用户名: 密码: 验证码:
养殖场空气中细菌分布及耐药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气是人和动物赖以生存的重要环境因素,一些病原菌以空气为媒介(微生物气溶胶)进行扩散传播,不仅污染了养殖环境,甚至还可引起某些传染病的暴发流行,给养殖业造成巨大的经济损失。空气微生物的种类和含量已成为畜禽舍环境质量的重要指标,直接关系到饲养人员、养殖动物的健康以及生产性能的发挥。以往有关动物舍空气微生物的监测主要针对某种特定的致病菌或是某一类细菌,往往不能了解到空气中菌群分布的整体状况。此外,在对菌群的定性研究中,采用的方法大多依赖于传统的形态学、血清学、生化反应、分子生物学等方法,虽然这些技术在细菌鉴定方面各具特色,但均无法满足对空气微生物进行准确、快速、高通量的检测要求。
     近年来随着抗生素的大量使用,细菌耐药性、药物残留等问题日趋严重,抗生素和耐药株已对养殖环境造成了不同程度的污染,但有关空气中细菌耐药情况的调查相对较少,目前我国尚缺少此方面的研究资料。针对以上问题,本课题选取了长春市五家规模化养猪场,开展了如下研究,旨在对预防养殖场畜禽疾病、合理使用抗生素、改善饲养环境等方面提供理论依据。
     1.基于MALDI-TOF质谱技术的细菌检测方法的建立。利用基质辅助激光解析电离飞行时间质谱仪(Matrix-Assistant Laser Desorption /Ionization Time of Flight Mass Spectrometry, MALDI-TOF MS)建立了一套基于该技术的细菌检测方法(包括样品前处理方法、检测范围、激光能量等),并研究了培养基、培养时间、样品保存时间等实验条件的改变对细菌质谱图的影响。同时以16SrDNA测序法作为参照方法,利用MALDI-TOF质谱技术检测了50株分离株,评估其检测能力。结果显示,质谱检测方法重复性好,不受培养基、培养时间、不同型号仪器等实验条件的影响,所获图谱质量较好、特征峰数目多、信号强度高、离子峰的分布模式稳定。与16SrDNA测序法相比较,结果显示二者具有极高的一致性。以上结果表明,MALDI-TOF质谱技术具有可靠、快速、高通量检测细菌的能力。
     2.养殖场空气中细菌种类及耐药性整体分布情况。本研究采集了长春地区五家养猪场的空气样本,培养基法对样本进行分离培养,并利用上述建立的质谱技术检测法对空气分离株进行鉴定。结果显示,养殖场空气中细菌种类多为环境正常菌群及条件性病原菌。其中革兰氏阳性菌明显居多,占细菌总数的78.1%,以凝固酶阴性葡萄球菌为优势菌群,占据62.7%,其次为芽孢杆菌、气球菌属和罗氏菌属。革兰氏阴性菌中以肠杆菌属数量最多,不动杆菌属、假单胞菌属分别位居二、三位。
     利用Vitek32全自动微生物分析仪、药敏纸片等表型法对养殖场空气分离株进行了药物敏感性检测。结果显示,耐药株检出率较高,主要集中在对红霉素、克林霉素、四环素这些常用于饲料中促生长剂的药物,部分菌株表现出对青霉素类、喹诺酮类等临床上人兽共用药物的耐受性。研究表明,作为优势菌群的凝固酶阴性葡萄球菌(CNS)耐药情况非常严重,尤其是耐甲氧西林凝固酶阴性葡萄球菌(MRCNS)检出率高达65.9%,并伴随着多重耐药现象出现。此外,发现一株鼠鼻罗氏菌(Rothia nasimurium)对除万古霉素外的所有抗生素均表现出高水平耐药,这在以往有关罗氏菌的文献中未见报道。
     3.凝固酶阴性葡萄球菌耐药基因检测。为了深入了解当前长春地区养殖环境中耐药性的流行特点,本研究以CNS为研究对象,针对β内酰胺类、大环内酯类和四环素这三类耐药率较高的抗生素,采用PCR法对其相关耐药基因进行检测。结果显示mecA检出率为58.0%,部分菌株表现为苯唑西林耐药,mecA阴性结果;ermC(69.6%)是阳性率最高的大环内酯类耐药基因,其次是msrA(15.7%)和ermB(14.8%),未检测到ermA基因;四环素类耐药基因tetK(62.7%)检出率明显高于tetM(25.4%)。
     4.高水平多重耐药株鼠鼻罗氏菌的比较蛋白质组学研究。为了解鼠鼻罗氏菌产生耐药性的机制,本研究利用双向电泳和质谱技术比较了鼠鼻罗氏菌耐药株和敏感株全蛋白的变化差异,共筛选并鉴定出18个蛋白,并通过半定量RT-PCR的方法在mRNA水平上对18个差异蛋白进行了验证,结果有4种蛋白的基因在转录水平上表现出与双向电泳结果的一致性,经数据库查询及文献分析这4种蛋白很可能与鼠鼻罗氏菌的耐药性密切相关。
     通过以上研究结果,得出以下结论:
     1.本研究建立的基于质谱技术的检测方法能够快速、准确和高通量的检测鉴定细菌。
     2.明确了调查区域养殖场空气中以凝固酶阴性葡萄球菌为优势菌群的细菌分布特点,了解到被调查养殖场空气分离株对β内酰胺类、大环内酯类、四环素类等饲料和临床中常用抗生素具有不同程度的耐药性。
     3.明确了调查区域养殖场空气中优势菌群(CNS)耐药基因的分布特点:mecA,ermC,tetK分别与环境中CNS对β内酰胺类、大环内酯类及四环素耐药性的产生密切相关。
     4.利用蛋白质组学及半定量RT-PCR筛选并鉴定到的4种差异蛋白,很可能与鼠鼻罗氏菌的多重耐药性密切相关,这将有助于发现和探究这些蛋白的新功能,并为明确该菌的耐药机制奠定理论基础。
Air is one of the most important environmental factors for human and animals. The airborne microorganisms can cause serious air pollution and induce prevalence of some infective diseases, as well as enormous economic lost. Recently, due to the large antibiotics usage, it has become more serious in resistant bacteria and antibiotics residues. Although, the antibiotics and resistance in bacteria have caused pollution of farm environments, there are limited investigations about airborne bacterial resistance and it has not been much concerned in our country. In the past, the detection about airborne microorganisms was often based on some special pathogens or species, but it couldn’t understand the whole distribution of airborne bacteria. Besides that, the methods for bacterial identification were mainly dependent on morphology, biochemical characterization, molecular biology and so on. But they couldn’t satisfy the demands of speed and high-throughput screening. Based on above issues, we have carried out following study in order to provide guidance on the prevention of farm animal diseases, improvement of breeding environments, maintenance of animal health and increasing of production performance.
     1. The establishment of bacterial detection based on MALDI-TOF MS:
     A method for bacterial identification was established by using MALDI-TOF MS, which included sample preparation, detection extent, and laser power. This project researched the influences of the mass spectrum when detecting bacteria by MALDI-TOF MS in several experimental aspects such as cultivation time, cultivation media and conservation time. To evaluate the capability of MALDI-TOF MS, 50 clinical bacterial strains were analyzed. As a reference method for species designation, 16S rRNA gene sequencing was applied. The results showed good reproducibility for mass spectrum without affected by cultivation media, cultivation time or different instruments. The obtained mass spectrum had good quality because of many characteristic peaks, high intensive signals and stable distribution pattern of ion peaks. There was a high accordance with 16S rRNA gene sequencing and MS. It indicated that MALDI-TOF MS-based species identification of bacteria could provide reliable, rapid and high-throughput results.
     2. The global distribution of species and resistance of airborne bacteria in farms:
     In this study, we isolated bacteria from air samples of five swine farms in Changchun area and detected them by MALDI-TOF MS. It displayed that there were almost normal environmental bacterial population and opportunity pathogens in the air. Among these, 78.1% were gram-positive bacteria and coagulase negative Staphylococci were predominant, as followed Bacillus, Aerococcus and Rothia. The Enterobacteriaceae were the highest bacteria population in gram-negative bacteria, and the Acinetobacter, Pseudomonas ranked the second and third, respectively.
     The results of Vitek32 Automated Microbiology System and Kirby-Bauer(K-B) showed that there was a high incidence of resistant bacteria, which mainly focused on erythromycin, clindamycin and tetracycline. Parts of bacteria presented resistance on penicillins and quinolones which used in human and animal clinical treatment. It demonstrated that as the dominant flora of coagulase-negative Staphylococci (CNS) drug resistance was very serious, especially methicillin-resistant coagulase-negative Staphylococci (MRCNS), the detective rate was 65.9% and most of them were multi-drug resistant. This study also found a strain of Rothia nasimurium (No.91) which represented high-level resistance to all tested antibiotics except to vancomycin. It has never been seen in all airborne bacteria and never reported in Rothia previously.
     3. Detection of resistance genes in coagulase-negative Staphylococci:
     To understand the distribution and molecular mechanisms of CNS resistant in the current farming environment in Jilin area, the PCR method was used to detect resistance genes related withβ-lactams, macrolides and tetracycline which had high resistant rates. It showed that 58.0% of mecA gene was detected and some strains showed oxacillin resistant, but were negative results of mecA. ermC (69.6%) was the highest positive rate of macrolide resistance gene, followed by msrA (15.7%), ermB (14.8%). The ermA gene was not detected. The rate of tetracycline resistant gene tetK (62.7%) was higher than tetM (25.4%).
     4. Comparative proteomics of high-level multi-drug resistant Rothia nasimurium:
     To understand resistant mechanism of Rothia nasimurium, this project utilized two-dimensional electrophoresis and mass spectrometry to compare the differences of proteins between drug-resistant strain (No.91) and sensitive strain. There were a total of 18 different proteins to be screen and identify. The proteins had been verified in mRNA levels by semi-quantitative RT-PCR method. Results demonstrated that there were four protein genes at the transcription level in accordance with the two-dimensional electrophoresis. It also implicated that there would be a close relationship between the four proteins and drug resistance.
     As per above results, our conclusions are as fllows:
     1. The established method for bacterial detection based on MALDI-TOF MS possesed more advantages that could rapid, accurate and high-throughput to detect and identify bacteria. It could also be used in airborne microorganism’s research.
     2. It was clear that the distribution of airborne bacteria was the CNS as the dominant flora in the investigated farms. It was understood that the airborne bacteria displayed different degree drug resistance toβ-lactams, macrolides, tetracyclines and other antibiotics which used in feed and clinical treatment.
     3. It was clear that the prevalence of air-borne CNS resistance genes in investigated farms: mecA, ermC, tetK were closely related to resistance ofβ-lactam, macrolide and tetracycline, respectively.
     4. The four different proteins screened and identified by 2D were probably associated with antibiotic resistance of Rothia nasimurium. It would help to discover and explore the new functions of these proteins and provide theoretical basis for specifying bacteria resistant mechanism.
引文
[1] Noah Fierer, Zongzhi Liu, Mari Rodriguez-Hernandez, et al. Short-Term Temporal Variability in airborne bacterial and fungal populations[J]. Applied and Environmental Microbiology, 2008, 74(1):200-207.
    [2] A.Mellmann, J.Cloud, T.Maier, et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria[J]. Journal of Clinical Microbiology, 2008, 46(6):1946-1954.
    [3] Etienne Carbonnelle, Jean-Luc Beretti, Ste′phanie Cottyn, et al. Rapid identification of Staphylococci isolated in Clinical Microbiology Laboratories by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry[J]. Journal of Clinical Microbiology, 2007, 45(7):2156-2161.
    [4] C.Dupont, V.Sivadon-Tardy, E.Bille, et al. Identification of clinical Coagulase Negative Staphylococci isolated in Microbiology Laboratories by MALDI-TOF mass spectrometry and two automates[J]. Clinical Microbiology and Infection, 2010, 16(7): 998-1004.
    [5] Nancy Valentine, Sharon Wunschel, David Wunschel, et al. Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry[J]. Applied and environmental microbiology, 2005,71(1):58-64.
    [6] Maria Fiorella Mazzeo, Alida Sorrentino, Marcello Gaita, et al. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the discrimination of food-borne microorganisms[J]. Applied and Environmental Microbiology, 2006, 72(2):1180-1189.
    [7] Ryzhov, V. & Fenselau, C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells[J]. Anal. Chem., 2001, 73:746-750.
    [8] Bosshard, P.P., R.Zbinden, et al. 16SrDNA gene sequencing versus the API20NE system and the Vitek2 ID-GNB card for identification of nonfermenting gramnegative bacteria in the clinical laboratory[J]. Journal of Clinical Microbiology, 2006, 44:1359-1366.
    [9] L.Ferreira, F.Sanchez-Juanes, I.Porras-Guerra, et al. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time of flight mass spectrometry[J]. Clin Microbiol Infect, 2011, 17:546-551.
    [10] Nielsen B. Exposure to air contaminants in chicken catching[J]. Am. Ind. Hyg. Assoc. J. 1995, 56:804-808.
    [11] Haas D, Posch J, Schmidt S, et al. A case study of airborne culturable microorganisms in a poultry slaughterhouse in Styria[J]. Austria. Aerobiologia, 2005, 21: 193-201.
    [12] Anne Oppliger, Nicole Charriere, Pierre-Olivier Droz, et al. Exposure toBioaerosols in poultry houses at different stages of fattening ;use of real-time PCR for airborne bacterial quantification[J]. Ann.Occup.Hyg., 2008,52(5):405-412.
    [13] Martins, A., Cunha de, M.L. Methicillin resistance in Staphylococcus aureus and coagulase-negative staphylococci: epidemiological and molecular aspects[J]. Microbiol. Immunol. 2007, 51:787-795.
    [14] Van Duijkeren, E., Box, et al. Methicillin-resistant staphylococci isolated from animals[J]. Vet. Microbiol. 2004, 103: 91-97.
    [15] Taponen, S., Simojoki, et al. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP[J]. Vet. Microbiol. 2006, 115: 199-207.
    [16] B.Vila, A.Fontgibell, I.Badiola, et al. Reduction of Salmonella enterica var. Enteritidis colonization and invasion by Bacillus cereus var. toyoi inclusion in poultry feeds[J]. Poultry Science. 2009, 88:975-979.
    [17] Mildred A.Kerbaugh and James B.Evans. Aerococcus viridans in the hospital environment[J]. Applied Microbiology. 1968, 16(3):519-523.
    [18] T.Augustine, Thirunavukkarasu, B.Vishnu Bhat. Aerococcus Viridans Endocarditis[J]. Indian Pediatrics. 1994, 31(5):599-601.
    [19] Young Uh, Jeong Seog Son, In Ho Jang. Penicillin-resistant Aerococcus viridans bacteremia associated with granulocytopenia[J]. J Korean Med Sci. 2002, 17:113-115.
    [20] Qing Zhang, Christopher Kwoh, Silvia Attorri. Aerococcus urinae in urinary tract infections[J]. J Clin Microbiol. 2000, 38(4):1703-1705.
    [21] Juan Carlos Ricaurte, Oscar Klein, Vincent Labombardi. Rothia dentocariosa Endocarditis complicated by Multiple Intracranial Hemorrhages[J]. Southern Medical Journal. 2001, 94(4):438-440.
    [22] Sadhu A, Loewenstein R, Klotz SA. Rothia dentocariosa endocarditis complicated by multiple cerebellar hemorrhages[J]. Diagn Microbiol Infect Dis. 2005, 53(3):239-240.
    [23] Kwan Soo Ko, Mi Young Lee, Young Kyoung Park, et al. Molecular identification of clinical Rothia isolates from human patients: proposal of a novel Rothia species, Rothia arfidiae sp.nov[J]. Journal of Bacteriology and Virology. 2009, 39(3):159-164.
    [24] Yi-Ju Chou, Jui-Hsing Chou, Kuan-Yin Lin, et al. Rothia terrae sp.nov.isolated from soil in Taiwan[J]. International Journal of Systematic and Evolutionary Microbiology. 2008, 58:84-88.
    [25] Erko Stackebrandt, Fred A.Rainey, Naomi L.Ward-rainey. Proposal for a new hierarchic classification system, Actinobacteria classis nov[J]. Int J Syst Bacteriol. 1997, 47:479-491.
    [26] Ying Li, Yoshiaki Kawamura, Nagatoshi Fujiwara, et al. Rothia aeria sp.nov., Rhodococcus baikonurensis sp.nov., isolated from air in the Russian space laboratory Mir[J]. International Journal of Systematic and Evolutionary Microbiology. 2004, 54:827-835.
    [27] Yunling Fan, Zhikun Jin, Jungeng Tong, et al. Rothia amarae sp.nov., from sludge of a foul water sewer[J]. International Journal of Systematic and EvolutionaryMicrobiology. 2002, 52:2257-2260.
    [28] M.D.Collins, R.A.Hutson, V.Baverud, et al. Characterization of a Rothia-like organism from a mouse: description of Rothia nasimurium sp.nov. and reclassification of Stomatococcus mucilaginosus as Rothia mucilaginosa comb.nov[J]. International Journal of Systematic and Evolutionary Microbiology. 2000, 50:1247-1251.
    [29] Yi-Ju Chou, Jui-Hsing Chou, Kuan-Yin Lin, et al. Rothia terrae sp.nov.isolated from soil in Taiwan[J]. International Journal of Systematic and Evolutionary Microbiology. 2008, 58: 84-88.
    [30] Elena Martin, Peter Kampfer and Udo Jackel. Quantification and identification of culturable airborne bacteria from duck houses[J]. Ann.Occup.Hyg. 2010, 54(2):217-227.
    [31] Jmy Chapin, Ana Rule, Kristen Gibson, et al. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation[J]. Environmental Health Perspectives. 2005, 113(2):137-142.
    [32] Elena Martin, Kerstin Fallschissel, Peter Kampfer, et al. Detection of Jeotgalicoccus spp. in poultry house air[J]. Systematic and Applied Microbiology. 2010, 33(4):188-192.
    [33] B.A.Zucker, S.Trojan, and W.Muller. Airborne gram-negative bacterial flora in animal houses[J]. Journal of Veterinary Medicine, Series B. 2000, 47(1):37-46.
    [34] Regalado NG, Martin G, Antony SJ. Acinetobacter lwoffii: bacteremia associated with acute gastroenteritis[J]. Travel Med Infect Dis. 2009, 7(5):316-317.
    [35] Aarestrup FM, Kruse H, Tast E, et al. Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway[J]. Microb Drug Resist. 2000, 6:63-70.
    [36] Amy Chapin, Ana Rule, Kristen Gibson, et al. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation[J]. Environmental Health Perspectives. 2005, 113(2):137-142.
    [37] C.S.Holzel, K.S.Harms, H.Kuchenhoff, et al. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides[J]. Journal of Applied Microbiology. 2010, 108(5):1642-1656.
    [38] Lee, J.H. Methicillin (Oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans[J]. Appl Environ Microbiol., 2003, 69:6489-6494.
    [39] Salvatore Virdis, Christian Scarano, Francesca Cossu, et al. Antibiotic resistance in Staphylococcus aureus and coagulase negative Staphylococci isolated from goats with subclinical mastitis[J].Veterinary Medicine International. 2010,2010:517060 -517065.
    [40] Susana Delgado, Rebeca Arroyo, Esther Jimenez, et al. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: potential virulence trains and resistance to antibiotics[J]. BMC Microbilogy. 2009, 9:82.
    [41] Huber H, Zieqler D, Pfluqer V, et al. Prevalence and characteristics ofmethicillin-resistant coagulase-negative staphylococci from livestock, chicken carcasses, bulk tank milk, minced meat, and contact persons[J]. BMC Veterinary Research. 2011, 7:1-7.
    [42] Silvia Natoli, Carla Fontana, Marco Favaro, et al. Characterization of coagulase-negative staphylococcal isolated from blood with reduced susceptibility to glycopeptides and therapeutic options[J]. BMC Infectious Diseases. 2009, 9:83.
    [43] L.Louie, J.Goodfellow, P.Mathieu, et al. Rapid detection of Methicillin-resistant Staphylococci from blood culture bottles by using a multiplex PCR Assay[J]. Journal of Clinical Microbiology. 2002, 40(8):2786-2790.
    [44] Nurittin Ardic, Mustafa Ozyurt, Baris Sareyyupoglu, et al. Investigation of erythromycin and tetracycline resistance genes in methicillin-resistant Staphylococci[J]. International Journal of antimicrobial agents. 2005, 26:213-218.
    [45] Zerrin Aktas, Aslihan Aridogan, Cigdem Bal Kayacan, et al. Resistance to Macrolide, Lincosamide and Streptogramin antibiotics in Staphylococci isolated in Istanbul, Turkey[J]. Journal of Microbiology. 2007, 45(4):286-290.
    [46] Zafar Hussain, Luba Stoakes,Viki Massey, et al. Correlation of oxacillin MIC with mecA gene carriage in coagulase-negative Staphylococci[J]. Journal of Clinical Microbiology. 2000, 38(2):752-754.
    [47] J L Gerberding, C Miick, H H Liu, et al. Comparison of conventional susceptibility tests with direct detection of penicillin-binding protein 2a in borderline oxacillin-resistant strains of Staphylococcus aureus[J]. Antimicrob Agents Chemother. 1991, 35(12):2574-2579.
    [48] N.H.Georgopapadakou. Penicillin-binding proteins and bacterial resistance toβ-Lactams[J]. Antimicrobial Agents and Chemotherapy. 1993, 37(10):2045-2053.
    [49] Paul D.Stapleton, Peter W.Taylor. Methicillin resistance in Staphylococcus aureus mechanisms and modulation[J]. Sci Prog. 2002,85:57-72.
    [50] Y. Katayama, T.Ito, K.Hiramatsu. A new class of genetic element, Staphylococcus Cassette Chromosome mec, encodes methicillin resistance in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy. 2000, 44(6):1549-1555.
    [51] Rosana B.R.Ferreira, Natalia L.P.Iorio, Karoline L.Malvar, et al. Coagulase-negative Staphylococci: Comparison of phenotypic and genotypic Oxacillin susceptibility tests and evaluation of the agar screening test by using different concentrations of oxacillin[J]. Journal of Clinical Microbiology. 2003, 41(8):3609-3614.
    [52] Jaffe RI, Lane JD, Albury SV, et al. Rapid extraction from and direct identification in clinical samples of methicillin-resistant Staphylococci using PCR[J]. J Clin Microbiol. 2000, 38: 3407-3412.
    [53] Danuta O.Lis, Jerzy Z and Danuta Idzik. Methicillin resistance of airborne coagulase-negative staphylococci in homes of persons having contact with a hospital environment[J]. Am J Infect Control. 2009, 37(3):177-182.
    [54] Tomasz A, Drugeon HB, de Lencastre HM, et al. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP2a gene and contain normal penicillin-binding proteins with modified penicillin-bindingcapacity[J]. Antimicrob Agents Chemother. 1989, 33:1869-1874.
    [55] Chambers HF. Methicillin resistance in Staphylococci: molecular and biochemical basis and clinical implications[J]. Clin Microbiol Rev. 1997, 10:781-791.
    [56] Amita Jain, Astha Agarwal, Raj Kumar Verma. Cefoxitin disc diffusion test for detection of methicillin-resistant staphylococci[J]. Journal of Medical Microbiology, 2008, 57:957-961.
    [57]李玮,胡成平.葡萄球菌属红霉素诱导克林霉素耐药的现况分析[J].国际呼吸杂志, 2009,29(22):1370-1373.
    [58] Ross JI, Eady EA, Cove JH, et al. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family[J]. Mol Microbiol. 1990, 4:1207-1214.
    [59] Fiebelkorn KR, Crawford SA, McElmeel ML, et al. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci[J]. J Clin Microbiol. 2003,41:4740-4744.
    [60] Aarestrup F.M, L.B.Jensen. Trends in antimicrobial susceptibility in relation to antimicrobial usage and presence of resistance genes in Staphylococcus hyicus isolated from exudative epidermitis in pigs[J]. Vet.Microbiol. 2002, 89:83-94.
    [61] Vancraeynest D, K.Hermans, A.Martel. Antimicrobial resistance and resistance genes in Staphylococcus strains from rabbits[J]. Vet. Microbiol. 2004, 101:245-251.
    [62] Satoshi Koike, Rustam I.Aminov, A.C.Yannarell, et al. Molecular ecology of macrolide-lincosamide-streptogramin B methylases in waste lagoons and subsurface waters associated with swine production[J]. Microb Ecol. 2010, 59:487-498.
    [63] Jing Chen, Zhongtang Yu, Frederick C.Michel, et al. Development and application of real-time PCR assay for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems[J]. Applied and Environmental Microbiology. 2007,73(14):4407-4416.
    [64] Stefan Schwarz and Elisabeth Chaslus-Dancla. Use of antimicrobials in veterinary medicine and mechanisms of resistance[J]. Vet.Res. 2001, 32:201-225.
    [65] Ian Chopra and Marilyn Roberts. Tetracycline antibiotics: mode of action, applications, molecular biology and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews. 2001, 65(2):232-260.
    [66] Claudio D. Miranda, Corinna Kehrenberg, Catherine Ulep, et al. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms[J]. Antimicrobial Agents and Chemotherapy. 2003,47(3):883-888.
    [67] Aarestrup F.M, AqersL Y, Ahrens P, et al. Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry[J]. Vet Microbiol. 2000, 74(4):353-364.
    [68] S.Schwarz and W.C.Noble. Tetracycline resistance genes in staphylococci from the skin of pigs[J]. Journal of Applied Microbiology. 1994, 76(4):320-326.
    [69] Stefan Schwarz, Marilyn C.Roberts, Christiane Werckenthin, et al. Tetracycline resistance in Staphylococcus spp.from domestic animals[J]. Veterinary Microbiology. 1998, 63:217-227.
    [70] Bolhuis H., H.W.van Veen, J.R.Brands, et al. Energetics and mechanism ofdrug transport mediated by the lactococcal multidrug transporter LmrP[J]. Biol.Chem. 1996, 271:24123-24128.
    [71] Steinfels E., C.Orelle, J.R.Fantino, et al. Characterization of YvcC(BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis[J]. Biochemistry. 2004, 43:7491-7502.
    [72] Jolyne Drummelsmith, Eric Winstall, Michel G. Bergeron, et al. Comparative proteomics analyses reveal a potential biomarker for the detection of Vancomycin-intermediate Staphylococcus aureus strains. Journal of Proteome Research. 2007, 6(12):4690-4702.
    [73] Jensen, L.B., Y.Agerso, et al. Presence of erm genes among macrolide-resistant gram-positive bacteria isolated from Danish farm soil[J]. Environ Int. 2002, 28:487-491.
    [74] Kang, J.G., S.H.Kim, et al. Bacterial diversity in the human saliva from different ages[J]. J Microbiol. 2006, 44:572-576.
    [75] Juri R, Matthias M. What does it mean to identify a protein in proteomics?[J] Trends in Biochemical Sciences. 2002, 27(2):74.
    [76]何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报:自然科学版. 2002, 38(4):558-562.
    [77] Mcatee C P, Hoffman P S, Berg D E. Identification of differentially regulated proteins in metronidozole resistant Helicobacter pylori by proteome techniques[J]. Proteomics. 2001, 1(4):516-521.
    [78] Barras F, Loiseau L, Py B. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins[J]. Advances in Microbial Physiology. 2005, 50:41-101.
    [79] Fontecave M, Choudens SO, Py B, et al. Mechanisms of iron-sulfur cluster assembly: the SUF machinery[J]. J.Biol.Inorg.Chem. 2005, 10(7):713-721.
    [80] Sendra M, Ollagnier de Choudens S, Lascoux D, et al. The SUF iron-sulfur cluster biosynthetic machinery: sulfur transfer from the SUFS-SUFE complex to SUFA. FEBS LETT., 2007, 581(7):1362-1368.
    [81] Brissette, J.L., Russel, M., Weiner, L., et al. Phage shock protein, a stress protein of Escherichia coli[J]. Proc Natl Acad Sci. 1990, 87: 862–866.
    [82] Andrew J.Darwin. The phage-shock-protein response[J]. Molecular Microbiology. 2005, 57(3):621-628.
    [83] Anna-Barbara Hachmann, Esther R.Angert, John D.Helmann. Genetic analysis of factors affecting susceptibility of Bacillus subtilis to Daptomycin[J]. Antimicrobial agents and chemotherapy. 2009, 54(4):1598-1609.
    [84] Dickinson, D.A., H.J.Forman. Cellular glutathione and thiols metabolism[J]. Biochem.Pharmacol. 2002, 64:1019-1026.
    [85] Derie E.Fuentes, Eugenia L.Fuentes, Miguel E.Castro, et al. Cysteine metabolism-related genes and bacterial resistance to potassium tellurite[J]. Journal of bacteriology. 2007, 189(24):8953-8960.
    [86] James K.Lithgow, Emma J.Hayhurst, Gerald Cohen, et al. Role of a cysteine synthase in Staphylococcus aureus[J]. Journal of bacteriology. 2004, 186(6):1579-1590
    [87] Regni C, Schramm AM, Beamer LJ. The reaction of phosphohexomutase fromPseudomonas aeruginosa: structural insights into a simple processive enzyme[J]. J.Biol.Chem. 2006, 281(22):15564-15571.
    [88] Regni C, Naught L, Tipton PA, et al. Structural basis of diverse substrate recognition by the enzyme PMM/PGM from P.aeruginosa[J]. Structure, 2004, 12(1):55-63.
    [89] Shackelford GS, Regni CA, Beamer LJ. Evolutionary trace analysis of the alpha-D-phosphohexomutase superfamily[J]. Protein Sci. 2004, 13(8):2130-2138.
    [1]车凤翔主编.空气生物学原理及应用.科学出版社. 2004,第一版:2
    [2]谢淑敏,洪俊华,王大耜等.大气微生物的研究[J].环境科学学报,1988,8(1):40-48.
    [3]周晏敏,年桂芬,朱桂香等.齐齐哈尔市不同功能区大气中溶血菌的污染[J].环境监测管理与技术,1993, 5(2): 39-41
    [4]巨天珍,索安宁,田玉军等.兰州市空气微生物分析[J].工业安全与环保,2003, 29(3): 17-19.
    [5]赵霞,王绍霞,刘天学.开封市空气中微生物数量变化动态研究[J].安徽农业科学,2007, 35(22):6691-6694.
    [6]刘雪珠,董邦乾.舟山市区空气中微生物数量变化动态初报[J].浙江科技学院学报,2008, 20(3):196-199.
    [7]张婧,夏立江.垃圾填埋场空气微生物浓度的时空分布特征[J].农业环境科学学报,2009, 28(6):1332-1336.
    [8]梁英梅,张立秋,王跃超等.垃圾填埋场空气微生物污染及评价[J].生态环境学报,2010, 19(5):1073-1077.
    [9]徐强,陶诗,李燚等.大学校园内空气细菌总数的测定[J].内江师范学院学报,2009, 24(4):50-51,60.
    [10]凌琪,王晏平.黄山风景区夏季空气微生物分布特征初步研究[J].微生物学通报,2008, 35(9): 1379-1384.
    [11]于军,贺丹,张贯石等.医院环境中细菌及真菌的分布情况调查分析[J].中国实验诊断学,2007, 11(5): 673-675.
    [12]黄泽智,姚辉,何跃华等.连台手术中室内空气质量的监测与研究[J].现代预防医学,2008, 35(18): 3642-3643.
    [13]杜淑艳,张立山,张秋芬等.唐山市部分居室空气中微生物的污染状况[J].环境与健康杂志,2006, 23(5).
    [14]吴芦英,雷永良.病房空气含菌量及分离株的耐药性分析[J].中国卫生检验杂志,2009, 19(7): 1615-1617, 1622.
    [15]王春华,谢小保,曾海燕等.东莞市空气微生物污染状况研究[J].中国卫生检验杂志,2007, 17(10), 1770-1772.
    [16]周慧晶,郭振江.近年葫芦岛市区空气微生物浓度变化特征分析[J].气象与环境学报,2008, 24(2): 68-71.
    [17] Jennifer Fiegel, Robert Clarke, David A..Edwards. Airborne infectious disease and the suppression of pulmonary bioaerosols[J]. Drug Discov Today, 2006, 11(l/2):51-57.
    [18]柴同杰,柴家前,Wolfgang Mueller.牛舍空气微生物及向环境传播的研究[J].中国预防兽医学报,1999, 21(4): 311-313.
    [19]柴同杰,赵云玲,刘文波等.鸡舍环境耐药细菌气溶胶及其向环境传播的研究[J].中国预防兽医学报,2003, 25(3): 209-214.
    [20]段会勇,王磊,柴同杰.兔舍内气载需氧菌和气载葡萄球菌的检测[J].家畜生态学报,2005, 26(4): 96-99.
    [21] Sally L L J, Mark K, Alvin F, et al. Investigation of the concentration ration of bacteria and their cell envelope components in indoor air in two elementary schools[J]. Air&Waste Management Association, 2000, 50(11): 1957-1967.
    [22] Wright T J, Greene V W, Paulus H J. Viable microorganisms in an urban atmosphere[J]. Journal of Air Pollution Control Association, 1969,19(5):337-341.
    [23] B.T.Shaffer, B.Lighthart. Survey of culturable airborne bacteria at four diverse locations in Oregon: Urban, rural, forest, and coastal[J]. Microbial Ecology, 1997, 34:167-177.
    [24] Ekhaise F O, Ighosewe O U, Ajakpovi O D. Hospital indoor airborne microflora in private and government owned hospitals in Benin City, Nigeria[J]. World Journal of Medical Sciences, 2008, 3(1):19-23.
    [25] Jolanta Szymańska, Jacek Dutkiewicz. Concentration and species composition of aerobic and facultatively anaerobic bacteria released to the air of a dental operation area before and after disinfection of dental unit waterlines[J]. Ann Agric Environ Med, 2008, 15: 301-307.
    [26] Bovallius A, Bucht B, Roffey R, et al. Three-year in vestigation of the natural airborne bacterial flora at four localities in Sweden[J]. Applied and Environmental Microbiology, 1978, 35(5):847-852.
    [27] A.A.Abdel Hameed, M.I.Khoder, S.Yuosra, et al. Diurnal distribution of airborne bacteria and fungi in the atmosphere of Helwan area, Egypt[J]. Science of the Total Environment. 2009, 407(24): 6217-6222.
    [28] Chandra mouli P, Venkata mohan S, Jayarama reddy S. Assessment of microbial (bacteria) concentrations of ambient air at semi-arid urban region: Influence of meteorological factors[J]. Applied Ecology and Environmental Research, 2005, 3(2): 139-149.
    [29] De-Wei Li, James LaMondia. Airborne fungi associated with ornamental plant propagation in greenhouses[J]. Aerobiologia, 2009, 26(1): 15-28.
    [30] Chao H J, Schwartz J, Milton D K, et al. Populations and determinant s of airborne fungi in large office buildings[J]. Environmental Health Perspectives, 2002, 110(8): 777-782.
    [31]易丽娴,黄静芳,李丹等.校园室内空气微生物污染的调查与分析[J].健康必读,2010, 7: 245.
    [32]孙平勇,刘雄伦,刘金灵等.空气微生物的研究进展[J].中国农学通报,2010, 26(11): 336-340.
    [33] Seung-Hoon Lee, Hyo-Jeong Lee, Se-Jin Kim. Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR[J]. Science of the Total Environment, 2010, 408(6):1349-1357.
    [34] Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization[J]. Genome Res, 1996, 6(4): 639-645.
    [35] Zhou J, Thompson DK. Challenges in applying microarrays to environmental studies[J]. Curr Opin Biotechnol, 2002, 13(3): 204-207.
    [36] Walker J, Fox A J, Edwards-Jones V, et al. Intact cell mass spectrometry (ICMS)used type methicillin-resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility[J]. J Microbiol Methods. 2002, 48(2-3): 117-126.
    [37] Bernardo K, Pakulat N, Macht M, et al. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry[J]. Proteomics. 2002, 2: 747-753.
    [38] Holland R D, Rafii F, Heinze T M, et al. Matrix-assisted laser desorption/ ionization time-of-flight mass spectrometric detection of bacterial biomarker proteins isolated from contaminated water, lettuce and cotton cloth[J]. Rapid Commun. Mass Spectrom. 2000, 14(10): 911-917.
    [39] Demirev PA, Feldman AB, Kowalski P, et al. Top-down proteomics for rapid identification of intact microorganisms[J]. Anal Chem., 2005, 77(22): 7455-7461.
    [40] Nagy E, Maier T, Urban E, et al. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry[J]. Clin Microbiol Infect., 2009, 15(8): 796-802.
    [41] Marklein G, Josten M, Klanke U, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates[J]. J Clin Microbiol., 2009, 47(9): 2912-2917.
    [42]王晔茹,崔生辉,李凤琴.基质辅助激光解析/电离飞行时间质谱在沙门菌检测和鉴定分型中的应用研究[J].卫生研究, 2008, 37(6): 685-689.
    [43]其布勒哈斯,田世民,邹明强等. MALDI-TOF质谱技术分析与鉴定病原细菌研究[J].微生物学通报, 2009, 36(3): 416-426.
    [44] Anne Oppliger, Nicole Charriere, Pierre-Olivier Droz, et al. Exposure to Bioaerosols in poultry houses at different stages of fattening ;use of real-time PCR for airborne bacterial quantification[J]. Ann.Occup.Hyg., 2008, 52(5): 405-412.
    [45] Katja N.Olsen, Marianne Lund, Julia Skov, et al. Detection of Campylobacter bacteria in air samples for continuous real-time monitoring of Campylobacter colonization in broiler flocks[J]. Applied and environmental microbiology, 2009, 75(7): 2074-2078.
    [46] Eoin L Brodie, Todd Z DeSantis, Jordan P Moberg Parker. Urban aerosols harbor diverse and dynamic bacterial populations[J]. PNAS, 2007, 104(1): 299-304.
    [47] Despres V, Nowoisky J, Klose M. Molecular genetics and diversity of primary biogenic aerosol particles in urban, rural, and high-alpine air[J]. Biogeosciences Discuss, 2007, 4:349-384.
    [1] Davies J.E. Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Found. Symp. 1997, 207, 15-27.
    [2] Baquero F., Martinez J.L., Canton R. Antibiotics and antibiotic resistance in water environments[J]. Curr. Opin. Biotechnol. 2008, 19: 260-265.
    [3] Cattoir V., Poirel L., Aubert C., et al. Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp[J]. Emerg. Infect. Dis. 2008, 14: 231-237.
    [4]李振,王云建.畜禽养殖中抗生素使用的现状、问题及对策[J].中国动物保健,2009, 7: 55-57.
    [5] Cabello F.C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment[J]. Environ. Microbiol., 2006, 8:1137-1144.
    [6] Mathew A.G., Cissell R., Liamthong S. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production[J]. Foodborne Pathog. Dis. 2007, 4:115-133.
    [7] Dolliver H., Gupta S. Antibiotic losses in leaching and surface runoff from manure-amended agricultural land[J]. J. Environ. Qual. 2008, 37:1227-1237.
    [8] Sundsfjord A., Simonsen G.S., Courvalin P. Human infections caused by glycopeptide-resistant Enterococcus spp: are they a zoonosis?[J] Clin. Microbiol. Infect. 2001, 7 Suppl 4: 16-33.
    [9] Dantas G., Sommer M.O., Oluwasegun R.D., et al. Bacteria subsisting on antibiotics[J]. Science, 2008, 320(5872): 100-103.
    [10] Kotzerke A., Sharma S., Schauss K., et al. Alterations in soil microbial activity and Ntransformation processes due to sulfadiazine loads in pig-manure[J]. Environ. Pollut, 2008, 153: 315-322.
    [11] Turiel E., Bordin G., Rodriguez A.R. Study of the evolution and degradation products of ciprofloxacin and oxolinic acid in river water samples by HPLC-UV/ MS/MS-MS[J]. J. Environ. Monit, 2005, 7: 189-195.
    [12] Lindberg R.H., Bjorklund K., Rendahl, P., et al. Environmental risk assessment of antibiotics in the Swedish environment with emphasis on sewage treatment plants[J]. Water Res., 2007, 41: 613-619.
    [13] Gonzalo M.P., Arribas R.M., Latorre E., et al. Sewage dilution and loss ofantibiotic resistance and virulence determinants in E. coli[J]. FEMS Microbiol. Lett. 1989, 50: 93-96.
    [14] Aarestrup F.M., Seyfarth A.M., Emborg H.D., et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark[J]. Antimicrob. Agents Chemother., 2001, 45(7): 2054-2059.
    [15] Andersson D.I. Persistence of antibiotic resistant bacteria[J]. Curr. Opin. Microbiol. 2003, 6:452-456.
    [16] Pallecchi L., Bartoloni A., Paradisi F., et al. Antibiotic resistance in the absence of antimicrobial use: mechanisms and implications[J]. Expert Rev. Anti Infect. Ther. 2008, 6:725-732.
    [17] Mcclelland M., K.E.Sanderson, J.Spieth, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 2001, 413(6858):852-856.
    [18] Paulsen I.T., L.Banerjei, G.S.Myers, et al. Role of mobile DNA in the evolution of vacomycin resistant Enterococcus faecalis. Science, 2003, 299(5615): 2071-2074.
    [19] Alcaine S.D., Sukhnanand S.S., Warnick L.D., et al. Ceftiofur-resistant Salmonella strains isolated from dairy farms represent multiple widely distributed subtypes that evolved by independent horizontal gene transfer[J]. Antimicrob. Agents Chemother. 2005, 49(10): 4061-4067.
    [20] van den Bogaard, A.E. Willems, R. London, et al. Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers[J]. J. Antimicrob. Chemother. 2002, 49(3): 497-505.
    [21] Brody T., Yavatkar A.S., Lin Y., et al. Horizontal gene transfers link a human MRSA pathogen to contagious bovine mastitis bacteria[J]. PLoS ONE, 2008, 3(8): 3074-3077.
    [22] Sengelov G., Y.Agerso, B.Halling-Sorensen, et al. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry[J]. Environ.Int., 2003, 28(7): 587-595.
    [23] Agerso Y., G.Sengelov, L.B.Jensen. Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland[J]. Environ.Int., 2004, 30(1): 117-122.
    [24] Andrews R.E., Jr. W.S.Johnson, A.R.Guard, et al. Survival of enterococci and Tn916-like conjugative transposons in soil[J]. Can.J.Microbiol., 2004, 50(11):957-966.
    [25] Petersen A., J.S.Andersen, T.Kaewmark, et al. Impact of integrated fish farming on antimicrobial resistance in a pond environment[J]. Appl.Environ.Microbiol., 2002, 68(12): 6036-6042.
    [26] Singer R.S., Finch R., Wegener, H.C., et al. Antibiotic resistance-the interplay between antibiotic use in animals and human beings[J]. Lancet Infect. Dis., 2003, 3(1): 47-51.
    [27] Li D., Yang M., Hu J., et al. Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river[J]. Water Res. 2008, 42(1-2): 307-317.
    [28] Dodd M.C., Huang C.H. Aqueous chlorination of the antibacterial agent trimethoprim: reaction kinetics and pathways[J]. Water Res. 2007, 41(3): 647-655.
    [29] Sukul P., Spiteller M. Fluoroquinolone antibiotics in the environment[J]. Rev. Environ. Contam. Toxicol. 2007, 191: 131-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700