided a new way of curing tumor.
     5. In mRNA and protein level, when the expression of STC1 decreased and elevated, the expression level of NF-κB accordingly changed. The expression between STC1 and NF-κB was positive correlation. When cisplatin or thapsin was added into CaSki or HeLa cells, the mRNA level of Caspase-3 increased and the expression of STC1 and NF-κB also increased. Chromatin immunoprecipitation (CHIP) showed that NF-κB combined with the promoter of STC1 gene. These results demonstrated that NF-κB combined with promoter of STC1 and evoke the gene expression, which induced the apoptosis of cervical cancer cells.
     CONCLUSION:The way that constructing suppression subtractive hybridization library combining with reverse Northern blot selected the differentially expressed genes is a high throughput and efficient screening. The expression in CaSki cells can inhibit the proliferation and induce the apoptosis of cells by nuclear factor NF-κB. These results establish the foundation for carcinogenesis and development and might be a new road to cure tumor.
引文
[1]Davies P, Aryn M, Dillner J, et al. A report on the current status of European research on the use of human papillomavirus testing for primary cervical cancer screening. Int J Cancer, 2006,118(4):791-796.
    [2]林伟华,张晶.宫颈癌的预防及普查.中国实用医药,2007,2(32):148-149.
    [3]Leyden WA, Manos MM, Geiger AM, et al. Cervical cancer in women with comprehensive health care access:attributable factors in the screening process [J]. J Natl Cancer Inst,2005, 97(9):675-683.
    [4]Slomovitz BM, Sun CC, Frumovitz M, et al. Are women ready for the HPV vaccine[J]? Gynecol Oncol,2006,103(1):151~154.
    [5]Visser M, Vail LJ, Van VJ, et al. Quality oflife in newly diagnosed carlcer patients waiting for surgery is seriously impaired[J]. J Surg Oncol,2006,93(7):571-577.
    [6]Klaus DM, Benoit MR, Nelson ES, et al. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures. J Gravit Physiol,2004,11(1):17-27.
    [7]Halstead.T.W. NASA Space Biology Program, Publications of NASA Space Biology Program,1980-1984.
    [8]Andrea A, Christine EH, Matthias MM, et al. Gene expression in mammalian cells after exposure to 95 MeV/amu argon ions. Advances in Space Research,2005,36:1680-1688.
    [9]Wei LJ, Yang Q, Xia H M, et al. Analys is of cytogenetic damage in rice seeds induced by energetic heavy ions on-ground and after spaceflight. J Radiat Res,2006,47 (3-4):273-278.
    [10]Liu LX, Wang J, Zheng QC. Crops germplasm enhancement through aerospace mutation technique In:Proceedings of intermational conference on Engineering and Technological Science, New World Press,2000.356-357.
    [11]Ohnishi T, Takahashi A, Ohnishi K. Studies about spaceradiation promote new fields in radiationbiology. J Radiat Res,2002,43 (Suppl):7-12.
    [12]Morimoto RI. Cell in s tress:transcriptional activation of heat shock genes. Science,1993, 259:1409-1410.
    [13]Wang X, Ohnishi T. p53-dependent signal transduction induced by stress. J Radiat Res, 1997,38:179-194.
    [14]Canman CE, Kastan MB. Three paths to stress relief. Nature,1996,384:213-214.
    [15]Ohnishi T, Wang X, Ohnishi K, et al. p53-dependent induction of WAF1 by heat treatment in humanglioblas toma cells. J Biol Chem,1996,271:14510-14513.
    [16]Ohnishi T, Wang X, Ohnishi K, et al. p53-dependent induction of WAF1 by cold shock in human glioblas toma cells. Oncogene,1998,16:1507-1511.
    [17]Reddy ASN, Kao YL, Wheeler M, et al. A ground-basic study for a shuttle bric experiment on gravity effects on gene expression. Adv Space Res,1998,21(8):1219-1224.
    [18]Lewis ML, Cubano LA. The cytoskeleton in space-flown cells:an overview. J Gravit Space Bio Bulletin,2003,17(1):3.
    [19]Donald CD, Cooper CR, Harris-Hooker S, et al. Cytoskeletal organization and cell motility correlates with metas tatic potential and s tate of differentiation in prostate cancer. Cell Mol Biol,2001,47 (6):1033-1038.
    [20]Stein GS, Van Wijnen AJ, Stein JL, et al. Implications for interrelations hips between nuclear architecture and control of gene express ion under microgravity conditions. FASEB J,1999, 13 (Suppl):157-166.
    [21]Lee J S, Mulkey T J, Evans M L.Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol,1983,73:874-876.
    [22]Maccarrone M, Battista N, Bari M, et al. Lipoxygenase activity in altered gravity. Adv Space Biol Med,2002,8:1-17.
    [23]Sonnenfeld G. Effects of space flight on surface marker expression. Adv Space Res,1999, 24(6):815-820.
    [24]Moseyko N, Zhu T, Chang HS, et al. Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol,2002, 130(2):720-728.
    [25]Hammond TG, Lewis FC, Goodwin TJ, et al. Gene expression in space. Nat Med,1999, 5(4):359.
    [26]耿传营,向青,唐劲天,等.空间环境对黑色素瘤B16细胞基因及蛋白质表达的影响.科技导报,2007,25(3):34-38。
    [27]杨丞,李官成,李跃辉,等.太空诱变宫颈癌细胞的生物学研究.中南大学学报(医学版),2007,32(3):380-386。
    [28]张志杰,郭锋杰,李官成,等.利用抑制性消减杂交技术构建太空诱变宫颈癌细胞cDNA消减文库.中国医师杂志,2009,11(12):1592-1595.
    [29]Jonsson JJ, Weissman SM. From mutation mapping to phenotype cloning.Proc Natl Acad Sci USA,1995,92(1):83-85.
    [30]Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,1992,257:967-971.
    [31]Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc Natl Acad Sci U S A,1996,93:6025-6030.
    [32]Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high-density DNA arrays. Science,1996,274:610-614.
    [33]Liu C, Zhang L, Shao ZM, et al. Identification of a Novel Endothelial-Derived Gene EG-1.Biochem Biophys Res Commun,2002,290:602-612.
    [34]Stassar MJ, Devitt G, Brosius M, et al. Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization. Br J Cancer,2001,85:1372-1382.
    [35]Pitzer C, Stassar M, Zoller M. Identification of renal-cell-carcinoma-related cDNA clones by suppression subtractive hybridization. Jcancer Res Clin Oncol,1999,125(8-9):487-492.
    [36]Aaboe M, Birkenkamp-Demtroder K, Wiuf C, et al.SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res,2006,66(7):3434-342.
    [37]Lomax MI, Hewett-Emmett D, Yang TL, et al. Rapid evolution of the human gene for cytochrome c oxidase subunit IV. Proc Natl Acad Sci U S A,1992,89(12):5266-270.
    [38]Zhao Y, Zhou L, Liu B, et al. ZNF325, a novel human zinc finger protein with a RBaK-like RB-binding domain, inhibits AP-1-and SRE-mediated transcriptional activity. Biochem Biophys Res Commun,2006,346(4):1191-1199.
    [39]Krasnov GS, Oparina NIu, Khankin SL, et al. Colorectal cancer 2D-proteomics: identification of altered protein expression. Mol Biol (Mosk),2009,43(2):348-356.
    [40]Kavli B, Sundheim O, Akbari M, et al. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG 1 as a broad specificity backup SMUG1. J Biol Chem,2002,277(42):39926-39936.
    [41]Muraki Y, Matsumoto I, Chino Y, et al.Glucose-6-phosphate isomerase variants play a key role in the generation of anti-GPI antibodies:possible mechanism of autoantibody production. Biochem Biophys Res Commun,2004,323(2):518-522.
    [42]Koizumi K, Hoshiai M, Ishida H, et al. Stanniocalcin 1 prevents cytosolic Ca2+overload and cell hypercontracture in cardiomyocytes. Circ J,2007,71(5):796-801.
    [43]Ou H, Shen YH, Utama B, et al. Effect of nuclear actin on endothelial nitric oxide synthase expression. Arterioscler Thromb Vasc Biol,2005,25(12):2509-2514.
    [44]Banerjee S, Kumar BR, Kundu TK. General transcriptional coactivator PC4 activates p53 function. Mol Cell Biol,2004,24(5):2052-2062.
    [45]Qi H, Fournier A, Grenier J, et al. Isolation of the novel human guanine nucleotide exchange factor Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF) and of C-terminal SGEF, an N-terminally truncated form of SGEF, the expression of which is regulated by androgen in prostate cancer cells. Endocrinology,2003,144(5):1742-1752.
    [46]Lui HM, Chen J, Wang L, Naumovski L. ARMER, apoptotic regulator in the membrane of the endoplasmic reticulum, a novel inhibitor of apoptosis. Mol Cancer Res,2003,1:508-518.
    [47]Sijts A, Sun Y, Janek K, et al. The role of the proteasome activator PA28 in MHC class Ⅰ antigen processing. Mol Immunol,2002,39(3-4):165-169.
    [48]Barkalow K, Witke W, Kwiatkowski DJ, et al. Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein. J Cell Biol,1996,134(2):389-399.
    [49]Loeffen JL, Triepels RH, van den Heuvel LP, et al. cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase:human complex I cDNA characterization completed. Biochem Biophys Res Commun,1998,253(2):415-422.
    [50]Thomson AM, Cahill CM, Cho HH, et al. The acute box cis-element in human heavy ferritin mRNA 5'-untranslated region is a unique translation enhancer that binds poly(C)-binding proteins. J Biol Chem,2005,280(34):30032-30045.
    [51]Maurel J, Nadal C, Garcia-Albeniz X, et al. Serum matrix metalloproteinase 7 levels identifies poor prognosis advanced colorectal cancer patients. Int J Cancer,2007, 121(5):1066-1071.
    [52]Nakano I, Paucar AA, Bajpai R, et al. Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation. J Cell Biol,2005,170(3):413-427.
    [53]Richie CT, Peterson C, Lu T, et al. hSnm1 colocalizes and physically associates with 53BP1 before and after DNA damage. Mol Cell Biol,2002,22(24):8635-8647.
    [54]Harada N, Yasunaga R, Higashimura Y, et al.Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells. J Biol Chem, 2007,282(31):22651-22661.
    [55]Arisawa K, Uemura H, Hiyoshi M, et al. Cause-specific mortality and cancer incidence rates in relation to urinary beta2-microglobulin:23-year follow-up study in a cadmium-polluted area. Toxicol Lett,2007,173(3):168-174.
    [56]Jasinskiene N, Jasinskas A, Langmore JP. Embryonic regulation of histone ubiquitination in the sea urchin. Dev Genet,1995,16(3):278-290.
    [57]Fujiwara Y, Ohata H, Kuroki T, et al. Isolation of a candidate tumor suppressor gene on chromosome 8p21.3-p22 that is homologous to an extracellular domain of the PDGF receptor beta gene. Oncogene,1995,10:891-895.
    [58]Lu M, Wagner GF,Renfro JL. Stanniocalcin stimulates phosphate reabsorption by flounder renal proximal tubule in primary culture. American Journal of Pathology,1994,267: R1356-R1362.
    [59]Chang AC, Janosi J, Hulsbeek M, et al. A novel human cDNA highly homologous to the fish hormone stanniocalcin. Mol Cell Endocrinol,1995,112(2):241-247.
    [60]Chang AC, Jeffrey 1(J, Tokutake Y, et al. Human stanniocalcin(STC):genomic structure, chromosomal localization, and the presence of CAG trinucleotide repeats. Genomics,1998, 47(2):393-398.
    [61]Hasilo CP, McCudden CR, Gillespie JR, et al. Nuclear targeting of stanniocalcin to mammary gland alveolar cells during p regnancy and lactation. Am J Physiol,2005,289 (4):E634-E642.
    [62]Sheikh-Hamad D, Bick R, Wu GY, et al. Stanniocalcin-1 is a naturally occurring L channel inhibitor in cardiomyocytes:relevance to human heart failure. Am J Physiol,2003, 285(1):H442-H448.
    [63]Wu S, Yoshiko Y, De Luca F. Stanniocalcin 1 acts as a paracrine regulator of growth p late chondrogenesis. J Biol Chem,2006,281 (8):5120-5127.
    [64]Yoshiko Y, Aubin JE. Stanniocalcin 1 as a pleiotropic factor in mammals. Peptides,2004,25 (10):1663-1669.
    [65]Zlot C, Ingle G, Hongo J, et al. Stanniocalcin 1 is an autocrine modulator of endothelial angiogenic responses to hepatocyte growth factor. J Biol Chem,2003,278(48):47654-47659.
    [66]Filvaroff EH, Guillet S, Zlot C, et al.Stanniocalcin 1 alters muscle and bone structure and function in transgenic mice. Endocrinology,2002,143(9):3681-3690.
    [67]Wu S, Yoshiko Y, De Luca F. Stanniocalcin 1 acts as a paracrine regulator of growth plate chondrogenesis. J Biol Chem,2006,281 (8):5120-5127.
    [68]Varghese R, Gagliardi AD, Bialek PE, et al. Overexpression of human stanniocalcin affects growth and reproduction in transgenic mice. Endocrinology,2002,143(3):868-876.
    [69]Hasilo CP, MeCudden CR, Gillespie JR, et al. Nuclear targeting of stanniocalcin to mammary gland alveolar cells during pregnancy and lactation. Am J Phsiol Endoerinol Metab,2005,289(23):634—642.
    [70]Tohmiya Y,Koide Y, Fujimaki S, et al. Stanniocalcin-1 as a novel marker to detect minimal residual disease of human leukemia. Tohoku J Exp Med,2004,204(2):125-133.
    [71]Zaidi D, James KA, Wagner GF. Passive immunization of lactating mice with stanniocalcin-1 antiserum reduces mammary gland development, milk fat content, and postnatal pup growth. Am J Physiol Endocrinol Metab,2006,291(5):E974-981.
    [72]Song G, Bazer FW, Wagner GF, Spencer TE. Stanniocalcin (STC) in the endometrial glands of the ovine uterus:regulation by progesterone and placental hormones. Biol Reprod,2006, 74(5):913-922.
    [73]Filvaroff EH, Guillet S, Zlot C, et al. Stanniocalcin 1 alter smuscle and bone structure and function in transgenic mice. Endocrinology,2002,143 (9):3681-3690.
    [74]Wagner GF, Vozzolo BL, Jaworski E, et al. Human stanniocalcin inhibits renal phosphate excretion in the rat. J Bone Miner Res,1997,12,165-171.
    [75]Koide Y, Sasaki T. Stanniocalcin-1 (STG-1) as a molecular marker for human cancer. Rinsho Byori,2006,54 (3):213-220.
    [76]Bouras T, SoutheyMC, ChangAC, et al. Stanniocalcin is an estrogen-responsive gene coexpressed with the estrogen recep tor in human breast cancer. Cancer Res,2002,62(5): 1289-1295.
    [77]Eisenhofer G, Huynh TT, Pacak K, et al. Distinct gene expression profiles in norepinephrine-and epinephrine-producing hereditary and sporadic pheochromocytomas:activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer, 2004,1(4):897-911.
    [78]Tohmiya Y, Koide Y, Fujimaki S, et al. Stanniocalcin-1 as a novel marker to detect minimal residual disease of human leukemia[J]. Tohoku J ExpMed,2004,204 (2):125-133.
    [79]Gerritsen ME, Soriano R, Yang S, et al.In silico data filtering to identify new angiogenesis targets from a large in vitro gene profiling data set. Physiol Genomics,2002,10(1):13-20.
    [80]Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science,2006,266:66-71.
    [81]Thompson ME, Jensen RA, Obermiller PS, et al. Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nature Genetics,1995,9:444-450.
    [82]Zheng L, Annab LA, Afshari CA, et al. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. PN AS,2001,98:9587-9592.
    [83]Chang AC, Jellinek DA, Reddel RR. Mammalian stanniocalcins and cancer. Endocr Relat Cancer,2003,10(3):359-373.
    [84]Koizumi K. HoshiaiM。lshida H, et al. Stanniocalein 1 prevents cytosolie Ca2+ overload and cell hypercontracture in cardiomyocytes. Circ J,2007,71(5):796-801.
    [85]CharpentierAH。Bednarek AK, Daniel RL. et al. Efiects of estrogen on global gene expression:identification of novel targets of estrogen action. Cancer Reserch,2002,60: 5977-5983.
    [86]Zbang K, Westberg JA, Paetau A, et al. High expression of stanniocalcin in differentiated brain neurons. American J Pathol,1998,153(12): 439-445.
    [87]Maxwell PH, Pugh CW, Ratcliffe PJ. Activation of the HIF pathway in cancer. Current Opinion in Genetics and Development,2001,11:293-299.
    [88]Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. Journal of Biological Chemistry,2002, 277:23111-23115.
    [89]Yeung HY, Lai KP, Chan HY, et al. Hypoxia-inducible factor-1-mediated activation of
    stanniocalcin.1 in human cancer cells. Endocrinology,2005,146:4951-4960.
    [90]Tuschl T, Zamore PD, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev,1999,13(24):3191-7.
    [91]Wang J, Barr MM. RNA interference in Caenorhabditis elegans. Methods Enzymol,2005, 392:36-55.
    [92]Plusa B, Piotrowska K, Zernicka-Goetz M. Sperm entry position provides a surface marker for the first cleavage plane of the mouse zygote. Genesis,2002,32(3):193-8.
    [93]Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001,409(6818):363-6.
    [94]Hannon GJ. RNA interference. Nature,2002,418(6894):244-251.
    [95]Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002,297(5589):2056-2060.
    [96]Kim K, Lee YS, Harris D, et al.The RNAi pathway initiated by Dicer-2 in Drosophila. Cold Spring Harb Symp Quant Biol,2006,71:39-44.
    [97]Storz G. An expanding universe of noncoding RNAs. Science,2002,296(5571):1260-1263.
    [98]Zamore PD. Ancient pathways programmed by small RNAs. Ancient pathways programmed by small RNAs. Science,2002,296(5571):1265-1269.
    [99]Matzke M, Matzke AJ. RNAi extends its reach. Science,2003,301(5636):1060-1061.
    [100]Schramke V, Allshire R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science,2003,301(5636):1069-1074.
    [101]David Martin, Oscar Maestro, Josefa Cruz, et al. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. Journal of Insect Physiology,2006,52: 410-416.
    [102]Kerr JF.Wyllie AH. Currie AR. Apoptosis:A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,1972,26(4):239-257.
    [103]Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature,2001, 411(6835):342-348.
    [104]Assuncao Guimaraes C, Linden R. Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem,2004,271(9):1638-1650.
    [105]Fulda S, Gorman AM, Hori O, et al. Cellular stress responses:cell survival and cell death. Int
    J Cell Biol,2010,2010:214074.
    [106]Sarcevic B. Apoptosis in tumors. Acta Med Croatica,2009,63 Suppl 2:43-47.
    [107]Tomas D. Apoptosis, UV-radiation, precancerosis and skin tumors. Acta Med Croatica.2009, 63 Suppl 2:53-58.
    [108]赵晓利.脂质体转染survivin反义寡核苷酸增加宫颈癌细胞对放、化疗敏感性的实验研究:[博士学位论文].重庆:第三军医大学,2005.
    [109]Henkels KM, Turchi JJ. Cisplatin-induced apoptosis proceeds by caspase-3-dependent and-independent pathways in cisplatin-resistant and-sensitive human ovarian cancer cell lines. Cancer Res,1999,59:3077-3083.
    [110]Liang BC, Ullyatt E. Increased sensitivity to cis-diamminedichloroplatinum induced apoptosis with mitochondrial DNA depletion. Cell Death Differ,1998,5:694-701.
    [111]Pinto AL, Lippard SJ:Binding of the antitumor drug cisdiamminedichloroplatinum (Ⅱ) (cisplatin) to DNA. Biochim Biophys Acta,1985,780:167-180.
    [112]Thastrup O, Cullen PJ, Drobak BK, et al. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+ ATPase. Proc. Natl. Acad. Sci. USA,1990,87:2466-2470.
    [113]Newcomb TG, Mullins RG, Sisken JE, et al. Altered calcium regulation in SV40-transformed Swiss 3T3 fibroblasts. Cell Calcium,1993,14:539-549.
    [114]Ghosh TK, Bian J, ShortAD, et al. Persistent intracellular calcium pool depletion by thapsigargin and its influence on cell growth. J. Biol. Chem,1991,266:24690-24697.
    [115]Short AD, Bian J, Ghosh TK, et al. Intracellular Ca2+ pool content is linked to control of cell growth. Proc. Natl. Acad. Sci. USA,1993,90:4986-4990.
    [116]Furuya Y, Lundmo P, Short AD, D et al. The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res,1994,54:6167-6175.
    [117]Hashemolhosseini S, Nagamine Y, Morley SJ, et al. Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem, 1998,273(23):14424-14429.
    [118]Hosoi H, Dilling MB, Shikata T, et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res,1999,59(4):886-894.
    [119]Ma J, Meng Y, Kwiatkowski DJ, et al. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. Clin Invest,2010, 120(1):103-114.
    [120]Henkel T, Zabel U, van Zee K, et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell,1992, 68(6):1121-1133.
    [121]Greten FR, Karin M. NF-κB:linking inflammation and immunity to cancer development and progression. Nature Rev Immunol,2005,5(10):749-759.
    [122]Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNFa-induced apoptosis by NF-κB. Science,1996,274:787-789.
    [123]Karin M, Lin A. NF-κB at the crossroads of life and death. Nature Immunol,2002, 3:221-227.
    [124]van Hogerlinden M, Auer G, Toftgard R. Inhibition of Rel/nuclear factor-KB signaling in skin results in defective DNA damage-induced cell cycle arrest and Ha-ras-and p53-independent tumor development. Oncogene,2002,21(32):4969-4977.
    [125]Dajee M, Lazarov M, Zhang JY, et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature,2003,421(6923):639-643.
    [126]Zhang JY, Green CL, Tao S, et al. NF-κB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev,2004,18(1):17-22.
    [127]Karin M. Nuclear factor-KB in cancer development and progression. Nature,2006, 441(7092):431-436.
    [128]Ito D, Walker JR, Thompson CS, et al. Characterization of Stanniocalcin 2, a Novel Target of the Mammalian Unfolded Protein Response with Cytoprotective Properties. Mol Cell Biol, 2004,24(21):9456-9469.
    [129]Bubici C, Papa S, Pham CG, et al. NF-κB and JNK:An Intricate Affair. Cell Cycle,2004, 3(12):1524-1529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700