用户名: 密码: 验证码:
车身结构抗撞性问题的简化建模及优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车身设计作为汽车核心技术之一,已经成为我国自主品牌提高产品核心竞争力不可或缺的技术。汽车行业“十一五”规划有针对性地提出:“大型汽车集团必须具备自主产品的平台、总成研发能力;骨干企业则必须具备车身和动力总成、底盘的匹配能力;零部件企业则必须掌握主要的动力总成和关键零部件的核心技术,并具备平台的同步研发能力,鼓励自主品牌轿车发展”。2011年是我国“十二五”规划的起始年,是能否妥善应对国内外发展环境重大变化的关键时期,汽车产品在节能、减排、安全等方面应进一步与世界接轨。坚持把科技进步和创新作为加快转变经济发展方式的重要支撑是制定“十二五”规划的基本原则之一,更是汽车产业由“中国制造”升级到“中国创造”过程中的决定因素。提高原始创新能力和关键核心技术创新能力是实现产品技术升级的保证,特别是当前激烈的市场竞争和成本制约下,将车身设计的更多性能分析和优化工作集中于前期的概念设计阶段,可极大地降低后续工作中修改原设计带来的风险及成本。作为衡量汽车被动安全性的关键因素,车身结构的抗撞性能也需要在概念设计阶段被有效地评估。这就凸显了车身碰撞简化建模方法和理论研究的重要性。
     本文结合2009年度国家自然科学基金面上项目《基于重分析理论的简化车身多单元框架结构截面参数快速优化研究》(编号:50975121),2009年度吉林省科技发展计划重大项目《简化车身框架结构多目标多层次快速优化关键技术研究》(编号:20096004)以及配套的中国第一汽车集团公司联合行动项目《乘用车碰撞参数化模型技术研究》(集团编号:0846),中国第一汽车集团公司科技创新项目《车身性能多目标优化平台建立》(集团编号:0837和093715)关于简化车身框架结构静力学分析及优化问题的研究成果,对适用于碰撞分析的简化车身结构建模理论及结构抗撞性优化设计方法进行了深入的研究。主要工作包括:
     第一,分析了箱型截面薄壁梁结构在弯曲载荷作用下的变形机理,并提出了一种改进的基于能量守恒的弯曲特性分析方法—CKW方法,保证了理想塑性弯曲区域的面内变形模式满足运动学容许条件。当薄壁直梁结构无法再承受额外的载荷时,弯曲抗性急剧下降,随之在局部表面出现褶皱变形,此时的塑性变形集中在很狭窄的塑性铰区域,其余部位可视为无变形的刚体。基于运动学方法假定了一系列由于局部非线性屈曲变形而产生的塑性铰线,来近似地描述溃缩过程中的能量耗散途径,进而获得了总体能量率的表达式,并通过计算得到了结构的抗弯特性曲线。基于CKW方法的箱型截面薄壁梁弯曲特性分析理论为后续研究其它截面形式下的薄壁梁结构弯曲特性提供了理论基础。
     第二,基于所提出的箱型截面弯曲特性分析的CKW方法,对不同类型的帽型截面薄壁梁的弯曲机理进行了研究,并对各自的局部塑性铰区域的褶皱变形特征进行了分析。提出了在单帽型截面梁结构沿截面短边发生屈曲,以及槽型截面在Flange面内发生屈曲(两种弯曲形式)这三种变形模式的结构弯曲特性简化计算方法。这部分研究内容是详细对标车身结构进行框架模型缩减工作的理论基础,为实际车身模型中复杂截面梁结构的等效和简化处理提供了更多的解决方案;
     第三,基于所提出的多种截面形式的薄壁梁弯曲特性计算方法,研究了建立适用于碰撞分析的简化车身模型的方法和流程。选择车身最主要吸能部件的典型碰撞工况,前纵梁的前部碰撞和B柱结构的顶部压溃工况为例,分别提取了各自的抗弯特性曲线。基于LS-DYNA讨论了建立简化模型的方法和流程,通过合理分布塑性铰,利用非线性梁单元和附带抗弯特性的转动弹簧单元来近似模拟实际的碰撞模型。详细模型和简化模型的碰撞变形历程、吸能曲线、刚性墙位移等碰撞性能参数的对比结果,均显示了简化建模过程中采用的薄壁梁弯曲特性推导方法和建模流程的正确性和合理性。
     第四,对标车身主要吸能部件的碰撞分析结果显示了在抗撞性方面存在着性能缺陷。对部件的详细模型进行抗撞性优化设计,可提高车身产品的性能和竞争力,也能够为车身缩减工作提供更可靠的样本。以对标车身的前纵梁结构为研究对象,应用了应变能密度法来提取结构承载贡献量分布形式。根据计算得到的应变能密度分布将前纵梁结构划分为不同区域,基于变密度法进行了拓扑优化,获得不同区域内的材料分布最优形式。为改善前部碰撞工况下的变形模式并提高吸能性,对比了工程实际中常见的吸能结构设计方法,综合考虑了结构造型和可加工性等因素,在前端直梁区域边缘部位均匀布置了小尺寸方形诱导槽,并在需要加强的区域内部贴装了加强板。最终的碰撞分析显示了所采用的模型修改理论和措施使前纵梁结构具备了极佳的溃缩变形模式和能量吸收能力。
     第五,研究了另一种解决车身结构非线性碰撞优化问题的方法——基于代理模型的优化技术,并为碰撞缓冲器结构的低速抗撞性优化设计问题提出了解决方案。结合了正交组合试验设计在构造响应代理模型上的优势,在设计空间中合理分布试验点,分别建立了统计性好,拟合精度高的吸能量和最大碰撞力的响应面模型。而后应用自适应响应面优化方法从提高抗撞性并兼顾轻量化设计的角度对碰撞缓冲器结构的4个构成部件进行了厚度优化,整个优化过程进行了16步迭代就达到了收敛,并获得了最优解。在总质量及最大碰撞力略有下降的情况下,结构可吸收的能量值提升了近5%,达到了预期的优化目标。
     最后,对全文进行了系统的总结并对未来的工作进行了展望。
Autobody design is one of the core technologies in automobile industry. It is absolutely necessary for independent enterprises to improve the competitiveness of core products. Automotive industry, "Eleventh Five-Year Plan", targetedly put forward that:"Large Automotive Group must have a platform for independent product, assembly of R& D capabilities; Key enterprises must have the ability to match among autobody, powertrain and chassis; Parts enterprises must master the major powertrain components and core technologies and R& D capabilities with the platform synchronization and the development of own-brand cars was encouraged".2011 is the initial year of "Twelfth Five-Year Plan", and it is the key stage of coping with the significant changes at home and abroad. The independent automobile products must make further efforts on the energy conservation, emission reduction and safty demands to reach the advanced level. The development of technology progress and innovation as one of the fundamental principles, is the important support of accelerated transformation of the economic development mode. Moreover, it is the determinant factor of changing the automobile products from " Made in China" to "Create in China". Improve the initial and core technology innovation capability are the assurances of the production technology upgrade. Particularly, under the intense trade competition and cost containment, the risks and costs in the follow-up modification works can be enormously reduced by making the main efforts on the performance analysis and optimization during conceptual design stage. As the critical measurement factor of automobile passive safety, autobody crashworthiness must be effectively evaluated during the conceptual design stage. That explicity reveals the importance of autobody simplified modeling method and theory research.
     This thesis is based on the research of simplified body framework modeling, static analysis and optimization supported by National Natural Science Foundation of China (No. 50975121), Science and Technology Development Plan of Jilin province (No.20096004) and its assorted project, FAW Group Combined Action Plan (No.0846), and FAW Group Science and Technology Innovation Project (No.0837 and 093715). The thesis intensively investigates the modeling method and theory of simplified crash autobody structure, as well as the crashworthiness design and optimization method of the detailed structures. The main work includes:
     First, the bending collapse mechanism of the thin-walled beam with box section is analyzed. Then, the simplified numerical computational method, called CKW method of bending characteristics is put forward based on the energy conservation. This modified numerical computational method meets kinematically admissible. Bending resistance capability of the thin-walled beam decrease rapidly when the straight structure could not stand the additional loading. By that time, the wrinkle appears on the local surface and the plastic deformation is concentrated on a narrow plastic hinge area. And other non-deformation parts of the beam can be treated as rigid body. The energy dissipation paths during the bending collapse are approximately represented by the assumptive plastic hinge lines which constitute the buckling deformation area. Finally, the total rate of energy dissipation along the plastic hinges are obtained, and the curve of bending resistant is analyzed. The CKW method provides a basis for the bending characteristics derivation of thin-walled beams with other sectional shapes.
     Second, based on the proposed CKW bending theory of box section, the bending mechanism of different thin-walled beams with hat-like section are deeply investigated. And the wrinkle characteristics of the local plastic hinge areas are analyzed, respectively. The simplified computational method for predicting bending characteristics of three plastic bending modes, including bending along the short side of thin-walled beam with top-hat section, in-plane tensile and in-plane collapse modes on flange surface of channel section beam are put forward. This work is the foundation of modeling the simplified body frame which reduced from the initial comparative autobody structure.
     Third, the simplified modeling method and process of autobody structure with crashworthiness analysis capability are discussed. Those methods are based on the bending computational theory of thin-walled beam proposed previously. The main crash energy absorption components, the frontal rail and B pillar, as well as their different crash conditions with frontal crash and roof crush are choosen as research objects, then their bending resistant characteristics are abstracted. By using LS-DYNA, the simplified method and process are applied based on the computational characteristics. In the simplified model, by distributing the plastic hinge area, nonlinear beam elements and rotational springs with bending characteristics are used to simplify the existing detailed models by replacing the shell elements. The comparisons of the crashworthiness parameters, such as the crush deformation curve, energy absorption, and rigid-wall displacement between the detailed and simplified models show the validity and reasonability of the proposed bending computational theory of thin-walled beams and the simplified modeling method of autobody structure.
     Fourth, in order to modified the crashworthiness defects of the comparative autobody structure, so as to improve the performance and competitive power of body products, the main energy absorption component is taken to analyze and optimize the crashworthiness capability. Moreover, the better detailed model can supply better sample to the simplified modeling. Strain-energy-density method is proposed here to analyze the load bearing distribution among the frontal rail. Based on the calculated strain-energy-density results, the initial structure is divided into several domains. By using topology optimization technology based on variable density method, the optimal material distribution among different domains are obtained. For the purpose of improving deformation mode and energy absorption capability, the small size tiggers with square shape are distributed uniformly on the corners of the frontal straight part, and the reinforcement plates are picked and placed inside the weaker domains. Those modified strategies are taken the usual energy absorption structural design method, as well as configuration design and processablity into account. The final crash analysis indicates that the modified rail model has an extremely excellent collapse mode and energy absorption capability.
     Fifth, another effective method on solving nonlinear crashworthiness optimization problem as known as surrogate model technology is investigated here. By the surrogate method, the optimal design is proposed to improve the low-speed crashworthiness performance of crash box structure. By taking the advantages of the response surrogate modeling based on orthogonal-composite experimental design, the reasonable design samples are distributed in the design space. Then, the response surface models of total energy absorption and peak crash force with excellent statistical characteristics and precise fitting capability are obtained, respectively. The adaptive response surface optimization method is employed here to solve the crashworthiness optimization problem by considering the lightweight demand. The thickness of four key components are taken into account, and the optimal result convergences at the sixteen step in the optimization process. The final comparisons show that total energy absorption is raised nearly 5%, meanwhile, the mass and peak crash force are slightly decreased. The optimal method and results have successfully achieved the expected targets.
     Finally, the main content is summarized and prospects for the futher work is predicted.
引文
[1]连玉明.中国城市“十二五”核心问题研究报告[M].北京:中国时代经济出版社,2010.
    [2]Christoph K, Klaus R B. On the calculation of fuel savings through lightweight design in automotive life cycle assessments[J]. Design for Environment,2009,15(1):128-135.
    [3]龙江启,兰凤崇,陈吉清.车身轻量化与钢铝一体化结构新技术的研究进展[J].机械工程学报,2008,44(6):27-35.
    [4]Akira N, Satoshi M, Hirokazu K, et al. Improvement of BIW NVH characteristics using a concurrent design optimization approach[J]. SAE Technical Paper,2003,2003-01-1596.
    [5]Marian O, Jan H S, Paulius G. Adaptive crashworthiness of front-end structure of motor vehicles[J]. SAE Technical Paper,2007,2007-01-1180.
    [6]朱平,张宇,葛龙,等.基于正面耐撞性仿真的轿车车身材料轻量化研究[J].机械工程学报,2005,41(9):207-211.
    [7]施颐,朱平,张宇,等.基于刚度与耐撞性要求的车身结构轻量化研究[J].汽车工程,2010,32(9):757-761.
    [8]Zhu P, Zhang Y, Chen G L. Metamodel-based lightweight design of an automotive front-body structure using robust optimization[J]. Automobile Engineering,2009,223(9):1133-1147.
    [9]SFE GmbH Berlin. SFE's products and services boost product knowledge at an early stage[R]. http://sfel.extern.tu-berlin.de/.2008.
    [10]Razaqpur A G, Li H G. Refined analysis of curved thin-walled multicell box girders[J]. Computers& Structures,1994,53(1):131-142.
    [11]Boswell L F, Zhang S H. A box beam finite element for the elastic analysis of thin-walled structures[J]. Thin-Walled Structures,1983,1(4):353-383.
    [12]Serra M. Optimum design of thin-walled closed cross-sections:a numerical approach[J]. Computers& Structures,2005,83(4-5):297-302.
    [13]Yoshimura M, Nishiwaki S, Izui K. A multiple cross-sectional shape optimization method for automotive body frames[J]. Journal of Mechanical Design,2005,127(1):49-57.
    [14]Halgrin J, Haugou G, Markiewicz E, et al. Integrated simplified crash modelling approach dedicated to pre-design stage:evaluation on a front car part[J]. International Journal of Vehicle Safety,2008,3(1):91-115.
    [15]Guy B, Louis J. Simplified crash models using plastic hinges and the large curvature description [J]. Multibody System Dynamics,2003,9(1):25-37.
    [16]Nikravesh P E, Chung L S, Benedict R L. Plastic hinge approach to vehicle crash simulation [J]. Computers& Structures,1983,16(1-4):395-400.
    [17]宋凯,成艾国,胡朝辉,等.基于真实接头车身概念模型的接头优化[J].中国机械工程,2010,21(22):2764-2770.
    [18]黄金陵,娄永强,龚礼洲.轿车车身结构概念模型中接头的模拟[J].机械工程学报,2000,36(3):78-81.
    [19]Moon Y M, Jee T H. Development of an automotive joint model using an analytically based formulation[J]. Journal of Sound and Vibration,1999,220(4):625-640.
    [20]Nishigaki H, Amago T, Sugiura H, et al. First order analysis for automotive body structure design-Part 1:Overview and application[J]. SAE Technical Paper,2004,2004-01-1658.
    [21]Daichi K, Noboru K. Analysis of FEM results based upon FOA[J]. SAE Technical Paper,2004, 2004-01-1729.
    [22]Cetin O, Saiou k, Nishigaki H, et al. Modular structural component design using the first order analysis and decomposition-based assembly synthesis[C], ASME IMECE. New York, USA, 2001.
    [23]Nishigaki H, Amago T, Sugiura H, et al. First order analysis for automotive body structure design-Part 2:Joint analysis considering nonlinear behavior[J]. SAE Technical Paper,2004, 2004-01-1659.
    [24]Nishigaki H, Amago T, Sugiura K, et al. First order analysis for automotive body structure design-Part 3:Crashworthiness analysis using beam elements[J]. SAE Technical Paper,2004, 2004-01-1659.
    [25]NIshigaki H, Amago T, Sugiura H, et al. First order analysis for automotive body structure design-Part 4:Noise and vibration analysis applied to a subframe[J]. SAE Technical Paper, 2004,2004-01-1659.
    [26]Kuo E Y, Mehta P R, Prater G, et al. Reliability and quality of body concept CAE models for design direction studies[C], SAE World Congress& Exhibition. Detroit, USA,2006.
    [27]Prater G, Shahhosseini A, Kuo E Y, et al. Finite element concept models for vehicle architecture assessment and optimization[C], SAE World Congress& Exhibition. Detroit, USA,2005.
    [28]Zimmer H, Prabhuwaingankar M. Implicitly parametric crash and NVH analysis models in the vehicle concept design phase[C], Proceedings of the Fourth LS-DYNA Anwenderforum. Stuttgart, Germany,2005.
    [29]Zimmer H, Umlauf U, Thompson J, et al. Use of SFE CONCEPT in developing FEA models without CAD[C], International Body Engineering Conference& Exposition. Detroit, USA, 2000.
    [30]Donders S, Takahashi Y, Hadjit R, et al. A reduced beam and joint concept modeling approach to optimize global vehicle body dynamics[J]. Finite Element in Analysis and Design,2009, 45(6-7):439-455.
    [31]Mucchi E, Donders S, Hadjit R, et al. Reduced modal models and negative concept [C], Proceedings of ISMA2006. Leuven, Belgium,2006.
    [32]Torstenfelt B, Klarbring A. Structural optimization of modular product families with application to car space frame structures[J]. Structural and Multidisciplinary Optimization,2006,32(2): 133-140.
    [33]Fellini R, Kokkolares M, Michelena N, et al. A sensitivity-based commonality strategy for family products of mild variation, with application to automotive body structures[J]. Structural and Multidisciplinary Optimization,2004,27(1-2):89-96.
    [34]Cetin O L, Saitou K. Decomposition-based assembly synthesis for structural modularity [J]. Journal of Mechanical Design,2004,126(2):234-243.
    [35]Lyu N, Saitou K. Topology optimization of multi-component structures via decomposition- based assembly synthesis[C], Proceedings of the 2003 ASME Design Engineering Technical Conference. Chicago, USA,2003.
    [36]Lyu N, Saitou K. Decomposition-based assembly synthesis of space frame structures using joint library[C], Proceedings of the 2004 ASME Design Engineering Technical Conferences. Salt Lake City, USA,2004.
    [37]Lyu N, Saitou K. Decomposition-based assembly synthesis for structural stiffness[J]. Journal of Mechanical Design,2003,125(3):452-463.
    [38]Lyu N, Lee B, Saitou K. Decomposition-based assembly synthesis for structural stiffness and dimensional itegrity[C],2004 ASME International Mechanical Engineering Congress and Exposition. Anaheim, USA,2004.
    [39]邢子敬,侯文彬,刘斌,等.概念设计中梁截面对车身刚度影响的研究[J].汽车技术,2009,10:21-24.
    [40]乔淑萍,李卓森,黄金陵.在概念设计阶段用FEM进行车身设计的研究[J].汽车技术,2000,4:6-8.
    [41]徐涛,左文杰,鞠伟.刚梁-弹簧建立的车身接头简化模型[J].武汉理工大学学报,2010,32(5):98-102.
    [42]迟瑞丰,胡平,侯文彬.概念设计阶段的车身结构分析[J].汽车工程,2010,32(3):209-212.
    [43]潘星辰,侯文彬,张雨,等.车身概念设计中接头部件的模拟[J].计算力学学报,2010,27(2):336-341.
    [44]张红哲,侯文彬,胡平,等.车身结构概念设计智能工具的实现[C],第四届中国汽车车身开发与模具制造技术高级研讨会.上海,中国,2007.
    [45]侯文彬,胡平,刘大有,等.基于知识的车身结构概念设计工具——IVCD[J]吉林大学学报(工学版),2006,36(5):814-818.
    [46]徐涛,徐天爽,左文杰,等.正交,均匀试验设计与数据处理软件V1.0,软件著作权[P].中华人民共和国国家版权局:2010SR063351,2010.
    [47]徐涛,左文杰,李恒,等.客车用矩形、槽型、工字型截面特性计算与截面尺寸优化软件V1.0,软件著作权[P].中华人民共和国国家版权局:2010SR063349,2010.
    [48]徐涛,左文杰,徐天爽.概念车身结构快速分析与优化系统(CCBOF),软件著作权[P].中华人民共和国国家版权局:2009SR10620,2009.
    [49]鞠伟.车身结构接头简化模型的研究[D]:硕士学位论文.长春:吉林大学,2009.
    [50]Kim H S, Kang S Y, Lee I H, et al. Vehicle frontal crashworthiness analysis by simplified structure modeling using nonlinear spring and beam elements[J]. International Journal of Crashworthiness,1997,2(1):107-118.
    [51]Hahm S J, Won Y H, Kim D S. Frontal crash feasibility study using MADYMO 3D frame model[J]. SAE Technical Paper,1999,1999-01-0072.
    [52]Gadekar G B, Kshirsagar S, Anilkumar C. Rollover strength prediction of bus structure using LS-Dyna 3D[C], Altair CAE Users Conference. Bangalore, India,2005.
    [53]Liu Y C, Day M L. Simplified truck chassis modeling and crashworhiness analysis[J]. International Journal of Heavy Vehicle Systems,2008,15(2-4):237-254.
    [54]Liu Y C. Development of simplified truck chassis model for crash analysis in different impact scenarios[J]. International Journal of Crashworthiness,2010,15(5):457-467.
    [55]Liu Y C. Development and evaluation of a finite element truck chassis crash model[J]. International Journal of Crashworthiness,2010,15(1):107-113.
    [56]林逸,刘静岩,张君媛,等.微型客车车身结构正面碰撞参数化模型的建立[J].汽车工程,2006,28(1):60-63.
    [57]林逸,刘静岩,张君嫒,等.微型客车概念设计阶段车身结构抗撞性分析[J].吉林大学学报(工学版),2006,36(3):298-301.
    [58]张君媛,王海,马迅.轿车侧面抗撞性简化参数化模型的建立及应用[J].吉林大学学报(工学版),2009,39(2):300-304.
    [59]王海.轿车侧面抗撞性概念设计参数化模型研究[D]:硕士学位论文,长春:吉林大学,2007.
    [60]Lu Shanbin, Wu Jinyan, Zhang Junyuan, et al. Simplified modeling and application of car side crashworthiness improvement[C], SAE 2010 World Congress & Exhibition. Detroit, USA, 2010.
    [61]Joosten M W, Dutton S, Kelly D, et al. Experimental and numerical investigation of the crushing response of an open section composite energy absorbing element[J]. Composite Structures,2011,93(2):682-689.
    [62]何文,钟志华.显示有限元技术在车身薄壁梁结构件数值模拟中的应用[J].湖南大学学报(自然科学版),2005,32(1):1-5.
    [63]Galib D A, Limam A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes[J]. Thin-Walled Structures,2004,42(8):1103-1137.
    [64]Alexander J M. An approximate analysis of the collapse of thin cylinsrical shells under axial load[J]. Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):10-15.
    [65]Miles J C. The determination of collapse load and energy absorbing properties of thin walled beam structures using matrix methods of analysis[J]. International Journal of Mechanical Sciences,1976,18(7-8):399-402.
    [66]Kecman D. Bending collapse of rectangular and square section tubes[J]. International Journal of Mechanical Sciences,1983,25(9-10):623-636.
    [67]Kecman D. Bending collapse of rectangular section tubes in relation to bus roll over problem[D]:PhD Dissertation. UK:Cranfield Institute of Technology,1979.
    [68]Abramowicz W., Wierzbicki T. Axial crushing of multicorner sheet metal columns[J]. Journal of Applied Mechanisms,1989,56(1):113-120.
    [69]Mamalis A, Manolakos D, Loannidis M, et al. Bending of cylindrical steel tubes:numerical modelling[J]. International Journal of Crashworthiness,2006,11(1):37-47.
    [70]Abramowicz W, Jones N. Dynamic progressive buckling of circular and square tubes[J]. International Journal of Impact Engineering,1986,4(4):243-269.
    [71]Liu Y C, Day M L. Multi-axis bending of channel section beam and modeling [J]. Thin-Walled Structures,2008,46(11):1290-1303
    [72]Liu Y C, Day M L. Bending collapse of thin-walled circular tubes and computational application[J]. Thin-Walled Structures,2008,46(4):442-450.
    [73]Liu Y C, Day M L. Development of simplified thin-walled beam models for crashworthiness analysis[J]. International Journal of Crashworthiness,2007,12(6):597-608.
    [74]Liu Y C, Day M L. Axial crushing of thin-walled tubes with octagonal section:modeling and design, Chapter 25 in Advances in Computational Algorithms and Dta Analysis[M]. Springer Netherlands,2008.
    [75]Liu Y C, Day M L. Concept modeling of tapered thin-walled tubes[J]. Journal of Zhejiang University Science A,2009,10(1):44-53.
    [76]Liu Y C. Development of simplified crash computer models for thin-walled beams[M]. Koln, Germany:LAP Lambert Academic Publishing,2009.
    [77]Drazetic P., Markiewicz E., Ravalrd Y. Application of kinematic models to compression and bending in simplified crash calculations[J]. International Journal of Mechanical Sciences,1993, 35(3-4):179-191.
    [78]Markiewicz E, Payen F, Cornette P, et al. Calculation of the deep bending collapse response for complex thin-walled columns Ⅱ. Post-collapse phase[J]. Thin-Walled Structures,1999,33(3): 177-210.
    [79]Drazetic P, Markiewicz E, Level P, et al. Application of the generalized mixing kinematic model to the calculation of crushing response for complex prismatic sections[J]. International Journal of Impact Engineering,1995,16(2):217-235.
    [80]Drazetic P, Payen F, Ducrocq P, et al. Calculation of the deep bending collapse response for complex thin-walled columns Ⅰ. Pre-collpase and collapse phases[J]. Thin-Walled Structures, 1999,33(3):155-176.
    [81]中国汽车工程学会.世界汽车技术发展跟踪研究[M].北京:北京理工大学出版社,2006.
    [82]Li Y X, Lin Z Q, Jiang A Q, et al. Use of high strength steel sheet for lightweight and crashworthy car body[J]. Materials and Design,2003,24(3):177-182.
    [83]Schneider F, Jones N. Impact of thin-walled high-strength steel structural sections[J]. Journal of Automobile Engineering,2004,218(2):131-158.
    [84]Schneider F, Jones N. Influence of spot-weld failure on crushing of thin-walled structural sections[J]. International Journal of Mechanical Sciences,2003,45(12):2061-2081.
    [85]葛树文,王国强,李红建,等.高强度钢对车体侧面抗撞性影响的研究[J].汽车工程,2008,30(I):17-21.
    [86]周云郊,兰凤崇,韦兴民,等.正面碰撞下车身前端结构高强度钢板匹配规律研究[J].汽车工程,2009,31(10):990-994.
    [87]Omar F, Nripen S, Thierry G. Extruded aluminum crash can topology for maximizing specific energy absorption[C], SAE World Congress& Exhibition. Detroit, USA,2008.
    [88]Kim H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency[J]. Thin-Walled Structures,2002,40(4):311-327.
    [89]Kim H S, Wierizbicki T. Effect of the cross-sectional shape of hat-type cross-sections on crash resistance of an "S"-frame[J]. Thin-Walled Structures,2001,39(7):535-554.
    [90]Wang Q C, Fan Z J, Gui L J. A theoretical analysis for the dynamic axial crushing behaviour of aluminium foam-filled hat sections[J]. International Journal of Solids and Structures,2006, 43(7-8):2064-2075.
    [91]Song H W, Fan Z J, Gang Q C, et al. Partition energy absorption of axially crushed aluminium foam-filled hat sections[J]. International Journal of Solids and Structures,2005,42(9-10): 2575-2600.
    [92]Hanssen A G, Langseth M, Hopperstad O S. Static crushing of square aluminium extrusions with aluminium foam filler[J]. International Journal of Mechanical Sciences,1999,41(8): 967-993.
    [93]Nagel G M, Thambiratnam D P. Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading[J]. International Journal of Impact Engineering, 2006,32(10):1595-1620.
    [94]Park J S, Park S H, Han D C. Energy capacity of vehicle structure under oblique load[C], Seoul 2000 FISITA World Automotive Congress. Seoul, Korea,2000.
    [95]Han D C, Park S H. Collapse behavior of square thin-walled columns subjected to oblique loads[J]. Thin-Walled Structures,1999,35(3):167-184.
    [96]王勖成.有限元法[M].北京:清华大学出版社,2003.
    [97]Martin P B, Ole S. Topology optimization:theory, methods and applications[M]. Berlin Heidelberg:Springer Verlag,2003.
    [98]Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering,1988, 71(2):197-224.
    [99]李红建,邱少波,林逸,等.汽车车身复杂钣金件的拓扑优化设计[J].汽车工程,2003,25(3):303-306.
    [100]王建,程耿东.应力约束下车架的结构拓扑优化设计[J].汽车工程,1997,19(1):15-19.
    [101]Fukushima J, Suzuki K, Kikuchi N. Shape and topology optimization of a car body with multiple loading conditions[C], SAE International Congress& Exposition. Detroit, USA,1992.
    [102]Mayer R R, Kikuchi N, Scott R A. Application of topological optimization techniques to structural crashworthiness[J]. International Journal for Numerical Methods in Engineering, 1996,39(8):1383-1403.
    [103]Mayer R R. Application of topology optimization techniques to structural crashworthiness[D]:PhD Dissertation. Ann Arbor:University of Michigan,1994.
    [104]Pedersen C B W. Topology optimization for crashworthiness of frame structures[J]. International Journal of Crashworthiness,2003,8(1):29-39.
    [105]Pedersen C B W. Topology optimization design of crushed 2D-frames for desired energy absorption history[J]. Structural and Multidisciplinary Optimization,2003,25(5-6):368-382.
    [106]Pedersen C B W. Topology optimization with respect to dynamic crushing[C],2nd Max Planck Workshop on Engineering Design Optimization. Nyborg, Denmark,2001.
    [107]Pedersen C B W. Crashworthiness design of transient frame structures using topology optimization[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(6-8): 653-678.
    [108]Pedersen C B W. Topology optimization of energy absorbing frames[C],5th World Congress on Computational Mechanics. Vienna, Austria,2002.
    [109]Ebisugi T, Fujita H, Watanabe G. Study of optimal structure design method for dynamic nonlinear problem [J]. JSAE Review,1998,19(3):251-255.
    [110]Soto C A. Applications of structural topology optimization in the automotive industry:past, present and future[C],5th World Congress on Computational Mechanics. Vienna, Austria, 2002.
    [111]Soto C A. Structural topology optimization:from minimizing compliance to maximizing energy absorption[J]. International Journal of vehicle Design,2001,25(1-2):142-163.
    [112]Soto C A. Optimal structural topology design for energy absorption:a heuristic approach[C], Proceedings of the 2001 ASME design engineering technical conference. Pittsburgh, USA, 2001.
    [113]Forsberg J, Nilsson L. Topology optimization in crashworthiness design[J]. Structural and Multidisciplinary Optimization,2007,33(1):1-12.
    [114]Wang H, Ma Z D, Kikuchi N, et al. Multi-Domain multi-step topology optimization for vehicle structure crashworthiness design[J]. SAE Technical Paper,2004,2004-01-1173.
    [115]Ma Z D, Kikuchi N. A new method of the sequential approximate optimization for structural optimization problems[J]. Engineering Optimization,1995,25(3):231-253.
    [116]Ma Z D, Kikuchi N, Pierre C, et al. Multidomain topology optimization for structural and material designs[J]. Journal of Applied Mechanisms,2006,73(4):565-573.
    [117]李邦国,陈潇凯,林逸.车用吸能部件吸能特性的改进[J].吉林大学学报(工学版),2009,39(1):12-16.
    [118]Soto C A, Pan T Y. Optimum topology of structural foam for crashworthiness application[J]. SAE Technical Paper,2004,2004-01-0467.
    [119]Deshpande V S, Ashby M F, Fleck N A. Foam topology bending versus stretching dominated architectures[J]. ACTA Materialia,2001,49(6):1035-1040.
    [120]IBillotto M, Mirdamadi B, Pearson B. Design application development, and launch of polyurethane foam systems in vehicle structures[J]. SAE Technical Paper,2003,2003-01-0333.
    [121]Jeong Y. Crashworthiness topology optimization:with X-Frame and deformation decomposition based on homogenized-density method[J]. SAE Technical Paper,2004, 2004-01-1176.
    [122]Box G E P, Draper N R. Empirical model-building and response surfaces[M]. New York: Wiley,1987.
    [123]Draper N R, Smith M. Applied regression analysis[M]. New York:Wiley,1981.
    [124]廖兴涛,李青,张维刚.基于连续响应表面法的汽车结构耐撞性仿真优化[J].机械强度,2007,29(6):941-945.
    [125]Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes[J]. Structural and Multidisciplinary Optimization,1998,16(1):37-46.
    [126]Yamazaki K, Han J. Maximization of the crushing energy absorption of cylindrical shells[J]. Advances in Engineering Software,2000,31(6):425-434.
    [127]Sheriff N M, Gupta N K, Velmurugan R, et al. Optimization of thin conical frusta for impact energy absorption[J]. Thin-Walled Structures,2007,46(6):653-666.
    [128]Liu Y C. Crashworthiness design of multi-corner thin-walled columns[J]. Thin-Walled Structures,2008,46(12):1329-1337.
    [129]Liu Y C. Crashworthiness design of thin-walled curved beams with box and channel cross sections [J]. International Journal of Crashworthiness,2010,15(4):413-423.
    [130]Hou S J, Li Q, Long S Y, et al. Design optimization of regular hexagonal thin-walled columns with crash-worthiness criteria[J]. Finite Element in Analysis and Design,2007,43(6-7): 555-565.
    [131]龙述尧,陈仙燕,李青.矩形截面锥形薄壁管关于能量吸收和初始碰撞力峰值的优化[J].工程力学,2007,24(11):70-75.
    [132]侯淑娟,龙述尧,李青.薄壁构件的长度对抗撞性影响的研究[J].机械强度,2008,30(1):88-92.
    [133]Redhe M, Nilsson L. Optimization of the new Saab 9-3 exposed to impact load using a space mapping technique[J]. Structural and Multidisciplinary Optimization,2004,27(5):411-420.
    [134]Redhe M, Nilsson L. An investigation of structural optimization in crashworthiness design using a stochastic approach:A comparison of stochastic optimization and the response surface methodology[J]. Structural and Multidisciplinary Optimization,2004,27(6):446-459.
    [135]Shi Q Z, Hagiwara I. Optimal design method to automobile problems using holographic neural network's approximation[J]. Japan Journal of Industrial and Applied Mathematics,2000, 17(3):321-339.
    [136]Yu Q, Koizumi N, Yajima H, et al. Optimum design of vehicle frontal structure and occupant restraint system for crashworthiness (a multilevel approach using SDSS)[J]. Solid Mechanics and Material Engineering,2001,44(4):594-601.
    [137]Koizumi N, Yajima H, Yu Q, et al. Optimal design of vehicle frontal structure and occupant restraint system for crashworthiness[C], Proceedings. JSAE Annual Congress. Japan,2000.
    [138]Eskandarian A, Marzougui D, Bedewi N E. Finite element model and validation of a surrogate crash test vehicle for impacts with roadside objects[J]. international Journal of Crashworthiness, 1997,2(3):239-237.
    [139]Kurtaran H, Eskandarian A, Marzougui D, et al. Crashworthiness design optimization using successive response surface approximations[J]. Comutational Mechanics,2002,29(4-5): 409-421.
    [140]Youn B D, Choi K K. A new response surface methodology for reliability-based design optimization[J]. Computers& Structures,2004,82(2-3):241-256.
    [141]张勇,李光耀,钟志华.基于移动最小二乘响应面方法的整车轻量化设计[J].机械工程学报,2008,44(11):192-196.
    [142]Liao X T, Li Q, Yang X J, et al. A two-stage multi-objective optimisation of vehicle crashworthiness under frontal impact[J]. International Journal of Crashworthiness,2008,13(3): 279-288.
    [143]孙光永,李光耀,钟志华,等.基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计[J].机械工程学报,2009,45(2):224-230.
    [144]Wang H, Li E Y, Li G Y, et al. Development of metamodeling based optimization system for high nonlinear engineering problems[J]. Advances in Engineering Software,2008,39(8): 629-645.
    [145]Abramowicz W, Jones N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering,1984,2(2):179-208.
    [146]Abramowicz W., Wierizbicki T. A kinematic approach to crushing of shell structures [J]. SAE Technical Paper,1979,790992.
    [147]Maria K. Load-capacity estimation and collapse analysis of thin-walled beams and columns-recent advances[J]. Thin-Walled Structures,2004,42(2):153-175.
    [148]Moon Shik Park, Byung Chai Lee. Prediction of mode parameters and moment rotation curves for crushed thin-walled trapezoidal tubes in bending[J]. Journal of Applied Mechanisms,1996, 63(2):453-459.
    [149]Kim T. H., Reid S. R. Bending collapse of thin-walled rectangular section columns[J]. Computers& Structures,2001,79(20-21):1897-1911.
    [150]Wierzbicki T. Crushing analysis of metal honeycombs[J]. International Journal of Impact Engineering,1983,1(2):157-174.
    [151]Abramowicz W. Thin-walled structures as impact energy absorbers[J]. Thin-Walled Structures, 2003,41(2-3):91-107.
    [152]Wierizbicki T., Recke L., Abramowicz W., et al. Stress profiles in thin-walled prismatic columns subjected to crush loading. Ⅱ. Bending[J]. Computers& Structures,1994,51(6): 625-641.
    [153]李红建.轿车正面碰撞安全性能综合控制研究[D]:博士学位论文.长春:吉林大学,2005.
    [154]Moon Shik Park, Byung Chai Lee. Prediction of bending collapse behaviours of thin-walled open section beams[J]. Thin-Walled Structures,1996,25(3):185-206.
    [155]Wierzbicki T., Recke L., Abramowicz W., et al. Stress profiles in thin-walled prismatic columns subjected to crush loading-1. Compression[J]. Computers& Structures,1994,51(6): 611-623.
    [156]Wierzbicki T., Abramowicz W. On the crushing mechanisms of thin-walled structures[J]. Journal of Applied Mechanisms,1983,50(4):727-734.
    [157]Kecman D, Suthurst G D. Theoretical determination of the maximum bending strength in the car body components [J]. IMechE,1984, C181:53-61.
    [158]Abe K, Ohta M, Takagi M, et al. Collapse of thin walled curved beam with closed hat section-Part 2:simulation by plane plastic hinge model[J]. SAE Technical Paper,1990,900461.
    [159]Ohkami Y, Shimamura M, Takada T, et al. Collapse of thin walled curved beam with closed hat section-Part 1:study on collapse characteristics[J]. SAE Technical Paper,1990,900460.
    [160]Hofmeyer H. Cross-section crushing behaviour of hat-sections (Part 1:Numerical modeling)[J]. Thin-Walled Structures,2005,43(8):1143-1154.
    [161]Hofmeyer H. Cross-section crushing behaviour of hat-sections (Part 2:Analytical modeling)[J]. Thin-Walled Structures,2005,43(8):1155-1165.
    [162]Gronostajski Z, Polak S. Quasi-static and dynamic deformation of double-hat thin-walled elements of vehicle controlled body crushing zones joined by clinching[J]. Archives of Civil and Mechanical Engineering,2008,8(2):57-65.
    [163]Tehrani P H, Pirmohammad S. Collapse study of thin-walled polygonal section columns subjected to oblique loads[J]. Journal of Automobile Engineering,2007,221(7):801-810.
    [164]Kim H S, Wierizbicki T. Crush behavior of thin-walled prismatic columns under combined bending and compression[J]. Computers& Structures,2001,79(15):1417-1432
    [165]裴星洙,张立.点焊箱型截面薄壁构件的翘曲扭转研究[J].工程力学,2006,23(3):56-62.
    [166]裴星洙,张立.双帽箱型点焊薄壁构件的局部翘曲分析[J].机械强度,2004,26(5):564-571.
    [167]项玉江,范子杰.帽型薄壁管件准静态压溃模拟计算中焊点的处理方法[J].汽车工程,2004,26(6):750-754.
    [168]苏庆,孙凌玉.闭口帽型薄壁梁压溃历程的精确仿真[J].农业机械学报,2007,38(7):137-140.
    [169]White M D, Jones N, Abramowicz W. A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections[J]. International Journal of Mechanical Sciences, 1999,41(2):209-233.
    [170]White M D, N Jones. Experimental quasi-static axial crushing of top-hat and double-hat thin-walled sections[J]. International Journal of Mechanical Sciences,1999,41(2):179-208.
    [171]Liu Y C, Day M L. Bending collapse of thin-walled beams with channel cross-section[J]. International Journal of Crashworthiness,2006,11(3):251-262.
    [172]黄天泽,黄金陵.汽车车身结构与设计[M].北京:机械工业出版社,2007.
    [173]Chen W, Wierzbicki T, Santosa S. Bending collapse of thin-walled beams with ultralight filler: numerical simulation and weight optimization[J]. ACTA Mechanica,2002,153(3-4):183-206.
    [174]Weigang Chen. Experimental and numerical study on bending collapse of aluminum foam-filled hat profiles[J]. International Journal of Solids and Structures,2001,38(44-45): 7919-7944.
    [175]White M D, Jones N. A theoretical analysis for the dynamic axial crushing of top-hat and double-hat thin-walled sections[J]. Journal of Automobile Engineering,1999,213(4):307-325.
    [176]Maria K. Load-carrying capacity and energy absorption of thin-walled profiles with edge stiffeners[J]. Thin-Walled Structures,2007,45(10-11):872-876.
    [177]Wang S T, Jsa S T. Stiffness analysis of locally-buckled thin-walled continuous beams[J]. Computers& Structures,1975,5(1):81-93.
    [178]Abramowicz W. Simplified crushing analysis of thin-walled columns and beams, Rozprawy Inzynierskie[J]. Eng. Trans.,1981,29(1):5-26.
    [179]Liu Y C, Day M L. Bending and modeling of channel section beam[C], Proceedings of Symposium on Mechanics of Slender Structures (MoSS 2008), University of Maryland Baltimore County, USA, July 23-25.,2008.
    [180]Liu Y C, Glass G. Effects of wall thickness and geometric shape on thin-walled parts structural performance[J]. Thin-Walled Structures,2011,49(1):223-231.
    [181]Liu Y C. Crashworthiness design of thin-walled curved beams with box and channel cross sections[J]. International Journal of Crashworthiness,2010,15(4):413-423.
    [182]Kim H S, T Wierizbicki. Closed-form solution for crushing response for three-dimensional thin-walled "S" frames with rectangular cross-sections[J]. International Journal of Impact Engineering,2004,30(1):87-112.
    [183]Longo S D, Moss E D, Deutschel B W. The 1997 Chevrolet corvette structure architecture synthesis[J]. SAE Transactions,1997,106(5):136-158.
    [184]Dieu F. Structural optimization of a vehicle using finite element techniques [J]. SAE Technical Paper,1988,885135.
    [185]黄金陵.汽车车身设计[M].北京:机械工业出版社,2007.
    [186]宋广才.接头柔度参数化概念车身建模及其改进PSO算法的优化应用[D]:博士学位论文.长春:吉林大学,2009.
    [187]李亦文,徐涛,左文杰,等.概念车身的T型接头模型拓扑优化设计[J].吉林大学学报(工学版),2010,40(2):351-356.
    [188]徐涛,左文杰,徐天爽.概念车身框架结构的多变量截面参数优化[J].汽车工程,2010,32(5):394-398.
    [189]Kisielewicz L T, Park K H, Shin S H, et al. Optimization of the crashworthiness of a passenger car using literative simulations[J]. SAE Technical Paper,1993,931977.
    [190]陈吉清,周鑫美,饶建强,等.汽车前纵梁薄壁结构碰撞吸能特性及其优化的研究[J].汽车工程,2010,32(6):486-492.
    [191]张金换,杜汇良,马春生,等.汽车碰撞安全性设计[M].北京:清华大学出版社,2010.
    [192]游国忠,陈晓东,程勇,等.轿车B柱的优化及对侧面碰撞安全性的影响[J].汽车工程,2006,28(11):972-975.
    [193]高晖,李光耀,钟志华,等.汽车碰撞计算机仿真中的子循环法分析[J].机械工程学报,2005,41(11):98-101,108.
    [194]FMVSS-216. Part 571-Federal Moter Vehicle Safety Standards,2007.
    [195]刘静岩.面向微型客车车身结构正面抗撞性设计的参数化模型研究[D]:硕士学位论文.长春:吉林大学,2004.
    [196]John O. Hallquist. LS-DYNA Theory Manual[M]. Livermore, California:Livermore Software Technology Corporation,2006.
    [197]Xu Tao, Hao Liang, Li Yiwen, et al. Research of simplified B pillar model for roof crashworthiness[J]. Applied Mechanics and Materials,2010,34-35:404-409.
    [198]Yoshino Tatsuo, Xu Tao, Xu Tianshuang, et al. Crashworthiness optimization using response surface method based on uniform design[J]. Applied Mechanics and Materials,2010,34-35: 399-403.
    [199]Wu C H, Tung C Y, Lee J H, et al. Improvement design of vehicle's frontal rails for dynamic impact[C],5th European LS-DYNA Users Conferences, Crash Technology(1). Birmingham, UK,2005.
    [200]榻伟旗.Research on the frontal crashworthiness optimization of autobody[D]:博士学位论文.长春:吉林大学,2010.
    [201]Yamaguchi A, Wakana G, Obayashi K, et al. Spot-weld layout optimization for body stiffness by topology optimization[J]. SAE Technical Paper,2008,2008-01-0878.
    [202]钟志华,张维刚,曹立波,等.汽车碰撞安全技术[M].北京:机械工业出版社,2005.
    [203]Hu Z Q, Gu Y N, Gao Z. Research on crashworthiness of Y-shape side structure design for FPSO[C], The Proceedings of ISOPE-2005 Conference. Seoul, Korea,2005.
    [204]Lanzi L, Castelletti L, Anghileri M. Multi-objective optimisation of composite absorber shape under crashworthiness requirements[J]. Composite Structures,2004,65(3-4):433-441.
    [205]Luh G C, Lin C Y. Structural topology optimization using ant colony optimization algorithm[J]. Applied Soft Computing,2009,9(4):1343-1353.
    [206]Lee D C, Choi H S, Han C S. Design of automotive body structure using multicriteria optimization[J]. Structural and Multidisciplinary Optimization,2006,32(2):161-167.
    [207]Kim H J, Cho H, Jung H S, et al. Crash worthiness design and evaluation on the leading-cab structure of rolling stock using topology optimizatio[J]. International Journal of Precision Engineering and Manufacturing,2009,10(2):79-85.
    [208]Ma Z D, Wang H, Kikuchi N, et al. Substructure design using a multi-domain multi-step topology optimization approach[J]. SAE Technical Paper,2003,2003-01-1303.
    [209]Xu Tao, Li Yiwen, Li Qiang, et al. Crashworthiness design of frontal rail using strain-energy-density and topology optimization approach[C], CSO 2010 Volume 1. Huangshan, China,2010.
    [210]Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crashworthiness optimization [J]. International Journal of Impact Engineering,2006,32(5):759-777.
    [211]Peroni L, Avalle M, Belingardi G. Experimental investigation of the energy absorption capability of continuous joined crash boxes[C], Proceedings of the Twentieth International Technical Conference on the Enhanced Safety of Vehicles. Lyon, France,2007.
    [212]Lorenzo Peroni, Massimiliano Avalle, Giovanni Belingardi. Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques[J]. International Journal of Impact Engineering,2009,36(3):498-511.
    [213]高云凯.汽车车身结构分析[M].北京:北京理工大学出版社,2006.
    [214]李亦文,徐涛,左文杰,等.基于相对灵敏度的车身结构模型修改[J].吉林大学学报(工学版),2009,39(6):1435-1440.
    [215]Li Yiwen, Xu Tao, Zhang Hao, et al. Research on squeak suppression of autobody structure by modifying opening stiffness[C], The 3th ICMEM. Beijing, China,2009.
    [216]李亦文.车身结构模型修改的若干研究[D]:硕士学位论文.长春:吉林大学,2008.
    [217]Qi C, Ma Z D, Kikuchi N, et al. Fundamental studies on crashworthiness design with uncertainties in the system[J]. SAE Technical Paper,2005,2005-01-0613.
    [218]Ma Z D. Topology optimization for innovative structural and material concepts[C],6 th MCCM. Beijing, China,2004.
    [219]王建,程耿东.应力约束下薄板结构的拓扑优化[J].固体力学学报,1997,18(4):317-322.
    [220]范文杰,徐进勇,张子达.基于双向渐进结构优化方法的装载机动臂结构拓扑优化[J].农业机械学报,2006,37(11):24-27.
    [221]杜家政.框架结构截面和拓扑优化的方法与软件开发[D]:博士学位论文.北京:北京工业大学,2004.
    [222]Bendsoe M P, Sigmund O. Material interpolations in topology optimization [J]. Archives of Applied Mechanics,1999,69:635-354.
    [223]Beckers M. Topology optimization using a dual method with discrete variables[J]. Structural and Multidisciplinary Optimization,1999,17(1):14-24.
    [224]Zhu X Y, Ding H. Optimality criteria for fixture layout design:a comparative study[J]. IEEE Transactions on Automation Science and Engeering,2009,6(4):658-669.
    [225]Gin R. Shape and layout optimzation of structural systems and optimality criteria methods[M]. New York:Springer Verlag,1992.
    [226]Jian J B. A quadratically approximate framework for constrained optimization, global and local convergence[J]. Acta Mechanica Sinica, English Series,2008,24(5):771-788.
    [227]Yu Y H, Gao L. Nonmonotone line search algorithm for constrained minimax problems[J]. Journal of Optimization Theory and Applications,2002,115(2):419-446.
    [228]张胜兰,郑冬黎,郝琪,等.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社,2008.
    [229]王鹏翔,徐立伟,张亮,等.薄壁直梁件碰撞诱导变形模拟分析[J].汽车工程,2008,30(11):990-992.
    [230]周宇,雷正保,杨兆.基于预变性控制理论的汽车前纵梁仿真设计[J].长沙理工大学学报(自然科学版),2005,2(4):34-38.
    [231]Li W, Tyan T, Chen G F, et al. Numerical investigation of effects of frame trigger hole location on crash behavior[J]. SAE Technical Paper,2005,2005-01-0702.
    [232]Omowale C, Tau T. Effect of trigger variation on frontal rail crash performance [J]. SAE Technical Paper,2005,2005-01-0358.
    [233]Ghannam M, Niesluchowski M, Culkeen P. Analysis of a frontal rail structure in a frontal collision[C], SAE 2002 World Congress& Exhibition. Detroit, USA,2002.
    [234]Guo Guikai, Xu Tao, Li Yiwen, et al. Optimization of joints stiffness on autobody based on minimization of strain energy[C],3rd ICMEM. Beijing, China,2009.
    [235]Guido B, Giuseppe C, Giuseppe L. Computational 3D models of vehicle's crash on road safety systems[C],8th ISHVWD. Johannesburg, South Africa,2004.
    [236]Wilhelm R, Karl S. Finite element limit load analysis of thin-walled structures by ANSYS (implicit), LS-DYNA (explicit) and in combination [J]. Thin-Walled Structures,2003,41(2-3): 227-244.
    [237]Lust R. Structural optimization with crashworthiness constraints [J]. Structural and Multidisciplinary Optimization,1992,4(2):85-89.
    [238]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报,2007,43(8):142-147.
    [239]Marklund P O, Nilsson L. Optimization of a car body component subjected to side impact[J]. Structural and Multidisciplinary Optimization,2001,21(5):383-392.
    [240]Kim C, Mijar A R, Arora J S. Development of simplified models for design and optimization of automotive structures for crashworthiness[J]. Structural and Multidisciplinary Optimization, 2001,22(4):307-321.
    [241]Jonsen P, Isaksson E, Sundin K G, et al. Identification of lumped parameter automotive crash models for bumper system development [J]. International Journal of Crashworthiness,2009, 14(6):533-541.
    [242]Deb A, Srinivas K C. Development of a new lumped-parameter model for vehicle side-impact safety simulation[J]. Journal of Automobile Engineering,2008,222(10):1793-1811.
    [243]Priyaranjan P, Arvind J P. Static-to-dynamic amplification factors for use in lumped-mass vehicle crash models[J]. SAE Technical Paper,1981,810475.
    [244]Fang H, Rais-Rohani M, Liu Z, et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimization [J]. Computers& Structures,2005,83(25-26): 2121-2136.
    [245]Fang H B, Solanki K, Horstemeyer M F. Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization[J]. International Journal of Crashworthiness,2005,10(2):161-171.
    [246]Athanasios P C, ASCE A M, Serafim P S. Time-cost optimization of construction projects with generalized activity constraints[J]. Journal of Construction Engineering and Management,2005, 131(10):1115-1124.
    [247]Myers R H, Montgomery D C. Response surface methodology:process and product optimization using designed experiments[M]. New York:John Wiley& Sons:2002.
    [248]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社:2008.
    [249]任露泉.试验优化设计与分析[M].长春:吉林科学技术出版社:2001.
    [250]侯淑娟.薄壁构件的抗撞性优化设计[D]:博士学位论文,长沙:湖南大学,2007.
    [251]左文杰.简化车身框架结构建模与快速优化研究[D]:博士学位论文,长春:吉林大学,2010.
    [252]李亦文,徐涛,徐天爽,等.车身低速碰撞吸能结构的优化设计[J].北京理工大学学报,2010,30(10):1175-1179.
    [253]徐天爽.基于面向对象有限元程序设计的正交试验及其在结构优化中的研究[D]:硕士学位论文,长春:吉林大学,2009.
    [254]陈魁.试验设计与分析[M].北京:清华大学出版社,2003.
    [255]Hou S J, Li Q, Long S Y, et al. Crashworthiness design for foam filled thin-wall structures[J]. Materials and Design,2009,30(5):2024-2032.
    [256]廖兴涛,张维刚,李青,等.响应表面法在薄壁构件耐撞性优化设计中的应用研究[J].工程设计学报,2006,13(5):298-302.
    [257]石磊.线性回归模型复相关系数的影响评价[J].云南大学学报(自然科学版),1995,17(2):136-139.
    [258]夏人伟.工程优化理论与算法[M].北京:北京航空航天大学出版社,2003.
    [259]兰凤崇,钟阳,庄良飘,等.基于自适应响应面法的车身前部吸能部件优化[J].汽车工程,2010,32(5):404-408.
    [260]Altair HyperStudy 10.0 User's Guide.
    [261]鲍伟.基于HyperStudy平台的COMSOL多参数优化喇叭设计[C], Altair 2010 HyperWorks技术大会.上海,中国,2010.
    [262]Wang GG. Adaptive response surface method using inherited latin hypercube design points[J]. Journal of Mechanical Design,2003,125(2):210-220.
    [263]Wang GG, Dong Z, Aitchison P. Adaptive response surface method-a global optimization scheme for computation-intensive design problems[J]. Engineering Optimization,2002,33(6): 707-733.
    [264]Wang H, Li G Y, Zhong Z H. Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method[J]. Journal of Materials Processing Technology,2008,197(1-3):77-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700