用户名: 密码: 验证码:
普通小麦品种望水白中DON诱导上调表达UDP-葡萄糖基转移酶基因的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦赤霉病(Fusarium head blight, FHB)是一种由镰刀菌(Fusarium graminearum)引起的,严重危害小禾谷类和玉米等作物的真菌性病害。赤霉病不仅会造成作物严重减产,降低种子品质,而且赤霉病菌还会在籽粒中聚积一些单端孢霉烯族(trichothecenes)毒素,严重危害人畜健康。其中脱氧雪腐镰刀菌烯醇(Deoxynivalenol, DON)是最重要的一种毒素,不仅危害人畜健康,而且还被认为是促进赤霉病发病的毒性因子。培育抗赤霉病特别是抗DON积累的小麦品种是减轻赤霉病危害的有效途径。目前,在赤霉病五种抗性类型中对TypeⅠ(抗侵染)和TypeⅡ(抗扩展)的研究较多且深入。随着近年来愈来愈重视食品安全问题,毒素积累抗性类型(TypeⅢ)已经引起广泛关注,但相关研究报道仍然较少,因此迫切需要克隆小麦毒素抗性相关基因并系统深入地研究毒素抗性机制。
     本研究利用Affymetrix小麦基因芯片对经DON诱导后抗赤霉病小麦品种望水白穗组织的基因表达谱进行分析,发现了多个受DON诱导后差异表达的基因。初步分析表明,具有推断功能的表达显著上调基因中,许多基因与抗病(菌)相关,如:谷胱甘酞转移酶、苯丙氨酸解氨酶、细胞色素P450酶以及抗病蛋白等,尤其还发现了一类与已报道的拟南芥中降解DON的DOGT1基因同一家族的尿核苷二磷酸葡萄搪基转移酶(UDP-glucosyltransferase, UGTs)基因。为了进一步验证芯片杂交结果的可靠性并研究这些基因受DON诱导后的表达模式,本研究在这些可能的抗病(菌)有关基因中,选取了部分基因进行半定量RT-PCR分析,结果发现它们都受DON诱导上调表达,表达情况与芯片结果一致,推测这些基因可能与望水白抗DON有关。本研究还进一步证明基因芯片是大规模分析小麦对DON反应的基因表达谱高效而准确的手段。芯片杂交结果为进一步研究小麦对赤霉病(或DON)的抗性以及抗赤霉病(或DON)相关基因的筛选与克隆提供了有价值的信息。
     芯片杂交结果发现,在上调表达基因中基因编号为CA695961的一个EST上调表达25.5倍,该EST序列与已报道的与抗DON有关的UGTs家族基因同源,本研究根据该EST碱基序列设计基因特异引物,筛选本实验室构建的DON诱导望水白穗组织cDNA文库,从中筛选到一个全长的小麦UGT基因TaUGT3 (GenBank accession FJ236328).该基因的cDNA全长1,755bp,包含编码一个496氨基酸的UGT基因的ORF框。TaUGT3与已报道的来自于拟南芥中能降解DON的DOGT1基因在氨基酸水平上有较高的同源性(43%)。半定量RT-PCR结果显示TaUGT3基因受DON的诱导上调表达,并且在抗赤霉病小麦品种望水白不同组织的表达情况有所差别,根与叶部的表达高峰相对穗部推迟了12h。虽然TaUGT3在抗、感赤霉病小麦品种穗中的表达趋势基本一致,但其在抗病品种望水白中最高峰时的表达强度明显超过感病品种绵阳85-45。利用中国春缺体-四体和缺失系系列,将TaUGT3基因的3个直向同源基因分别定位于普通小麦第三部分同源群染色体的短臂上。洋葱表皮亚细胞定位结果显示,TaUGT3基因主要位于细胞膜上和细胞核中。通过农杆菌介导法将TaUGT3基因转化拟南芥,获得阳性转基因植株。Northern杂交显示,转基因植株中TaUGT3基因可以超表达,且不同植株中表达水平有较大差异。DON抗性鉴定表明阳性转基因植株中TaUGT3基因过量表达在一定程度上可以提高拟南芥对DON的耐受力,推测TaUGT3基因可能在小麦抗DON反应中发挥作用。
Wheat Fusarium head blight (FHB) caused by Fusarium graminearum, also called scab, is a destructive fungus disease of small grain cereals and maize. Scab can not only causes yield loss, more seriously is that it can also deteriorate seed quality by contaminating the infected grains with trichothecenes toxins, which are harmful to both human and animal health. Deoxynivalenol (DON) is one of the most important toxin members. It was proposed that DON acted first as a virulence factor during fungal pathogenesis and then accumulated in grain to levels posing a threat to human and animal health. To date, among the five types of FHB resistance, Type I (resistance to the initial infection) and Type II (resistance to the spread of infection) have been intensively studied. Recently, with the increasing attentions on food safety, more and more studies on TypeⅢ(resitance for toxin accumulation) were initiated. However, very few research of TypeⅢresitance were reported. Therefore, it is of great significance to identify the DON resistance-related genes and characterize the underlying molecular mechanism of DON resistance of wheat.
     In the present research, by expression analysis of DON-induced samples using GeneChip(?) Wheat Genome Array(http://www.affymetrix.com/products/arrays/specific /wheat.affx), a DON-resistance related gene TaUGT3 (GenBank accession FJ236328) were cloned and characterized from a scab resistant wheat(Triticum aestivum L.) variety Wangshuibai. The full-length cDNA of TaUGT3 was 1,755 bp and contained a putative open reading frame (ORF) with 496 amino acids encoding a UDP-glucosyltransferase (UGT). TaUGT3 showed high similarity in amino acid level with DOGT1 gene in Arabidopsis, which has been confirmed its function of detoxification of DON. TaUGT3 was located on the group 3 chromosomes of wheat using nullitetrasomic lines and deletion lines of ChineseSpring. Co-transformation of TaUGT3 with GFP genes to onion epidermic cells using transient transformation technique by microprojectile bombardment indicated the subcellular location of the protein encoded by TaUGT3 was in the plasma membrane and nuclear. Transformation and overexpression of the TaUGT3 gene in Arabidopsis could enhance tolerance against DON.
引文
1.柏贵华,周朝飞,钱存鸣.小麦品种抗扩展基因的遗传分析[A].朱立宏主编.主要农作物抗病性遗传研究进展[C].南京:江苏科学技术出版社,1990:171-175
    2.白丽荣.生物芯片技术及其应用概述[J].生物学教学,2003,28:7-8
    3.曹爱忠,李巧,陈雅平,等.利用大麦基因芯片筛选簇毛麦抗白粉病相关基因及其抗病机制的初步研究[J].作物学报,2006,32:1444-1452
    4.陈楚和.小麦抗赤霉病遗传的研究[J].浙江农业大学学报,1983,9:115-126
    5.陈利锋.镰孢菌单端孢霉烯族毒素的生物合成(综述)[J].农业生物技术学报,1998,6:85-88
    6.陈利锋,徐雍皋.小麦赤霉病菌直接侵入现象的电镜观察[J].南京农业大学学报,1989,12:127-128
    7.陈利锋,宋玉立,徐雍皋.小麦赤霉病穗中脱氧雪腐镰刀菌烯醇量的变化[J].植物病理学报,1996,26:25-28
    8.陈佩度,王兆悌,王苏玲,等.将大赖草种质转移给普通小麦的研究Ⅲ.抗赤霉病异附加系选育[J].遗传学报,1995,22:206-210
    9.高力,陈飞,周立人,等.小麦品种望水白的抗赤霉病性遗传分析[J].麦类作物学报,2005,25:5-9
    10.高力,任丽娟,周立人,等.小麦赤霉病抗源望水白的QTL定位[J].农业生物技术学报,2005,13:792-797
    11.高秀丽,杨剑波,景奉香,等.用引物延伸芯片法实现对转基因水稻中质粒PCAMBIA1301的检测[J].遗传,2005,17:271-278
    12.郭红卫,柳启沛,胡卓汉,等.河南产麦区小麦镰刀菌毒素污染状况及农民摄入量[J].中国食品卫生杂志,1989,1:20-24
    13.韩青梅,曹丽华,康振生.小麦赤霉病毒素研究进展[J].西安联合大学学报,2003,6:18-21
    14.黄昌,牟建梅,刘敬阳,等.小麦赤霉病抗性鉴定和新抗源筛选[J].江苏农业科学,2000,2:24-28
    15.黄丽俊,邱德文,刘峥.应用表达谱基因芯片筛选植物激活蛋白处理水稻相关差异基因[J].科学技术与工程,2005,24:1885-1889
    16.康振生,黄丽丽,Buchenauer H,等.禾谷镰刀菌在小麦穗部侵染过程的细胞学研究[J].植物病理学报,2004a,34:329-335
    17.康振生,黄丽丽,Buchenauer H.小麦穗组织中脱氧镰刀菌烯醇毒素的免疫细胞化学定位[J].植物病理学报,2004b,34:419-424
    18.李斌.脱氧雪腐镰刀烯醇毒理学研究进展[J].国外医学卫生分册,1998,25:97-100
    19.李斌,郭红卫.镰刀菌毒素DON、NIV的细胞毒性和致突变、致畸、致癌研究进展[J].癌变·畸变·突变,1999,11:206-207
    20.李凌.芯片技术研究进展[J].中国生物化学与分子生物学报,2000,9:33-35
    21.李荣华,郭培国.用基因芯片技术分析铝胁迫下小麦的基因表达谱[J].生物技术通讯,2007,18:581-586
    22.廖玉才,余毓君.小麦地方品种望水白抗赤霉病性的遗传分析[J].华中农学院学报,1985,4:6-14
    23.林凡云,陆琼娴,徐剑宏,等.抑制差减杂交分离赤霉病菌诱导的小麦特异表达基因[J].西北植物学报,2008a,28:0433-0439
    24.林凡云,陆琼娴,徐剑宏,等.两个与盐和赤霉病菌胁迫相关的小麦糖基转移酶基因的克隆与 表达[J].遗传,2008b,30:1608-1614
    25.林一波,杨竹平,吴兆苏.不同地理来源抗赤霉病小麦品种的抗性遗传分析[J].上海农业学报,1992,8:31-36
    26.刘宗镇,等.DON对小麦愈伤组织诱导和分化的类生长激素作用[J].上海农业学报7(增刊),1993,1-6
    27.刘宗镇,汪志远,赵文俊.小麦品种资源抗赤霉病性研究[J].上海农业学报,1985,1:75-84
    28.刘宗镇,汪志远,赵文俊,等.我国改良小麦品种抗赤霉病性的来源和抗赤霉病性改良中的问题[J].中国农业科学,1992,25:47-52
    29.孟昭赫.食品卫生学检验方法注解——微生物学部分[M].北京:人民卫生出版社,1990:28-29
    30.美国科学委员会专家组.关于单端孢霉烯族毒素的防护论证报告[R].军事医学科学院情报所,1985
    31.牛吉山,常阳,王保勤.一个小麦茉莉酮酸酯诱导蛋白基因的克隆和鉴定[J].植物病理学报,2008,32:172-177
    32.裴雁羲,董海涛,李德葆.白叶枯病菌诱导水稻特异基因表达的微阵列分析[J].农业生物技术学报,2002,10:321-326
    33.裴自友.普通小麦籽粒低DON含量鉴定、配合力分析及其控制DON含量的QTL定位[D].南京:南京农业大学,2007:
    34.钱建亚,熊强.食品安全概论[M].南京:东南大学出版社,2006:59-60
    35.饶志明,董海涛,庄杰云,等.水稻抗稻瘟病近等基因系的cDNA微阵列分析[J].遗传学报,2002,29:887-893
    36.上海第一医学院营养卫生教研室.赤霉病麦中毒研究Ⅱ赤霉病麦粗毒素的急性、亚急性毒性试验[J].上海粮油科技,1976,2:23
    37.史建荣,王裕中,何晨阳,等.镰刀菌单端孢霉烯毒素及其在植物病程中的作用[J].植物病理学报,1997,27:298-302
    38.唐先明,王振月,赵海鹏,等.基因芯片技术在中药基因组学研究中的应用[J].时珍国医国药,2007,18:1097-1099
    39.万永芳,颜济,杨俊良,等.小麦近缘野生植物的赤霉病抗性研究[J].植物病理学报,1997,27:107-111
    40.万永芳,叶华智.小麦抗赤霉病的一些生理生化特性[J].四川农业大学学报,1993,11:439-443
    41.王关林,方宏筠.植物基因工程.北京:科学出版社,2002:128-129
    42.王会艳,孙旭明,张祥宏,等.脱氧雪腐镰刀菌烯醇、黄曲霉毒素G对体外培养人外周血淋巴细胞凋亡影响的研究[J].卫生研究,1999,28:102-104
    43.王加生,徐达道.赤霉病麦粗毒素的致畸与致突变的研究[J].真菌学报,1986,5:52-62
    44.王丽华.水稻花期特异性调控基因的微阵列检测和验证[D].杭州:浙江大学,2003
    45.汪杏芬,吴丽芳,陈佩度,等.普通小麦-鹅观草异附加系的选育与鉴定初报[J].植物学报,1995,37:878-884
    46.王秀娥,陈佩度,刘大钧.同胞质普通小麦-纤毛鹅观草附加系D和端体异附加系tBL的选育[J].遗传学报,1997,24:137-140
    47.王雅平,王先进.小麦品种对赤霉病抗扩展性的遗传研究[J].吉林农业科学,1991,1:21-28
    48.王雅平,吴兆苏,刘伊强.小麦抗赤霉病性的生化研究及其机制的探讨[J].作物学报,1994,20:327-333
    49.翁益群,刘大钧.鹅观草(Roegneria C. Koch)与普通小麦(Triticum aestivum L.)属间杂种F1的形态、赤霉病抗性和细胞遗传学研究[J].中国农业科学,1989,22:1-7
    50.王裕中,米勒JD.中国小麦赤霉病菌优势种—禾谷镰刀菌产毒素能力的研究[J].真菌学报, 1994,13:229-234
    51.武爱波,李和平,张静柏,等.中国与欧洲禾谷镰刀菌DON毒素HPLC定量比较分析[J].应用与环境生物学报,2007,13:131-134
    52.吴永宁.现代食品安全科学[M].北京:化学工业出版社,2003:311-312
    53.夏穗生,周朝飞,钱存鸣,等.苏麦3号、望水白赤霉病抗性遗传初步研究[J].江苏农业科学,1984,8:5-8
    54.谢茂昌,王明祖.小麦赤霉病发病程度与DON含量的关系[J].植物病理学报,1999,29:41-44.
    55.徐雍皋,陈利锋.小麦赤霉病防治理论研究与实践[M].南京:江苏科学技术出版社,1993
    56.徐雍皋,方中达.玉蜀黍赤霉病对小麦致病力的测定方法和致病力分化[J].植物病理学报,1982,12:53-57
    57.徐雍皋,内藤秀树.小麦赤霉病菌的侵染过程小麦赤霉病菌的侵染过程[J].南京农业大学学报,1989,12:33-38
    58.姚红燕,陈利锋,孙枫,等.禾谷镰孢Til12基因敲除突变体的致病力[J].南京农业大学学报,2005,28:32-36
    59.姚金保,陆维忠.中国小麦抗赤霉病育种研究进展[J].江苏农业学报,2000,16(4):242-248
    60.姚金保,王书文,姚国才,等.小麦品种赤霉病抗性的遗传研究[J].作物学报,2004,30:577-581
    61.叶华智,张永红.四川禾谷镰刀菌菌株产真菌毒素的研究[J].西南农业学报,1999,12:79-81
    62.叶茂炳,徐朗莱,徐雍皋,等.苯丙氨酸解氨酶和绿原酸与小麦抗赤霉病性的关系[J].南京农业大学学报,1990,13:103-107
    63.游淑珠,许杨.脱氧雪腐镰刀菌烯醇分析方法的现状[J].卫生研究,2005,34:122-125
    64.俞刚,陈利锋,Xie Wei ping,等.禾谷镰孢单端孢霉烯族毒素在小麦组织中的积累[J].植物病理学报,2002,32:142-146
    65.赵宝存,赵芊,葛荣朝,等.利用基因芯片研究小麦耐盐突变体盐胁迫条件下基因的表达图谱[J].中国农业科学,2007,40:2355-2360
    66.张帆,吴志远,吴健丽,等.食管癌高发区粮食中镰刀菌毒素的含量及其致突变作用[J].中华预防医学杂志,2000,34:53
    67.章军建,刘煜敏.基因芯片在医学研究中的应用[J].国外医学遗传学分册,2002,25:7-11
    68.张凯鸣,马鸿翔,陆维忠,等.小麦赤霉病与DON积累的抗性及其相关SSR位点差异[J].作物学报,2006,32:1788-1795
    69.张凯鸣.小麦品种对赤霉病和DON毒素积累抗性评价及其分子作图研究[D].南京:南京师范大学,2005
    70.中华人民共和国国家标准-食品中真菌毒素限量[S].GB2761-2005
    71.钟耀广.食品安全学[M].北京:化学工业出版社,2005,31-32
    72.张乐庆,潘雪萍.小麦品种对赤霉病的抗扩展性的遗传研究[J].华南农学院学报,1982,3(4):21-29
    73. Akimoto-Tomiyama C, Sakata K, Yazaki J, et al. Rice gene expression in response to N-acetylchitooligosaccharide elicitor:comprehensive analysis by DNA microarray with randomly selected ESTs[J]. Plant Mol Biol,2003,52:537-551
    74. Alexander N J, McCormick S P, and Hohn T M. TRI12, a trithothecene efflux pump from Fusarium sporotrichiodes:gene isolation and expression in yeast[J]. Mol Gen Genet,1999,261:977-984
    75. Alexander N J, McCormick S P, Larson T M, et al. Expression of Tri15 in Fusarium sporotrichioides[J]. Curr Genet,2004,45:157-162
    76. Anderson A, Hudson M, Chen W Q, et al. Identification of nutrient partitioning genes participating in rice grain filling by singular value decomposition (SVD) of genome expression data[J].BMC Genomics,2003,4:26
    77. Anhalt S, and Weissenbock G Subcellular localization of luteolin glucuronides and related enzymes in rye mesophyll[J]. Planta,1992,187:83-88
    78. Apel K, Bohlmann H, and Reimann-Philipp U. Leaf thionins, a novel class of putative defence factors[J]. Physiol Plant,1990,80,315-321
    79. Arango D, Wilson A J, Shi Q, et al. Molecular mechanisms ofaction and prediction of response to oxaliplatin in colorectal cancer cells[J].Br J Cancer,2004,91:1931-1946
    80. Assabgui R A, Reid L M, Hamilton R I, et al. Correlation of kernel (E)-ferulic acid content of maize with resistance to Fusarium graminearum[J]. Phytopathology,1993,83:949-953
    81. Atkinson H A C, and Miller K. Inhibitory effect of deoxynivalenol,3-acetyldeoxynivalenol and zearalenone on induction of rat and human lymphocyte proliferation[J]. Toxicol Lett,1984,23: 215-221
    82. Aziz N H, Farag S E, Mousa L A A, et al. Comparative antibacterial and antifungal effects of some phenolic compounds[J]. Microbios,1998,93:43-54
    83. Bakan B, Bily A C, Melcion D, et al. Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels[J]. J Agric Food Chem,2003,51:2826-2831
    84. Bai G H, Dweikat G, and Shaner G E. Identification of QTLs for scab resistance in wheat by means of RALD markers[J]. Phytopathology,1995,85:1201
    85. Bai G H, Desjardins A E, and Plattner R D. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes [J]. Mycopathologia,2001a, 153:91-98
    86. Bai G H, Plattner R, Desjardins A, et al. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat[J]. Plant Breed,2001b,120:1-6
    87. Bai G, Plattner R, Shaner G, et al. A QTL for deoxynivalenol tolerance in wheat. Phytopathology, 2000,90 (6):S4 (Abstr.)
    88. Bai G, Shaner G E. Management and resistance in wheat and barley to fusarium head blight[J].Annu Rev Phytopathol,2004,42:135-161
    89. Bell A A. Biochemical mechanisms of disease resistance[J]. Annu Rev Plant Physiol,1981,32: 21-81
    90. Bernardo A, Bai G H, Guo P G, et al. Fusarium graminearum-induced changes in gene expression between fusarium head blight-resistant and susceptible wheat cultivars[J]. Funct Integr Genomics, 2007,7:69-77
    91. Berthiller F, Dall'Asta C, and Schuhmacher R, et al. Masked mycotoxins:Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry[J]. J Agric Food Chem,2005,53:3421-3425
    92. Bily A C, Reid L M, Taylor J H, et al. Dehydrodimers of ferulic acid in maize grain pericarp and aleurone:resistance factors to Fusarium graminearum[J]. Phytopathology,2003,93:712-719
    93. Binder E M. Managing the risk of mycotoxins in modern feed production[J]. Anim. Feed Sci. Technol,2007,133:149-166
    94. Blume A J, Lichtshtein D, and Boone G Coupling of opiate receptors to adenylate cyclase: Requirement for Na+ and GTP[J]. Proc Natl Acad Sci U S A,1979,76:5626-5630
    95. Boutigny A L, Richard-Forget F, and Barreau C. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes[J]. Eur. J. Plant Pathol,2008,121:411-423
    96. Bowles D, Isayenkova J, Lim E-K, et al. Glycosyltransferases:managers of small molecules[J]. Curr Opin Plant Biol,2005,8:254-263
    97. Brown D W, Proctor R H, Dyer R B, et al. Charaterization of a Fusarium 2-gene cluster invoved in trichothecene C-8 modification[J]. J Agric Food Chem,2003,51:7936-7944
    98. Buerstmayr H, Lemmens M, Hartl L, et al. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I.Resistance to fungal spread (Type II resistance)[J]. Theor Appl Genet, 2002,104:84-91
    99. Buerstmayr H, Steiner B, Hartl L, et al. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread[J]. Theor Appl Genet, 2003,10:503-508
    100. Burow G B, Nesbitt T C, Dunlap J, et al. Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis[J]. Mol Plant Microbe Interact,1997,10:380-387
    101. Cai X, Chen P D, Xu S S, et al. Utilization of alien genes to enhance Fusarium head blight resistance in wheat-A review[J]. Euphytica,2005,142:309-318
    102. Garvey G S, McCormick S P, and Rayment I. Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum; kinetic insights to combating Fusarium head blight[J]. J Biol Chem,2008,283: 1660-1669
    103. Chen Z Y, Brown R L, Lax A R, et al. Resistance to Aspergillus flavus in corn kernels is associated with a 14-kDa protein[J]. Phytopathology,1998,88:276-281
    104. Chen J, Griffey C A, Saghai Maroof M A, et al. Validation of two major quantitative trait loci for fusarium head blight resistance in Chinese wheat line W14[J]. Plant Breed,2006,125:99-101
    105. Chen P D, Liu W X, Yuan J H, et al. Development and characterization of wheat-L eymus racemosus translocation lines with resistance to Fusarium Head Blight[J]. Theor Appl Genet,2005, 111:941-948
    106. Chipley J R, Uraih N. Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid[J]. Appl Environ Microbiol,1980,40:352-357
    107. Christensen J J, Stackman E C, Immer F R. Susceptibility of wheat varieties and hybrids to Fusarial head blight in Minnesota[R]. Technical Bulletin Minnesota Agricultural Experimental Station,1929,59:3-24
    108. Coleman J O D, Blake-Kalff M M A, and Davies T G E. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation[J]. Trends Plant Sci,1997,2:144-151
    109. Coutinho P M, Deleury E, Davies G J, et al. An evolving hierarchical family classification for glycosyltransferases[J]. J Mol Biol,2003,328:307-317
    110. Cuthbert P A, Somers D, and Brule-Babel A. Mapping of Fhb2 on chromosome 6BS:a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.)[J].Theor Appl Genet,2007,114:429-437
    111.Desjardins A E, Proctor R H, and Bai G H. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests[J]. Mol Plant Microbe Interact,1996,9:775-781
    112. Desjardins A E, Hohn T M, and McCormick S P. Trichothecene biosynthesis in Fusarium species: chemistry, genetics and significance[J]. Microbiol Rev,1993,57:595-604
    113. Desjardins A E, Plattner R D, and Spencer G F. Inhibition of trichothecene toxin biosynthesis by naturally occurring shikimate aromatics[J]. Phytochemistry,1988,27:767-771
    114. Desjardins A E, Manandhar G, Plattner R D, et al. Occurrence of Fusarium Species and Mycotoxins in Nepalese Maize and Wheat and the Effect of Traditional Processing Methods on Mycotoxin Levels[J]. J Agric Food Chem,2000,48:1377-1383
    115. Dickson J G, Johann H, and Wineland G. Second progress report on the Fusarium blight (scab) of wheat[J]. Phytopathology,1921,11:35
    116. Doohan F M, Mentewab A, and Nicholson P. Antifungal activity toward Fusarium culmorum in soluble wheat extracts[J]. Phytopathology,2000,90:666-671
    117. Duvick J P, Rood T, and Rao A G Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels[J]. J Biol Chem,1992,267:18814-18820
    118.Egorov T A, Odintsova T I, Pukhalsky V A, et al. Diversity of wheat anti-microbial peptides[J].Peptides,2005,26:2064-2073
    119. El-Banna A A. Stability of citrinin and deoxynivalenol during germination process of barley[J]. Mycotoxin Research,1987,3:37-41
    120. Eriksen G S. Metabolism and toxicity of trichothecenes[D]. Sweden:Swedish University of Agricultural Sciences,2003
    121. Eriksen G S, Pettersson H, and Lundh T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites[J]. Food Chem Toxicol 2004,42:619-624
    122. Food and Drug Administration.U.S.Food and Drug Adminisration advisory levels-deoxynivalenol, September 16. Associate Commissioner for Regulatory Affairs, Department of Health and Human Services, Rockville, Md.1993
    123.Frassinet-Tachet L, Baltz R, Chong J, et al. Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid[J]. FEBS Lett,1998,437:319-323
    124. Friend J. Plant phenolics, lignification and plant disease[J]. Prog Phytochem,1981,7:197-261
    125.Fritig B, Heitz T, and Legrand M. Antimicrobial proteins in induced plant defense[J]. Curr Opin Immunol,1998,10:16-22
    126. Fuchs E, Binder E M, Heidler D, et al. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797[J]. Food Addit Contam,2002, 19:379-386
    127. Fujita M, Yoshizawa T. Metabolism of deoxynivalenol, a trichothecene mycotoxin, in sweet potato root tissues[J]. Journal of the Food Hygienic Society of Japan,1990,31:474-478
    128. Fujiware S, Tanaka N, Kaneda T, et al. Rice cDNA microarray-based gene expression profiling of the response to flagellin perception in cultured rice cells[J]. Mol Plant Microbe Interact,2004,17: 986-998
    129. Fukuchi-Mizutani M, Okuhara H, Fukui Y, et al. Biochemical and Molecular Characterization of a Novel UDP-Glucose:Anthocyanin 3'-O-Glucosyltransferase, a Key Enzyme for Blue Anthocyanin Biosynthesis, from Gentian[J]. Plant Physiol,2003,132:1652-1663
    130. Gilsinger J, Kong L, Shen X, et al. DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat[J]. Theor Appl Genet,2005,110:1218-1225
    131. Gosman N, Chandler E, Thomsett M, et al. Analysis of the relationship between parameters of resistance to Fusarium head blight and in vitro tolerance to deoxynivalenol of the winter wheat cultivar WEK0609(?)[J]. Eur. J. Plant Pathol,2005,111:57-66
    132. Guimil S, Chang H S, Zhu T, et al. Comparative Transcriptomics of rice reveals an ancient pattern of response to microbial colonization[J]. Proc Natl Acad Sci U S A,2005,102 (22):8066-8070
    133. Guiraud P, Steiman R, Seigle-Murandi F, et al. Comparison of the toxicity of various lignin-related phenolic compounds toward selected fungi perfecti and fungi imperfecti[J]. Ecotoxicol Environ Saf, 1995,32:29-33
    134. Hagler W M Jr, Tyczkowska K, and Hamilton PB.1984. Simultaneous occurrence of deoxynivalenol, zearalenone, and aflatoxin in 1982 scabby wheat from the Midwestern United States[J]. Appl Environ Microbiol,1984,47:151-154
    135. Hall M D, Van Sanford D A. Diallel analysis of Fusarim head blight resistance in soft red winter wheat[J]. Crop Sci,2003,43:1663-1670
    136. Hanson E W, Ausemus E R, and Stakman E C.Varietal resistance of spring wheats to fusarial head blight[J]. PhytoPathology,1950,40:902-914
    137. Harris L J, and Gleddie S C. A modified Rp13 gene from rice confers resistance of the Fusarium graminearum mycotoxin deoxynivalenol to transgenic tobacco[J]. Physiol Mol Plant Pathol,2001, 58:173-181
    138. Horvath D M, and Chua N H. Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compounds[J]. Plant Mol Biol,1996,31:1061-1072
    139. Horvath D M, Huang D J, and Chua N H. Four Classes of Salicylate-Induced Tobacco Genes[J]. Mol Plant Microbe Interact,1998,11:895-905
    140. Hua S-S T, Grosjean O-K, and Baker J L. Inhibition of aflatoxin biosynthesis by phenolic compounds[J]. Lett Appl Microbiol,1999,29:289-291
    141. Huang Z Y, White D G, and Payne G A. Corn seed proteins inhibitory to Aspergillus flavus and aflatoxin biosynthesis[J]. Phytopathology,1997,87:622-627
    142. Hughes J, and Hughes M A. Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons[J]. DNA Seq,1994,5:41-49
    143. Huynh Q K, Borgmeyer J R, and Zobel J F. Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds[J]. Biochem Biophys Res Commun,1992b,182:1-5
    144. Huynh Q K, Hironaka C M, Levine E B, et al. Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed[J]. J Biol Chem,1992a, 267:6635-6640
    145. Ibrahim R K. Immunolocalization of flavonoid conjugates and their enzymes[A]. Stafford H A, Ibrahim R K, eds. Phenolic metabolism in plants[C]. New York:Plenum Press,1992:25-61
    146. Ishii K J, Ando Y K, and Ueno Y S. Toxicological approaches to the metabolites of Fusaria:IX.Isolation of vomiting factor from moldy corn infected with Fusarium species[J]. Chem Pharm Bull (Tokyo),1975,23:2162-2164
    147. Jae H K, Bong G K, Jeong H K, et al. Four glucosyltransferases from rice:cDNA cloning expression, and characterization[J]. J Plant Physiol,2008,165:435-444
    148. Jansen C, Wettstein D V, Schafer W, et al. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum[J]. Proc Natl Acad Sci USA,2005,102:16892-16897
    149. Jauhar P P, Peterson T S. Hybrids between durum wheat and Thinopyrum junceiforme:prospects for breeding for scab resistance[J]. Euphytica,2001,118:127-136
    150. Jiang G L, Dong Y H, Shi J R, et al. QTL analysis of resistance to Fusarium head blight in the novel Wheat germplasm CJ 9306. Ⅱ. Resistance to deoxynivalenol accumulation and grain yield loss[J].Theor Appl Genet,2007,115:1043-1052
    151. Jin Q S, Waters D, Cordeiro G M, et al. (2003) A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.) [J]. Plant Sci,2003,165:359-364
    152. Jones P, Messner B, Nakajima J-I, et al. UGT73C6 and UGT78D1-glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana[J]. J Biol Chem,2003,278:43910-43918
    153. Jones P, and Vogt T. Glycosyltransferases in secondary plant metabolism:tranquilizers and stimulant controllers[J]. Planta.2001,213:164-174
    154. Kadota I, Mizuno A, and Nishiyama K. Detection of a protein specific to the strain of Pseudomonas avenae Manns 1909 pathogenic to rice[J]. Annals of the Phytopathological Society of Japan,1996, 62:425-428
    155. Kachroo A, He Z H, Patkar R, et al. (2003). Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens[J]. Transgenic Res,2003,12: 577-586
    156. Kimura M, Kaneko I, Komiya M, et al. Trichothecene 3-O-acetyltransferase protecs both the producing organism and transformed yeast from related mycotoxins.Cloning and characterization of Tri101[J]. J Biol Chem,1998b,273:1654-1661
    157. Kimura M, Matsumoto G, Shingu Y, et al. The mystery of the trichothecene 3-O-acetyltranferase gene[J]. FEBS Lett,1998a,435:163-168
    158. Kimura M, Takahashi-Ando N, Nishiuchi T, et al. Molecular biology and biotechnology for reduction of Fusarium mycotoxin contamination[J]. Pestic Biochem Physiol,2006,86:117-123
    159. Klahr A, Zimmermann G, Wenzel G, et al. Effects of environment,disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross[J]. Euphytica,2007,154:17-28
    160. Kohara A, Nakajima C, Hashimoto K, et al. A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum[J]. Plant Mol Biol,2005,57:225-239
    161. Kohara A, Nakajima C, Yoshida S, et al Characterization and engineering of glycosyltransferases responsible for steroid saponin biosynthesis in Solanaceous plants[J]. Phytochemistry,2007,68: 478-486
    162. Krska R, Baumgartner S, and Josephs R. The State of the art in the analysis of type-A and type-B trichothecend mycotoxins in cereals[J].Fresenius J Anal Chem,2001,371:285-299
    163. Kruger W M, Pritsch C, Chao S, et al. Functional and Comparative Bioinformatic Analysis of Expressed Genes from Wheat Spikes Infected with Fusarium gramearum[J]. Mol Plant Microbe Interact,2002,15:445-455
    164. Ichinoe M, Kurata H, and Sugiura Y, et al. Chemotaxonomy of Gibberella zeae with Special Reference to Production of Trichothecenes and Zearalenone[J]. Appl Environ Microbiol,1983,46: 1364-1369
    165. Latchinian-Sadek L, and Ibrahim R K. Flavonol ring B-specific O-glucosyltransferase; purification, production of polyclonal antibodies and immmunolocalization[J]. Arch Biochem Biophys.1991,289: 230-236
    166. Leah J M, Worrall T L, and Cobb A H. Isolation and characterization of two glucosyltransferases from Glycine max associated with bentazone metabolism[J]. Pestic Sci,1992,34:81-87
    167. Lee S E, Campbell B C, Molyneux J, et al. Inhibitory effects of naturally occurring compounds on aflatoxin B1 biotransformation[J]. J Agric Food Chem,2001,49:5171-5177
    168. Lee T, Han H K, Kim K H, et al. Tri13 and Tri 17 determine doxynivalenol and nivalenol-producing chemotypes of Gibberella zeae[J]. Appl Environ Microbiol,2002,68:2148-2154
    169. Lee U S, Jang H S, Tanaka T,et al. The coexistence of the Fusarium mycotoxins nivalenol deoxynivalenol and zearalenone in Korean cereals harvested in 1983[J]. Food addit Contain,1985,2: 185-192
    170. Lemmens M, Scholz U, Berthiller F, et al. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat[J]. Mol Plant Microbe Interact,2005,181:1318-1324
    171.Lempereur I, Rouau X, and Abecassis J. Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durum L.) grain and its milling fractions[J]. J Cereal Sci,1997,25:103-110
    172. Levesque C A. Molecular methods for detection of plant pathogen-what is the future?[J]. Can. J. Plant Pathol,2001,24:333-336
    173. Levine A, Tenhaken R, Dixon R, et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell,1994,79:583-593
    174. Li Q, Chen F, Sun L X, et al. Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray[J]. Physiol. Mol. Plant Pathol,2006,68: 51-60
    175. Li Y, Baldauf S, Lim E K, et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana[J]. J Biol Chem,2001,276:4338-4343
    176. Lim E K, and Bowles D J. A class of plant glycosyltransferases involved in cellular homeostasis[J]. EMBO J,2004,23:2915-2922
    177. Lin F, Kong Z X, Zhu H L, et al. Mapping QTL associated with resistance to fusarium head blight in the Nanda2419 x Wangshuibai population. I. Type Ⅱ resistance[J]. Theor Appl Genet,2004,109: 1504-1511
    178. Lin F, Xue S L, Zhang Z Z, et al. Mapping QTL associated with resistance to fusarium head blight in the Nanda2419×Wangshuibai population. II. Typel resistance[J]. Theor Appl Genet,2006,112: 528-535
    179. Logrieco A, Bottalico A, and Altomare C, et al. Chemotaxonomic observations on zearalenone and trichothecene production by Gibberella zeae from cereals in southern italy[J]. Mycologia,1988,80: 892-895
    180. Ma H X, Zhang K M, Gao L, et al. Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions[J]. Plant Pathol,2006, 55:739-745
    181. Mackenzie P I, Owen I S, Burchell B, et al.The UDP-glycosyltransferases gene superfamily: recommended nomenclature update based on evolutionary divergence[J]. Pharmacogenetics,1997,7: 255-269
    182. Mahoney N, and Molyneux R J. Phytochemical inhibition of aflatoxigenicity in Aspergillus flavus by constituents of walnut (Juglans regia)[J]. J Agric Food Chem,2004,52:1882-188
    183. Mallozzi M A B, Correa B, Haraguchi M, et al. Effect of flavonoids on Aspergillus flavus growth and aflatoxin production[J]. Rev Argent Microbiol,1996,27:161-165
    184. Manoharan M, Dahleen L S, Hohn T M, Neate, et al. Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol[J]. Plant Sci,2006, 171:699-706
    185. Matern U, and Kneusel R E.Phenolic compounds in plant disease resistance[J]. Phytoparasitica, 1988,16:153-170
    186. McCormick S P, Alexander N J, Trapp S E, et al. Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides[J]. Appl Environ Microbiol, 1999,65:5252-5256
    187. McKeehen J D, Bush R H, and Fulcher R G Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance[J]. J Agric Food Chem, 1999,47:1476-1482
    188. Mesterhazy A. Types and components of resistance to Fusarium head blight[J]. Plant Breed,1995, 114:377-386
    189. Mesterhazy A, Bartok T, Mirocha C G, et al. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding[J]. Plant Breed,1999,118:97-110
    190. Mesterhazy A. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight[J]. Eur J Plant Pathol,2002,108:675-684
    191. Mervini F, Fornelli F, and Flynn K M. Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin B1 in a human erythroleukemia cell line[J]. Toxicol In Vitro,2004, 18:21-28
    192. Michiels S, Koscielny S, and Hill C. Prediction of cancer outcomewith microarrays:Amultiple random validation strategy[J].Lancet,2005,365:488-492
    193. Miedaner T. Breeding wheat and rye for resistance to Fusarium diseases[J]. Plant Breed,1997,116: 201-220
    194. Miedaner T, Reinbrecht C, and Schilling A. Association among aggressiveness, fungal colonization, and mycotoxin production of 26 isolates of Fusarium graminearum in winter rye head blight[J]. Z Pflanzenkr Pflanzenschutz,2002,107:124-134
    195. Miedaner T, Heinrich N, Schneider B, et al. Estimation of deoxynivalenol (DON) content by symptom rating and exoantigen content for resistance selection in wheat and triticale[J]. Euphytica, 2004,139:123-132
    196. Miedaner T, Schneider B. Quantitayive-genetic analysis of Fusarium head blight resistance and DON content in European winter wheat[A]. In Proceedings of the 2nd International Symposium on Fusarium Head Blight[C].Wyndham Orlando Resort Orlando, FL, USA 11-15 December,2004, p: 126
    197. Miedaner T, Schneider B, and Geiger H H. Deoxynivalenol (DON) content and Fusarium head blight resistance in segregating populations of winter rye and winter wheat[J]. Crop Sci,2003,43: 519-526
    198. Miller J D, Young J C, and Trenholm H L. Fusarium toxins in field corn. I. Time course of fungal growth and production of deoxynivalenol and other mycotoxins[J]. Can J Bot,1983,61:3080-3087
    199. Miller J D, Young J C, and Sampson D R. Deoxynivalenol and Fusarium head blight resistance in spring cereals[J]. J. Phytopathol,1985,113:359-367
    200. Miller J D, and Arnison P G. Degradation of deoxynivalenol by suspension cultures of thefusarium head blight resistant wheat cultivar Frontana[J]. Can. J. Plant Pathol,1986,8:147-150
    201. Miller J D, Greenhalgh R, Wang YZ, et al. Trichothecene chemotypes of three Fusarium species[J].Mycologia,1991,83:121-130
    202. Mirocha C J, Abbas H K, Windels C E, et al. Variation in deoxynivalenoi,15-deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone production by Fusarium graminearum isolates[J]. Appl Environ Microbiol,1989,55:1315-1316
    203. Mitterbauer R, and Adam G. Saccharomyces cerevisae and Arabidopsis thaliana:useful model systems for the identification of molecular mechanisms involved in resistance of plants to toxins[J]. Eur J Plant Pathol,2002,108:699-703
    204. Moore J, Liu J G, Zhou K Q, et al. Effects of genotype and environment on the antioxidant properties of hard winter wheat bran[J]. J Agric Food Chem,2006,54:5313-5322
    205. Morooka N, Uratsuji N, Yoshizawa T, et al. Studies on the toxic substances in barley infected with Fusarium spp[J]. Journal of the Food Hygienic Society of Japan,1972,13:368-375
    206. Mpofu A, Sapirstein H D, and Beta T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat[J]. J Agric Food Chem, 2006,54:1265-1270
    207. Mujeeb-Kazi A, Rodriguez R. An intergeneric hybrid of Triticum aestivum L.X Elymus giganteus[J]. J Hered,1981,72:253-256
    208. Muthukrishnan S, Liang G H, Trick H N, et al. Pathogenesis-related proteins and their genes in cereals[J]. Plant Cell Tissue Organ Cult,2001,64:93-114
    209. Naczk M, and Shahidi F. Extraction and analysis of phenolics in food[J]. J Chromatogr A,2004, 1054:95-111
    210. Narusaka Y, Narusaka M, Seki M, et al.The cDNA microarray analysis using an Arabidopsis pad3 mutant reveals the expression profiles and classification of genes induced by Al ternaria brassicicola attack[J]. Plant Cell Physiol,2003,44:377-387
    211.Nesci A V, and Etcheverry M G. Control of Aspergillus growth and aflatoxin production using natural maize phytochemicals under different conditions of water activity[J]. Pest Manag Sci 2006, 62:775-784
    212. Neucere J N, and Godshall M A. Effects of base-soluble proteins and methanol-soluble polysaccharides from corn on mycelial growth of Aspergillus flavus[J]. Mycopathologia,1991,113: 103-108
    213. Nicholson R L, and Hammerschmidt R. Phenolic-compounds and their role in disease resistance[J]. Annu Rev Phytopathol,1992,30:369-389
    214. Nicholson P, Simpson D R, Weston G, et al. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays[J]. Physiol. Mol. Plant Pathol,1998,53: 17-37
    215. Noguchi A, Inohara-Ochiai M, Ishibashi N, et al. A Novel Glucosylation Enzyme:Molecular Cloning, Expression, and Characterization of Trichoderma viride JCM22452 a-Amylase and Enzymatic Synthesis of Some Flavonoid Monoglucosides and Oligoglucosides[J]. J Agric Food Chem,2008,56:12016-12024
    216. Norton R A. Effect of carotenoids on aflatoxin B1 synthesis by Aspergillus flavus[J]. Phytopathology,1997,87:814-821
    217. Norton R A. Inhibition of aflatoxin B1 biosynthesis in Aspergillus flavus by anthocyanidins and related flavonoids[J]. J Agric Food Chem 1999,47:1230-1235
    218. O'Donnell P J, Truesdale M R, Calvert C M, et al. A novel tomato gene that rapidly responds to wound-and pathogen-related signals[J]. Plant J,1998,14:137-142
    219. Ohsato S, Ochiai-Fukuda T, Nishiuchi T, et al. Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol[J]. Plant Cell Rep, 2007,26:531-538
    220. Okubara P A, Blechl A E, McCormick S P, et al. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene[J]. Theor Appl Genet,2002, 106:74-83
    221. Parent-Massin D, and Thouvenot D. In vitro toxicity of trichothecenes on rat haematopoietic progenitors[J]. Food Addit Contain,1995,12:41-49
    222. Paul P A, Lipps P E, and Madden L V. Relationship between visul estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain:A meta-analysis[J]. Phytopathology,2005,95:1225-1236
    223. Paul P A, Lipps P E, and Madden L V. Meta-Analysis of regression coefficients for the relationship between Fusarium head blight and deoxynivalenol content of wheat[J]. Phytopathology,2006,96: 951-961
    224. Pinson-Gadais L, Barreau C, Chaurand M, et al. Distribution of toxigenic Fusarium spp. and mycotoxin production in milling fractions of durum wheat[J]. Food Addit Contain,2007,24:53-62
    225. Ponts, N. Influence de stress oxydatifs sur la biosynthese de mycotoxines de Fusarium spp[D]. France:Bordeaux University,2005
    226. Ponts N, Pinson-Gadais L, Verdal-Bonnin M N, Barreau, et al. Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum[J]. FEMS Microbiol Lett,2006,258,102-107
    227. Ponts N, Pinson-Gadais L, Barreau C, et al. Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum[J]. FEBS Lett,2007,581,443-447
    228. Poppenberger B, Berthiller F, Bachmann H, et al. Expression of Arabidopsis UDP-Glucosyltransferases in Saccharomyces cerevisiae for Production of Zearalenone-4-O-Glucoside[J]. Appl Environ Microbiol,2006,72:4404-4410
    229. Poppenberger B, Berthiller F, Lucyshyn D, et al. Detoxification of the Fusarium Mycotoxin Deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana[J]. J Biol Chem,2003, 278:47905-47914
    230. Preska J J, Yan D, King L E, et al. Flow cytometric analysis of the effects of in vitro exposure to vomitoxin (deoxynivalenol) on apoptosis in murine T, B and IgA super(+) cells[J]. Food Chem Toxicol,1994,32:1125-1136
    231. Proctor R H, Hohn T M, McCormick S P, et al. TR16 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sportrichioides[J]. Appl Environ Microbiol,1995a,61:1923-1930
    232. Proctor R H, Hohn T M, and McCormick S P. Restoration of wild-type virulence to TRI5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation[J]. Microbiology,1997, 143:2583-2591
    233. Pugh G W, Jenann H, and Dichson J G. Factors affecting infection of wheat heads by Gibberella saubinetii[J]. J Agric Res,1933,44:207-238
    234. Pumphrey M O, Bernardo R, and Anderson J A. Validating the Fhbl QTL for fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations[J].Crop Sci,2007,47: 200-206
    235. Radominska-Pandya A, Czernik P J, Little J M, et al. Structural and functional studies of UDP-glucuronosyltransferases[J]. Drug Metab Rev,1999,31:817-899
    236. Reid L M, Mather D E, Arnason J T, et al. Changes in phenolic constituents of maize silk infected with Fusarium graminearum[J]. Can J Bot,1992,70:1697-1702
    237. Repka V. Improved histochemical test for in situ detection of hydrogen peroxide in cells undergoing oxidative burst or lignification[J]. Biol. Plant,1999,42:599-607
    238. Ribichich K F, Lopez S E, and Vegetti A C. Histopathological spikelet changes produced by Fusarium graminearum in susceptible and resistant wheat cultivars[J]. Plant Dis,2000,84:794-802
    239. Robers S S, Mori M, Patrick P, et al. GABA ergic system gene expression predicts clinical outcome in patients with neuroblastoma[J]. J Clin Oncol,2004,22:4127-4134
    240. Rocha 0, Ansari K, and Doohan F M. Effects of trichothecene mycotoxins on eukaryotic cells:A review[J]. Food Addit Contam,2005,22:369-378
    241.Romkes M, and Buch S C. Genotyping technologies:application to biotransformation enzyme genetic polymorphism screening[J]. Methods Mol Biol,2005,291:399-414
    242. Rotter B A, Prelusky D B, and Pestka J J.Toxicology of deoxynivalenol (vomitoxin)[J]. J Toxicol Environ Health,1996,48:1-34
    243. Rudi K, Rud I, and Holck A. A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed[J]. Nucleic Acids Res,2003,31:e62
    244. Sandermann H and Pflugmacher S. Taxonomic distribution of plant glucosyltransferases acting on xenobiotics[J]. Phytochemistry,1998,49:507-511
    245. Saur L, and Morlais J Y. Behaviour of four wheat cultivars towards headblight caused by Fusarium roseum var culmorum[J]. Agronomie,1984,11:939-943
    246. Schatzmayr G, Zehner F, Taubel M, et al. Microbiologicals for deactivating mycotoxins[J]. Mol Nutr Food Res,2006,50:543-551
    247. Schena M, Shalon D, Davis R W, et al. Quantitative monitoring of gene expression patterns with conplementary DNA microarray[J]. Scinence,1995,270:467-470
    248. Schena M, Shalon D, Heller R, et al. Parallel human genome analysis:microarray-based expression monitoring of 1,000 genes[J]. Proc Natl Acad Sci USA,1996,93:10614-10619
    249. Schiefer H B, Roussaux C G, Handcock D S, et al. Effects of low-level long-term oral exposure to T-2 toxin in CD-1 mice[J]. Food Chem Toxicol,1987,25:591-601
    250. Schneweis I, Meyer K, Engelhardt G, et al. Occurrence of zearalenone-4-β-D-glucopyranoside in wheat[J]. J Agric Food Chem,2002,50,1736-1738
    251. Schroeder H W, and Christensen J J. Factors affecting resistance of wheat to scab caused by Gibberella zeae[J].Phytopathology,1963,53:831-838
    252. Scott I T. Varietal resistance and susceptibility to wheat scab[J]. Missouri Agr Exp Stn Res Bull, 1927,111:14
    253. Scott P M, Nelson K, Kanhere S R, et al. Decline in deoxynivalenol (vomitoxin) concentrations in 1983 Ontario winter wheat before harvest[J]. Appl Environ Microbiol,1984,48:884-886
    254. Semagn K, Skinnes H, Bj(?)rnstad A, et al. Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from'Arina'and NK93604[J].Crop Sci,2007,47:294-303
    255. Shao H, He X Z, Achnine L, et al Crystal Structures of a Multifunctional Triterpene/Flavonoid Glycosyltransferase from Medicago truncatula[J]. Plant Cell 2005,17:3141-3154
    256. Siranidou E, Kang Z, and Buchenauer H. Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to Fusarium head blight[J]. J. Phytopathol,2002,150:200-208
    257. Sinha R C and Savard M E. Concentration of deoxynivalenol in single kernel and various tissues of wheat heads[J]. Can. J. Plant Pathol,1997,19:8-12
    258. Singh R P, Ma H, and Rajaram S. Genetic analysis of resistance to scab in spring wheat cultival Frontana[J]. Plant Dis,1995,79:238-240
    259. Snijders C H A.The inheritance of resistance to head blight caused by Fusarium culmorum in winter wheat[J]. Euphytica,1990a,50:11-18
    260. Snijders C H A, and Perkowski J. Effect of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels[J]. Phytopathology,1990b,80:566-570
    261. Snijders C H A, and Krechting C F. Inhibition of deoxynivalenol translocation and fungal colonization in Fusarium head blight resistant wheat[J]. Can J Bot,1992,70:1570-1576
    262. Somers D J, Fedak G, and Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat [J].Genome,2003,46:555-564
    263. Steiner B, Lemmens M, Griesser M, et al. Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana[J]. Theor Appl Genet,2004,109:215-224
    264. Suzuki H, Hayase H, Nakayama A, et al. Identification and characterization of an Ipomoea nil glucosyltransferase which metabolizes some phytohormones[J]. Biochem Biophys Res Commun, 2007,361:980-986
    265. Swanson S P, Rood Jr H D, Behrens J C, et al. Preparation and characterization of the deepoxy trichothecenes:deepoxy HT-2, deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol and deepoxy scirpentriol[J]. Appl Environ Microbiol,1987,53: 2821-2826
    266. Swanson S P, Helaszek C, Buck W B, et al. The role of intestinal microflora in the metabolism of trichothecene mycotoxins[J]. Food Chem Toxicol,1988,26:823-829
    267. Tamburic-ilincic L, Fedak G, Schaafsma A W. Study on deoxynivalenol and Fusarium head blight resistance in a F2 winter wheat population[J]. J Appl Genet,2002,43A:333-340
    268. Tanaka N, Che F S, Watanabe N, et al. Flagellin from an incompatible strain of Acidovorax avenae mediates H2O2 generation accompanying hypersensitive cell death and expression of PAL, Cht-I and PBZ1, but not of LOX in rice[J]. Mol Plant Microbe Interact,2003,16:422-428
    269. Tanaka T, Yamamoto S, Hasegawa A, et al. A survey of the natural occurrence of Fusarium mycotoxins,deoxynivalenol,nivalenol and zearalenone,in cereals harvested in The Netherlands[J]. Mycopathologia,1990,110:19-22
    270. Thuvander A, Wikman C, and Gadhasson I. In vitro exposure of human lymphocytes to trichothecenes:individual variation in sensitivity and effects of combined exposure on lymphocyte function[J].Food Chem Toxicol,1999,37:639-648
    271. Truesdale M R, Doherty H M, Loake G J, et al. Molecular cloning of a novel wound-induced gene from tomato:Twil[J]. Plant Physiol,1996,112:446
    272. Tuite J, Shaner G, and Everson R J. Wheat scab in soft red winter wheat in Indiana in 1986 and its relation to some quality measurements[J]. Plant Dis,1990,74:959-962
    273. Tutelyan V A, Eller K I, Sobolev V S, et al. A survey of the occurrence of deoxynivalenol in wheat from 1986-1988 harvests in the USSR[J]. Food Addit Contain,1990,7:521-525
    274. Van Loon L C, and Van Strien E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins[J]. Physiol Mol Plant Pathol,1999,55:85-97
    275. Vesely D, and Vesela D. Embryotoxic effects of a combination of zearalenone and vomitoxin (4-dioxynivalenole) on the chick embryo[J].Vet Med (Praha),1995,40:279-281
    276. Vigers A J, Roberts W K, and Selitrennikoff C P. A new family of plant antifungal proteins[J]. Mol Plant Microbe Interact,1991,4:315-323
    277. Vesonder R F, Ciegler A, and Jensen A H. Isolation of the Emetic Principle from Fusarium-Infected Corn[J]. Appl Environ Microbiol,1973,26:1008-1010
    278. Vogt T. Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5-and 6-O-glucosyltransferase from Dorotheanthus bellidiformis[J]. Planta,2002,214:492-495
    279. Vogt T, Grimm R, and Strack D. Cloning and expression of a cDNA encoding betanidin 5-0-glucosyltransferase, a betanidin-and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae[J]. Plant J,1999,19:509-519
    280. Xu D H, Juan H F, Nohda M, Ban T. QTLs mapping of type Ⅰ and type Ⅱ resistance to FHB in wheat[A]. In Proceedings of 2001 National Fusarium Heading Blight Forum Proceedings[C], p: 40-42. http://www.scabusa.org/forum.html
    281. Yang Z P, Gilbert J, Fedak G. New microsatellite markers for TypeⅠ and Type Ⅱ resistance to Fusarium head blight in spring wheat[J]. J Appl Genet,2002,43A:359-362
    282. Yang Z P, Gilbert J, Fedak G, et al. Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population[J]. Genome,2005,48:187-196
    283. Yao Q, Liu Z, and Zeng Y. Detoxification of deoxynivalenol by scab resistant wheat and the bioactivities of the product[J]. Acta Mycologica Sinica,1996,15:59-64
    284. Yazaki K, Inushima K, Kataoka M, et al. Intracellular localization of UDPG:p-hydroxybenzoate glucosyltransferase and its reaction product in Lithospermum cell cultures[J]. Phytochemistry,1995, 38:1127-1130
    285. Yoshihara N, Imayama T, Fukuchi-Mizutani M, et al. cDNA cloning and characterization of UDP-glucose:Anthocyanidin 3-O-glucosyltransferase in Iris hollandica[J]. Plant Sci,2005: 496-501
    286. Yu J, Bai G, Zhou W et al. Mapping QTLs for Different Types of Resistance to Fusarium Head Blight in Wangshuibai[A]. In:Proceedings of the 2005 National Fusarium Head Blight Forum[C], 2005:p:96
    287. Wallace G, and Fry S C. Phenolic components of the plant cell wall[J]. Int Rev Cytol,1994,151:229-267
    288. Walter S, Brennan J M, Arunachalam C, et al. Components of the gene network associated with genotype-dependent response of wheat to the Fusarium mycotoxin deoxynivalenol[J]. Funct Integr
    Genomics,2008,8:421-427
    289. Wan B, Lin Y, Mou T, et al. Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses[J]. FEBS Letters,2007,581:1179-1189
    290. Wang Y Z, and Miller J D. Effects of Fusarium gramearum metabolites on wheat tissue in relation to Fusarium head blight resistance[J]. J Phytopathol,1988,122:118-125
    291. Wang X B, Wu P, Xia M, et al. Identification of genes enrichedin rice roots of the local nitrate treatment and their expression patterns in split-root treatment[J]. Gene,2002,297:93-102
    292. Wicklow D T, Norton R A, and McAlpin C E. β-Carotene inhibition of aflatoxin biosynthesis among Aspergillus flavus genotypes from Illinois corn[J]. Mycoscience,1998,39:167-172
    293. Wilson W J, Strout C L, Desantis T Z, et al. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology [J]. Mol Cell Probes,2002,16:119-127
    294. Wilde F and Miedaner T. Selection for Fusarium head blight resistance in early generation reduces the deoxynivalenol (DON) content in grain of winter and spring wheat[J]. Plant Breed.2006.125: 96-98.
    295. Wirtenberger M, Hemminki K, Chen B, et al. SNP microarray analysis for genome-wide detection of crossover regions[J]. Hum Genet,2005,117:389-397
    296. Woo H H, Orbach M J, Hirsch A M, et al. Meristem-Localized Inducible Expression of a UDP-Glycosyltransferase Gene Is Essential for Growth and Development in Pea and Alfalfa[J]. Plant Cell,1999,11:2303-2315
    297. Yang G X, Matsuoka M, Iwasaki Y, et al. A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice[J]. Plant Mol Biol,2003,52:843-854
    298. Zhang X H, Xie T X, Li S S, et al. Contamination of fungi and mycotoxins in foodstuffs in high risk area of esophageal cancer[J]. Biomed Environ Sci,1998,11:140-146
    299. Zhou W C, Kolb F L, Bai G H, et al. Effect of individual Sumai 3 chromosomes on resistance to scab spread with spikes and deoxynivalenol accumulation within kernels in wheat[J]. Hereditas, 2002,137:81-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700