用户名: 密码: 验证码:
水稻水分胁迫相关基因克隆及功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是全世界最主要的粮食作物之一,但是水稻生产越来越受到水资源缺乏的限制。农业是用水大户,而水稻生产用水量占我国全部农业用水的70%,耗费了过多的淡水资源,这已经成为制约我国工农业发展的一个瓶颈。因此,开展对节水抗旱稻(WDR)研究是大势所趋。目前,虽然传统育种方法可以有效提高水稻抗旱性,但是对植物的抗旱机理了解不多,难以取得很大突破。由于植物的抗旱性十分复杂,涉及大量的基因表达与调控,必须不断发掘水稻抗旱相关基因,深入研究这些抗旱基因的功能,从而一方面明确水稻抗旱的分子机制,另一方面,为节水抗旱稻新品种选育提供基因资源。
     本研究首先对土壤中栽培的水稻进行自然断水处理,提取不同时期叶片中的总RNA;通过植物miRNA芯片和水稻全基因组mRNA表达芯片,扫描分析其与正常栽培水稻间的差异。对2个候选基因OsI17、OsDr1进行了克隆和表达分析。通过对超表达OsI17基因水稻植株的抗逆性鉴定,深入研究了OsI17基因的功能,明确了OsI17基因在水稻抗逆响应中的作用。
     本研究的主要结果如下:
     1.为了深入了解水稻抗旱机制,我们用植物miRNA芯片扫描水稻IRAT109在分蘖期和幼穗分化期干旱胁迫下miRNA变化情况。实验结果显示,在所鉴定的30个受干旱胁迫而发生变化的植物miRNA中,11个下调表达的miRNA如miR170,miR172, miR397, miR408, miR529, miR896, miR1030, miR1035, miR1050, miR1088和miR1126以及8个上调表达的miRNA如miR395,miR474,miR845,miR851,miR854,miR901,miR903和miR1125是首次发现受干旱胁迫诱导的植物miRNA; ath-miR170和ath-miR396家族都表现严格下调表达, ptc-miR474与ath-miR854a表现严格的上调表达。这些发现对于进一步揭示水稻抗旱的分子调控机制以及利用基因工程手段改善水稻的抗旱性具有重要的价值。
     2.运用水稻全基因组表达芯片分析了IRAT109在正常水分和干旱胁迫下基因表达的差异。我们发现了一系列与干旱胁迫响应有关的基础代谢途径,其中变化最明显的是碳固定途径。这显示了干旱胁迫下碳-水化合物合成代谢的适应性调节在水稻抵御干旱过程中起重要作用。
     3.采用qRT-PCR定量分析了候选基因OsDr1和OsI17基因在不同的非生物逆境处理下的表达谱变化,发现它们的表达受到ABA、水杨酸、茉莉酸、H202等激素,以及干旱、高盐、低温等逆境胁迫的诱导。
     4.应用RT-PCR方法克隆了OsI17基因含全长ORF的cDNA序列,并且构建了该基因的超表达、抑制表达等遗传转化载体,蛋白亚细胞定位载体,并导入到水稻中,获得了转基因材料。
     5.OsI17基因表达蛋白含有一个AT-hook和一个功能未知的保守结构域DUF296。DUF296是在原核生物和植物中广泛存在的保守结构域,其蛋白定位于细胞核,与核基质及染色质MARs区相结合。AT-hook模体和DUF296结构域都具备核定位功能。
     6.通过酵母双杂交实验验证,OsI17基因表达蛋白(或其DUF296结构域)具有同源蛋白结合功能,即OsI17蛋白可以通过DUF296结构域相互结合形成同源聚合物,发挥其结合及调整染色质构型的功能。
     7.以35S启动子诱导的OsI17基因超量表达转基因水稻,在干旱胁迫下其叶绿素含量提高,叶绿素a/b比值降低;转基因水稻叶片中POD比活力提高,植株对ROS的清除能力增强;旱胁迫下生长的转基因材料小维管束数目显著高于WT水稻(t检验,p<0.05),泡状细胞组数目也有所增加;离体叶片持水能力和叶片相对含水量提高。由此,OsI17基因提高了水稻的耐旱性和避旱性。
     8.全基因组表达芯片分析发现,在超表达OsI17转基因植株中,植株表达谱发生了变化。其中,变化最显著的代谢途径是PSⅡ系统,这一变化使植株在干旱胁迫条件下的光系统稳定性提高,为植株抵御逆境胁迫提供了更充足的物质和能量基础,从而改善了植株在水分胁迫下的生长状况。
     9通过对转基因植株苗期高盐、低温、干旱筛选,证明OsI17基因能明显增强水稻的抗逆性,提高水稻在高盐低温以及干旱等胁迫条件下的生存能力及胁迫后的恢复能力。成株期抗旱鉴定试验证明,与野生型水稻相比超量表达OsI17基因的水稻,结实率提高了17%~23%,单株产量提高了27%以上,生物学产量提高了25%~50%,百粒重增加了29%以上;根容量和干重明显提高,根系性状得到改善。
     10.OsI17基因启动子序列在野生稻和普通栽培稻中存在多样性。进化树分析表明了籼、粳稻以及野生稻之间可能的遗传进化关系,提示在野生稻材料中就已经开始出现籼、粳亚种的分化。
     11.用5'-RACE和3'-RACE方法,克隆了OsDr1基因的全长序列,确定了基因的转录起始和终止位点。定量实验表明,OsDr1基因受多种逆境诱导上升表达;受光照诱导和调节,并且其在24h光周期内呈节律性变化。
Rice is one of the most important staple foods in the world. But rice production was confined by the lack of freshwater resources. As we know that, in our country agricultural production used too much freshwater resources, in which about 70% was consumed by rice. So studying the water-saving and drought resistance rice (WDR) was currently necessarily. At the present time, traditional breeding method is very significant effect in improving drought resistance of rice, but knows little about its molecular theory. As the complex truth of drought resistance theory, we must find and study more genes and gene network involved in drought response.
     In our study, we treated the rice that were planted in the soil with drought stress, then carried out a genome-wide profiling and analysis of miRNAs and mRNAs by microarray between drought-challenged rice and control. Two stress-responsive genes were studied for their expression levels under water stress. OsI17 gene was over-expressed in rice to test the ability on improving drought resistance. We found OsI17 gene could regulate the mRNA profiling and improve the drought resistance of rice, obviously. The main resalts are as follows:
     1. To gaina deep understanding of the mechanism of drought tolerance in rice, genome-wide profiling and analysis of miRNAs was carried out in drought-challenged rice across a wide range of developmental stages, from tillering to inflorescence formation, using a microarray platform. Among the miRNAs familes identified as significantly down- or up-regulated under the drought stress, miR170, miR172, miR397, miR408, miR529, miR896, miR1030, miR1035, miR1050, miR1088, and miR1126 were down-regulated miRNAs. miR395, miR474, miR845, miR851, miR854, miR901, miR903, and miR1125 were up-regulated miRNAs. miR156, miR168, miR170, miR171, miR172, miR319, miR396, miR397, and miR408 showed opposite expression to that observed in drought-stressed Arabidopsis. All of these revealed for the first time to be induced by drought stress in plants. The most conserved down-regulated miRNAs were ath-miR170, the miR171 family, and ath-miR396, and the most conserved up-regulated miRNAs were ptc-miR474 and ath-miR854a.
     2. We carried out a genome-wide profiling and analysis of mRNAs in drought-challenged rice by a microarray platform. A lot of metabolism pathways and genes were identified, which involved in drought-resistance of rice, in which the most important pathway was carbon fix. Maintaining a reasonable rate of synthesis of carbon-hydrogen compounds helps to enhance stress tolerance under drought-prone conditions
     3. Analyzed the expression profiling of OsDr1and OsI17 in rice. Up-regulated expression of OsDr1and OsI17 genes induced by various abiotic stresses (for e.g. Drought, salty, cold) and stress-related phytohormone (for e.g. ABA, JA, SA, and H2O2) treatments.
     4. We had cloned the full length cDNA of OsI17 in rice by RT-PCR method. Then we constructed the over-expression, antisense-RNA expression and OsI17-EGFP fuse vectors, and induced into Zhonghua11 (oryza sativa L.ssp. Japonica).
     6. OsI17 protein contains an AT-hook motif followed by a DUF296 domain, which was located in nucleus. AT-hook motif and DUF296 domain has nucleus location ability independently.
     7. The yeast two-hybrid testing showed that, the OsI17 protein (even if the DUF296 domain) had a homolog combining ability, that was necessary to playing its role.
     8. Under drought conditions, the transgenic rice has more content of total chlorophyll and lower chl a/b ratio than the WT. The drought stress testing at reproduce stage shows that, transgenic rice of OsI17 has higher POD activity, more small Vascular Bundles and bulliform cell groups in the flag leaf, higher RWC and Water-Retaining Capability of leaves. All of this shows that OsI17 enhanced the drought tolerance and drought avoidance of rice.
     9. Analysis of the transgenic rice profiling with microarray platform showed that, compared to WT,73 genes were up-regulated, and the PSII system was changed in evidence.
     10. The drought, salty and cold stress testing at seedling stage shows that, compared to the wild type, transgenic rice of OsI17 exhibited increased of stress tolerance. Compared to the wild type, the seed-setting rate, production per plant, biomass per plant and 100-seed weight of transgenic rice, exhibited 17-23%, more than 27%,25%~50% and more than 29% increase, respectively. The drought stress testing at reproduce stage shows that transgenic rice of OsI17 showed increased of drought tolerance.
     11. The OsI17 protein and the promoter all have sequences polymorphism among the cultivated rice varieties and wild rice lines (O.rufipogon). Phylogenetic tree of the OsI17 promoter showed that, the variety between japonica and indica had been exist among wild rice lines (O.rufipogon).
     12. The OsDr1 full length cDNA sequence was cloned by 5'-RACE and 3'-RACE method. OsDr1 expression was up-regulated by water stress, stress-related phytohormone; OsDr1 was expressed in circadian rhythms and regulated by light.
引文
1.陈风梅,程建峰,潘晓云等.杂交稻抗旱性状的筛选研究.杂交水稻,2001,16,4:51-54
    2.罗利军,张启发,栽培稻抗旱性研究的现状与策略.中国水稻科学,2000,15,3:209-214
    3.余新桥,梅捍卫,罗利军等.节水抗旱杂交稻的选育策略和应用前景.分子植物育种,2005,3,637-641
    4.余舜武,刘鸿艳,罗利军.利用不同实时定量PCR方法分析相对基因表达差异.作物学报,2007,33(7):1214-1218
    5.余新桥,梅捍卫,罗利军等.优质节水抗旱雄性不育系“沪旱1A”的选育与利用.上海农业学报,2006,2:32
    6.翟忠和,王喜中,丁明孝.细胞生物学.北京:高等教育出版社,2000:222-230
    7.张明生,谢波,谈锋,张启堂.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究.中国农业科学,2003,36,1:13-16
    8.曾华宗,罗利军.植物抗旱、耐盐基因概述.植物遗传资源学报,2003,4,3:270-273
    9.邹桂花,梅捍卫,余新桥,刘鸿艳,刘国兰,李名寿,罗利军.不同灌水量对水、旱稻营养生长和光合特性及其产量的影响.作物学报,2006,32,8:1179-1183
    10. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosakawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid regulated gene expression, Plant Cell,1997,9:1859-1868
    11. Adachi Y, Kas E and Laemmli. Preferential, cooperative binding of DNA topoisomerase II to scaffoldassociated regions. EMBO J,1989,8:3997-4006
    12. Agarwal P K, Agarwal P, Reddy M K, et al. Role of DREB transcription factors in abiotic and biotic st ress tolerance in plants. Plant Cell Rep,2006,25:1263-1274
    13. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res,1997,25:3389-3402
    14. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res,1997,25:3389-3402
    15. Amir H M, Lee Y, Cho J I, Ahn C H, Lee S K, Jeon J S, Kang H, Lee C H, An G, Park P B. The bZIP transcription factor OsABFl is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol,2010, 72,4-5:557-566
    16. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55:373-399
    17. Aravind L and Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res,1998,26,19:4413-4421
    18. Asada K. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum,1992,85:235-241
    19. Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature,2002,415:977-983
    20. Bartel D. MicroRNAs:genomics, biogenesis, mechanism and function. Cell,2004, 116:281-297
    21. Bentwich I. Prediction and validation of microRNAs and their targets. FEBS LETT, 2005,579:5904-5910
    22. Berezney, R and Coffey, D S. Identification of a nuclear protein matrix. Biochem Biophys Res Commun,1974.60:1410-1417
    23. Berridge M J, Irvine R F. Inositol phosphate and cell signaling. Nature,1989, 341:197-205
    24. Bhattacharyya S N, Habermacher R, Martine U, Closs E I, Filipowicz W, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell,2006,125:1111-1124
    25. Bode J, Bartsch J, Boulikas T, Iber M, Mielke C, Schubeler D, Seibler J, Benham C. Transcription-17 promoting genomic sites in mammalia:their elucidation and architectural principles. GENE THER MOL BIOL,1998,1:551-580
    26. Bode J, Kohwi Y, Dickinson L et al. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science,1992,255:195-197
    27. Boyer J S, Bowen B L. Inhibition of Oxygen Evolution in Chloroplasts Isolated from Leaves with Low Water Potentials. Plant Physiol,1970,45:612-615
    28. Boyer J S. Nonstomatal Inhibition of Photosynthesis in Sunflower at Low Leaf Water Potentials and High Light Intensities. Plant Physiol,1971,48:532-536
    29. Boyer J S. Plant productivity and environment. Science,1982,218:443-448
    30. Brad R, Kristen F and Matthew G. Differences in drought sensitivities and photo synthetic limitations between co-occurring C3 and C4 (NADP-ME) Panicoid grasses. Ann Bot-London,2010,105:493-503
    31. Bray E A, Molecular responses to water deficit. Plant Physiol,1993,103:1035-1040
    32. Calatayud P A, lovera E L, Bois J F and Lamaze T. Photosynthesis in Drought-Adapted Cassava. Photosynthetica,2000,38-1:97-104
    33. Capell T, Bassie L, and Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA,2004,101,26:9909-9914
    34. Cawley S, Bekiranov S, Ng H H, Kapranov P, Sekinger E A, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams A J, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker, Tammana H, Helt G, Struhl K and Gingeras T R. Unbiased Mapping of Transcription Factor Binding Sites along Human Chromosomes 21 and 22 Points to Widespread Regulation of Noncoding RNAs. Cell, 2004,116,4:499-509
    35. Cheng S H, Willmann M R, Chen H C, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol,2002,129,2:469-485
    36. Colcombet J, Hirt H. Arabidopsis MAPKs:a complex signaling network involved in multiple biological processes. Biochem J,2008,413:217-226
    37. Denli A M, Tops B B, Plasterk R H, Ketting R F, Hannon G J. Processing of primary microRNAs by the Microprocessor complex. Nature,2004,432:231-235
    38. Dickinson LA, Joh T, Kohwi Y and Kohwi-Shigematsu T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell, 1992.70:631-645
    39. Dugas D V, Bartel B. MicroRNA regulation of gene expression in plants. CURR OPIN PLANT BIOL,2004,7:512-520
    40. Else M A, Coupland D, Dutton L, Jackson M B. Decreased root hydraulic conductivity reduces leaf water potential, initiates stomata closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiologia Plantarum, 2001,111,1:46-54
    41. Fackelmayer F O, Dahm K, Renz A, Ramsperger U and Richter A. Nucleic- acid-binding properties of hnRNP- U/SAF- A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem,1994,221:749-757
    42. Felsenstein J. PHYLIP -phylogeny inference package (version 3.2). Cladistics,1989, 5:164-166
    43. Fitter D W, Martin D J, Copley M J, Scotland R W and Langdale J A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J,2002-31, 713-727
    44. Fujimoto S, Matsunaga S, Yonemura M, Uchiyama S, Azuma T, Fukui K. Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces. PLANT MOL BIOL,2004,56:225-239
    45. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol,2009,50,12:2123-2132
    46. Fukuda Y, Nishikawa S. Matrix attachment regions enhance transcription of a downstream transgene and the accessibility of its promoter region to micrococcal nuclease. Plant Mol Biol,2003,51:665-75
    47. Galande S, Purbey P K, Notani D, Kumar P P. The third dimension of gene regulation: organization of dynamic chromatin loop scape by SATB1. Curr Opin Genet Dev, 2007,17,5:408-414
    48. Gao Z H, Chen L, Wei K F, Liu J, FanY J, Davies W J, Jia W S, Zhang J H, Ren H B. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. JExp Bot,2007,58,2:211-219
    49. Garg A K, Kim J K, Owens T Q, Ranwala A P, Choi Y D, Kochian L V, Wu, R J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA,2002,99:15898-15903
    50. Gasser S M, Laemmli U K. The organization of chromatin loops:characterization of scaffold attachment sites. EMBO J,1986,5:511-518
    51. Gena D T, Song M, Chloe E J, and Richard J L. A Porphyromonas gingivalis haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is important for invasion. Proc Natl Acad Sci USA,2006,103:11027-11032
    52. Gillham D J and Dodge A D. Chloroplast superoxide and hydrogen peroxide scavenging systems from pea leaves:Seasonal variations. Plant Science,1987,50,2: 105-109
    53. Hall L N, Rossini L, Cribb L and Langdale J A. GOLDEN 2:a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell,1998,10:925-936
    54. He L H, Gao Z Q and Li R Z. Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afr J Biotechnol,2009,8,22: 6151-6157
    55. Henson I E. Effects of atmospheric humidity on abscisic acid accumulation and water status in leaves of rice (Oryza sativa L.). Annu Bot,1984,54:569-582
    56. Hidemitsu N, Masayuki M, Makoto H, Osamu, Yoshiaki N, Hirohiko H, Makoto T and Hiroaki I. Ectopic Overexpression of The Transcription Factor OsGLK1 Induces Chloroplast Development in Non-Green Rice Cells. Plant Cell Physiol,2009,50,11: 1933-1949
    57. Higo K, Ugawa Y, Iwamoto M and Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Research,1999,27,1:297-300
    58. Hoober J K, Eggink L L and Chen M. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth Res,2007,94:387-400
    59. Hosack D A, Dennis G J, Sherman B T, Lane H C, Lempicki R A. Identifying Biological Themes within Lists of Genes with EASE. Genome Biology,2003,4,6:4
    60. Hu L X, Wang Z L, and Huang B R. Photosynthetic Responses of Bermudagrass to Drought Stress Associated with Stomatal and Metabolic Limitations, Crop Sci,2009, 49:1902-1909
    61. Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, and Lin H X.A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Dev,2009,23:1805-1817
    62. Huth J R, Bewley C A, Nissen M S, Evans J N, Reeves R, Gronenborn A M, Clore G M. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol,1997,4:657-665
    63. Izaurralde E., Kas E and Laemmli. Highly preferential nucleation of histone H1 assembly on scaffoldassociated regions. JMol Biol,1989,210:573-585
    64. Jan V P, Gerrit V H, and Dick B J.Characterization of the Haloacid Dehalogenase from Xanthobacter autotrophicus GJ1O and Sequencing of the dh1B Gene. J Bacteriol,1991,173,24:7925-7933
    65. Katja E H, Julian R M and Andrew J W. Investigation of Two Evolutionarily Unrelated Halocarboxylic Acid Dehalogenase Gene Families. J Bacteriol,1999,181, 8:2535-2547
    66. Kaul-Ghanekar R, Jalota A, Pavithra L, Pavithra L, Tucker P, Chattopadhyay S. SMAR1 and Cux/CDP modulate chromatin and act as negative regulators of the TCR beta enhancer (Ebeta). Nucleic Acids Res,2004,32,16:4862-4875
    67. Kian-Hong N and Toshiro I. Shedding light on the role of AT-hook/PPC domain protein in Arabidopsis thaliana. Plant Signaling Behav,2010,5:2,200-201
    68. Kim E H, Park S H, and Kim J K. Methyl jasmonate triggers loss of grain yield under drought stress. Plant Signal Behav.2009,4,4:348-349
    69. Kim J C, Lee S H, Cheong Y H, Yoo C M, Lee S I, Chun H J, Yun D J, Hong J C, Lee S Y, Lim C O, Cho M J. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants, Plant J,2001,25: 247-259
    70. Koonin E V, and Tatusov R L. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity:application of an iterative approach to database search. JMol Biol,1994,244:125-132.
    71. Kumar S, Dudley J, Nei M & Tamura K. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform,2008,9: 299-306
    72. Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K. A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol Gen Genet,1995,248, 5:507-17
    73. Laura R, Lizzie C, David J M, and Jane A L. The Maize Golden2 Gene Defines a Novel Class of Transcriptional Regulators in Plants. Plant Cell,2001,13,5: 1231-1244
    74. Le Lay P, Eullaffroy P, Juneau P, Popovic R. Evidence of chlorophyll synthesis pathway alteration in desiccated barley leaves. Plant Cell Physiol,2000,41:565
    75. Leckie C P, McAinsh M R, Montgomery L, Priestley A J, Staxen I, Webb A A R and Hetherington A M. Second messengers in guard cells. JExp Bot,1998,49:339-349
    76. Lefever S, Hellemans J, Pattyn F, Przybylski D R, Taylor C, Geurts R, Untergasser A, Vandesompele J; on behalf of the RDML consortium. RDML:structured language and reporting guidelines for real-time quantitative PCR data. Nucleic Acids Res.2009, 37,7:2065-2069
    77. Levitt J. Responses of Plants to Environmental Stresses. Academic Press, NY.1972: 695
    78. Liebich I, Bode J, Reuter I, and Wingender E. Evaluation of sequence motifs found in scaffold/matrix attached regions (S/MARs). Nucleic Acids Res,2002,30,15:3433-3442
    79. Lilley J M, Fukai S. Effect of timing and severity of water deficit on four diverse rice cultivars. I. Root pattern and soil water extraction. Field Crops Res,1994,37:215-223
    80. Linyen L, Hiroaki N, Shota N, Susumu U, Satoru F, Sachihiro M, Yuji K, Tadayasu O, and Kiichi F. Crystal Structure of Pyrococcus horikoshii PPC Protein at 1.60 A Resolution. PROTEINS,2007,67:505-507
    81. Liu H H, Tian X, LiY J, Wu C A, Zheng C C. Microarraybased analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA,2008,14:1-8
    82. Liu J, Zhu J K. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiolm,1997,114:591-596
    83. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K and Shinozaki Kazuo. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression respectively, in Arabidopsis. Plant Cell,1998,10:1391-1406
    84. Livak K J, Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔAT Method. METHODS,2001,25:402-408
    85. Lou Q J, Chen L, Sun Z X, Xing Y Z, Li J, Xu X Y, Mei H W and Luo L J. A major QTL associated with cold tolerance at seedling stage in rice. Euphytica, 2007,158,1-2:87-94
    86. Lu Y Y, Hidaka H, Feldman L J. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism. Planta,1996,199:18-24
    87. Luderus M E, de Graaf A, Mattia E, den Blaauwen J L, Grande M A, de Jong L and van Driel R. Binding of matrix attachment regions to lamin B1. Cell,1992,70: 949-959
    88. Luderus, M E, den Blaauwen J L, de Smit, O J, Compton D A and van Driel R. Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol Cell Biol,1994,14:6297-6305
    89. Luna C M, Pastori G M, Driscoll S, Groten K, Bernard S and Foyer C H. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot,2005,56,411:417-423
    90. Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot,2010, doi:10.1093/jxb/erq185
    91. Lytle J R, Yario T A, Steitz J A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. P Natl Acad Sci USA, USA, 2007,104:9667-9672
    92. Mahajan S, Tuteja N. Cold, salinity and drought stresses:An overview. Arch Biochem Biophys,2005,444:139-158
    93. Mallory AC, Vaucheret H. Function of micro RNAs and related small RNAs in plants. Nature Genetics,2006,38:S31-S36
    94. Manavella P A, Arce A L, Dezar C A, Bitton F, Renou J P, Crespi M, Chan R L. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J,2006,48,1:125-37
    95. Martinez-Garcia J F, and Quail P H. The HMG-I/Y protein PF1 stimulates binding of the transcriptional activator GT-2 to the PHYA gene promoter. Plant J,1999,18,2: 173-83
    96. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Molecular Cell,2004,15:185-197
    97. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002, 7,9:405-410
    98. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi A K. Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet,2002,106:51-57
    99. Morisawa G, Han-Yama A, Moda I, Tamai A, Iwabuchi M, Meshi T. AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT-hook and a J domain homologous region. Plant Cell,2000,12,10:1903-1916
    100. Muir S R, Sanders D. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release across nonvacuolar membranes in cauliflower. Plant Physiol,1997,114:1511-1521
    101. Nakagomi K, Kohwi Y, Dickinson L A and Kohwi-Shigematsu T. A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol Cell Biol,1994,14,3:1852-60
    102. Nandi S, Sen-Mandi S and Sinha T P. Active oxygen and their scavengers in rice seeds (Oryza sativa cv. IET 4094) aged under tropical environmental conditions. Seed Sci Res,1997,7:253-260
    103. Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, Chua N H. Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J,1997, 16:2554-2564
    104. Nguyen H T, Babu R C, Blum A. Breeding for drought resistance in rice:physiology and molecular genetics considerations. Crop Sci,1997,37:1426-1434
    105. Ouaked F, Rozhon W, Lecourieux D and Hirt H. A MAPK pathway mediates ethylene signaling in plants. EMBO J,2003,22,6:1282-1288
    106. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek R L, Lee Y, Zheng L, Orvis J, Haas B, Wortman J and Buell C R. The TIGR Rice Genome Annotation Resource:improvements and new features. Nucleic Acids Res.2007,35:883-887
    107. Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L. MyHits:improvements to an interactive resource for analyzing protein sequences.Nucleic Acids Res.2007,35 (Web Server issue):W433-437
    108. Pandey S, Nelson D C and Assmann S M. Two NovelGPCR-Type G Proteins Are Abscisic Acid Receptors in Arabidopsis. Cell,2009,136:136-148
    109. Park C Y, Lee J H, Yoo J H, Moon B C, Choi M S, Kang Y H, Lee S M, Kim H S, Kang K Y, Chung W S, Lim C O, Cho M J. WRKY group Ⅱd transcription factors interact with calmodulin. FEBS Lett,2005,579,6:1545-1550
    110. Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R. Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science,2009,324,5930:1068-1071
    111. Pienta K J, Getzenberg R H, Coffey D S. Cell structure and DNA organization. Crit Rev Eukar Gene,1991,1:355-385
    112. Pitzschke A, Schikora A and Hirt H. MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol,2009,12:1-6
    113. Price A H, Cairms J E, Horton P, Jones H G, Griffiths H. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach:progress and new opportunities to integrate stomatal and messophyll responses. J Exp Bot, 2002,53:989-1044
    114. Puckridge D W, O'Toole J C. Dry matter and grain production of rice, using a line source sprinkler in drought studies. Field Crops Res,1981,3:303-319
    115. Pyke K A, and Leech R M. Chloroplast Division and Expansion Is Radically Altered by Nuclear Mutations in Arabidopsis thaliana. Plant Physiol,1992,99,3:1005-1008
    116. Pyke, K A. and Leech, R M. A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol,1994,104,201-207
    117. Rajesh B, Susan M, Rohit S, Jack D G and Beverly M E. HMG I/Y regulates long-range enhancer-dependent transcription on DNA and chromatin by changes in DNA topology. Nucl Acids Res,2000,28,13:2541-2550
    118. Reeves R and Nissen M S. Interaction of high mobility group-Ⅰ (Y) nonhistone proteins with nucleosome core particles. JBiol Chem,1993,268:21137-21146
    119. Reeves R, and Nissen M S. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem,1990,265 (15):8573-82
    120. Reeves R. Molecular biology of HMGA proteins:hubs of nuclear function. Gene, 2001,277,1,2):63-81
    121. Reeves R. Structure and function of the HMGI(Y) family of architectural transcription factors. Environ Health Persp,2000,108,5:803-9
    122. Ren X Z, Chen Z Z, Liu Y, Zhang H R, Zhang M, Liu Q, Hong X H, Zhu J K and Gong Z Z. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J (Published Online),2010, (DOI)10.1111/j.1365-313X.2010.04248.x
    123. Rodriguez P L.Protein phosphatase 2C (PP2C) function in higher plants. Plant Mol Biol,1998,38,6:919-927
    124. Rossini L, Cribb L, Martin DJ, Langdale JA. The maize golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell,2001,13,5:1231-1244
    125. Roychoudhury A and Basu S. Overexpression of an abiotic-stress inducible plant protein in the bacteria Escherichia coli. Afri J Biotechnol,2008,7,18:3231-3234
    126. Sander M, Hsieh T S. Drosophila topoisomerase Ⅱ double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site. Nucl Acids Res,1985,13: 1057-1072
    127. Santiago J, Dupeux F, Round A, Antoni R, Park S Y, Jamin M, Cutler S R, Rodriguez P L, Marquez J A. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature,2009,462:665-668
    128. Saredi A, Howard L and. Compton D A. Phosphorylation regulates the assembly of NuMA in a mammalian mitotic extract. J Cell Sci,1997,110,11,1287-1297
    129. Schulize E D. Soil water deficits and atmospheric humidity as environmental signals. Bios Scientific Publishe, Oxford.1993:129-145
    130. Schuster-Boeckler B, Schultz J, Rahmann S. HMM Logos for visualization of protein families. BMC Bioinformatics,2004,5:7
    131. Seger R, Krebs E G.The MAPK signaling cascade. FASEB J,1995,9,9:726-35
    132. Sheen J. Ca2+ dependent protein kinases and stress signal transduction in plants. Science,1996,274:1900-1902
    133. Shen Q X, Ho Tuan-Hua D. Promoter switches specific for abscisic acid (ABA)-induced gene expression in cereals. Physiologia Plantarum,1997,101,4: 653-664
    134. Shen Y Y, Wang X Y, Wu F Q, Du S Y, Cao Z, Shang Y, Wang X L, Peng C C, Yu X C, Zhu S Y, Fan R C, Xu Y H and Zhang D P. The Mg-chelatase H subunit is an abscisic acid receptor. Nature,2006,443:823-826
    135. Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. JExp Bot,2007,58,2:221-227
    1-36. Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C -repeat/DRE, acis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA,1997,94:1035-1040
    137. Strissel P L, Dann H A, Pomykala H M, Diaz M O, Rowley J D, Olopade O I. Scaffold-associated regions in the human type I interferon gene cluster on the short arm of chromosome 9th. Genomics,1998,47:217-229
    138. Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol,2008,8:37
    139. Tamura K, Dudley J, Nei M & Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24:1596-1599
    140. Theologis A. Ethylene signalling:redundant receptors all have their say. Curr Biol. 1998,3; 8,24:875-878
    141. Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    142. Trewavas A J and Malho R. Ca2+ signalling in plant cells:the big network. Plant Biology,1998,1:428-433
    143. Trujillo L E, Sotolongo M, Menendez C, Ochogavia M E, Coll Y, Hernandez I, Borras-Hidalgo O, Thomma B P H J, Vera P andHernandez L.SodERF3, a Novel Sugarcane Ethylene Responsive Factor (ERF), Enhances Salt and Drought Tolerance when Overexpressed in Tobacco Plants. Plant Cell Phy,2008,49,4:512-525
    144. Tsutsui K, Tsutsui K, Okada S, Watarai S, Seki S, Yasuda T and Shohmori T. Identification and characterization of a nuclear scaffold protein that binds the matrix attachment region DNA. J Biol Chem,1993,268:12886-12894
    145. Upadhyaya H, Khan M H, Panda S K. Hydrogen peroxide induces oxidative stress in detached leaves of Oryza sativa L. Gen Appl Plant Physiology,2007,33,1,2:83-95
    146. Van der Geest A H, Welter M E, Woosley A T, Pareddy D R, Pavelko S E, Skokut M, et al. A short synthetic MAR positively affects transgene expression in rice and Arabidopsis. Plant Biotechnol J,2004,2:13-26
    147. Van Drunen C M, Oosterling R W, Keultjes G M, Weisbeek P J, Van Driel R, Smeekens S C. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana. Nucl Acids res,1997,25:3904-3911
    148. Ventura A, Young A G, Winslow M M et al. Targeted deletion reveals essential and overlapping functions of the miR-1792 family of miRNA clusters. Cell,2008,132: 875-886
    149. von Kries J P, Buck F and Stratling W H. Chicken MAR binding protein p120 is identical to human heterogeneous nuclear ribonucleoprotein (hnRNP) U. Nucleic Acids Res,1994,22:1215-1220
    150. Wang T Y, Han Z M, Chai Y R, Zhang J H. A mini review of MAR-binding proteins. Mol Biol Rep (Electronic),2010, DOI 10.1007:1573-4978
    151. Wang Y N, Liu C, Li K, Sun F F, Hu H Z, Li X, Zhao, Y K, Han C Y, Zhang W S, DuanY F, Liu M Y. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol,2007,64,6:633-644
    152. Waters M T, Moylan E C, Langdale J A. GLK transcription factors regulate chloroplast development in a cell- autonomous manner. Plant Journal,2008,56:432-444
    153. Webb A A R, Hetherington, A M. Convergence of the abscisic acid, CO2 and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiol,1997,114:1557-1560
    154. Wu Y, Kuzma J, Marechal E, Graeff R, Lee H C, Foster R, Chua N H. Abscisic acid signaling through cyclic ADP-ribose in plants. Science,1997,278:2126-2130
    155. Xie F, Huang S, Guo K, Xiang A, Zhu Y, Nie L, Yang Z. Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett,2007, 581:1464-1474
    156. Xiong L M, Schumaker K S, and Zhu J K. Cell Signaling during Cold, Drought, and Salt Stress. Plant Cell,2002,14 Suppl:S165-183
    157. Xiong L M, Zhu J K. Abiotic stress signal transduction in plants:molecular and genetic perspectives. Physiol Plant,2001,112:152-166
    158. Yan J, Nobue T, Takeomi E. Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant, Cell & Environment,2007,30,10: 1320-1325
    159. Yanez M, Caceres S, Orellana S, Bastias A, Verdugo I, Ruiz-Lara S, Casaretto J A. An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep,2009,28,10:1497-1507
    160. Yin P, Fan H, Hao Q, Yuan X Q, Wu D, Pang Y X, Yan C Y, Li W Q, Wang J W & Yan N E. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature Structural & Molecular Biology,2009,16,1230-1236
    161. Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J and Buell C R. The Institute for Genomic Research Osal Rice Genome Annotation Database. Plant Physiology.2005,138:18-26
    162. Yue B, Xiong L Z, Xue W Y, Xing Y Z, Luo L J, Xu C G. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor Appl Genet,2005,111:1127-1136
    163. Zhang Q F. Strategies for developing green super rice. P Natl Acad Sci USA,2007, 104,16404-16409
    164. Zhang S W, Li C H, Cao J, Zhang Y C, Zhang S Q, Xia Y F, Sun D Y, Sun Y. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol,2009,151,4: 1889-901
    165. Zhang X Z, Ervin E H, Evanylo G K and Haering K C. Impact of Biosolids on Hormone Metabolism in Drought-Stressed Tall Fescue. Crop Sci,2009, 49:1893-1901
    166. Zhang X, Fowler S, Cheng H, Lou Y, Rhee S Y, Stockinger E J, Thomashow M F Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J,2004,39: 905-919
    167. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y. Identification of drought-induced microRNAs in rice. Biochem Bioph Res Co,2007,354:585-590
    168. Zhao K, Kas E, Gonzalez E and Laemmli. SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro:HMG-I/Y is enriched in H1-depleted chromatin. EMBO J, 1993,12:3237-3247
    169. Zhou Y, Lam H M, and Zhang J. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. JExp Biol,2007,58:1207-1217
    170. Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002,53:247-273
    171. Zong R T, Das C, Tucker P W.Regulation of matrix attachment region-dependent, lymphocyte-restricted transcription through differential localization within promyelocytic leukemia nuclear bodies. EMBO J,2000,19,15:4123-4133
    172. Zou X, Seemann J R, Neuman D, Shen Q J. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem,2004,279, 53:55770-55779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700