用户名: 密码: 验证码:
不锈钢构件螺栓连接节点及焊接工形截面残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2006年以来我国不锈钢产量一直居于世界首位,随着我国不锈钢产量的提高和加工工艺的改进,不锈钢在建筑结构中的应用也越来越多。然而针对不锈钢在建筑结构中应用的研究还相对较少,不能满足其在工程应用中的需求。迄今为止我国还没有一部有关不锈钢结构设计的规范或者规程,这严重制约了不锈钢在土木工程中的发展。本文主要针对不锈钢构件螺栓连接节点以及不锈钢焊接工形截面的残余应力进行了研究,为我国《不锈钢结构技术规程》的编制提供试验依据。
     首先,通过算例对比分析了欧洲规范1993-1-4、美国规范SEI/ASCE8-02、澳大利亚和新西兰规范AS/NZS4673、日本不锈钢建筑结构设计标准对螺栓连接节点的连接板净截面承载力和承压承载力、螺栓的受剪、受拉承载力和剪力拉力联合作用承载力的设计公式。分析了各国规范计算结果存在差异的原因,明确了中国钢结构设计规范不适合直接用来计算不锈钢螺栓连接,需进行系统的研究。
     其次,采用有限元软件建模,采用有限元数值分析法研究了不锈钢构件螺栓连接节点的承压性能,明确了端距、板厚、螺栓直径等影响因素对承压性能的影响,在有限元分析的基础上进行了国产奥氏体316不锈钢螺栓连接节点的承压性能试验研究,并将其与同等级欧洲奥氏体不锈钢1.4401进行了对比。通过试验和有限元分析结果的对比分析验证了有限元结果的正确性。进而在有限元参数化分析的基础上提出了承压承载力计算公式。
     再次,对国产奥氏体316不锈钢构件螺栓连接中螺栓的应变松弛以及不锈钢构件螺栓连接的抗滑移系数进行试验研究。考虑了拉丝、喷砂、压痕以及未经处理四种摩擦面处理方式和国产10.9级镀锌、国产奥氏体不锈钢A4-70、德国产奥氏体不锈钢A4-80三种螺栓类型。对12组试件28个螺栓进行了长达47个小时以上预拉应变长时监测,找到了预拉应变随时间的变化规律,并通过预拉应变的松弛值计算出预紧力的损失值,对不锈钢构件螺栓连接中预紧力螺栓的应用和扭矩的检查提出了建议。对12组试件进行抗滑移系数试验,测得了四种不同表面处理和三种不同螺栓类型的抗滑移系数,为施加预拉力螺栓在不锈钢结构中的应用提供试验依据。
     最后,对不锈钢焊接工形截面的残余应力进行了试验研究。采用分割条带法对6组不同截面尺寸的奥氏体316不锈钢焊接工字形钢进行了残余应力的测量试验,得到了残余应力的数值及分布,并对其分布特点进行了分析,最终提出了适用于奥氏体不锈钢焊接工字形钢的残余应力分布模型,为今后不锈钢焊接工字形构件的稳定研究提供了前提基础。
The production of stainless steel in China has ranked first in the world since2006. More stainless steel are used in building structures with the increase of the production and the improvement of the processing technology in our country. However, the fact that there are few comprehensive studies on stainless steel structures is not suitable for the application of stainless steel in structural engineering in China. There has not been a specification or code for stainless steel structures in China, which has seriously limited the development in civil engineering. This paper investigates some performance of bolted connection in stainless steel and the residual stress in stainless steel fabricated I-sections, providing the experimental data for the preparation of "Specification for stainless steel structures" in China.
     Firstly, comparative study on design methods for bolted connection of stainless steel in different codes is investigated, including European (Eurocode3EN1993-1-4), American (SEI/ASCE8-02), Australian/New Zealand(AS/NZS4673) standards, Japanese design code for stainless steel structure. Bolted connection for stainless steel is contrasted in the design process, including the resistance of net cross-section, the bearing resistance, the shear resistance, the tension resistance of the bolt connection, and the resistance under combined shear and tension. The related example in calculation is given and the results of the design are compared. The results show that the European code is detailed, the Japanese code is relatively comprehensive, and that it is not proper that GB50017-2003is applied in the design of bolted connections in stainless steel structures. Further systematic research should be carried out.
     Secondly, ANSYS is carried out to found the model and analyze the bearing performance of bolted connections in stainless steel, considering the influencing factors including the thickness, the end distance and the diameter of the bolt. Based on the FEA, experimental study on the performance of bolted connections in austenitic stainless steel316is carried out, which is compared with the same level of stainless steel designated1.4401in Europe. The test results were compared with the results of the finite element analysis, and the comparison proved the validity of the FEM. The design formula of bearing capacity of bolted connections in stainless steel was proposed based on the parameterized finite element analysis.
     Besides, this paper investigates the strain relaxation of the bolts in stainless steel and the anti-slip coefficient in slip bolt joints with stainless steel, including4kinds of friction surface processing and3types of bolts:friction surface treatment——wire drawing, abrasion blasting, scoring, non-processing; bolt type——grade10.9, A4-70, A4-80.28preloaded bolts from12specimens have been monitored for more than47hours. The time-dependent rule of the strain of the bolts has been compared and analyzed. Proposals for the application of preloaded bolts in stainless steel and the torque check of preloaded bolts in stainless steel have been presented. The anti-slip coefficients of the12specimens have been determined, providing experimental basis for the application of preloaded bolts in stainless steel structures.
     In addition, this paper also studies the residual stress of austenitic stainless steel in fabricated I-sections. An experimental study on the residual stress of the austenitic stainless steel316(06Cr17Ni12Mo2) is conducted by sectioning method with6types of sections included. The distribution and magnitude of austenitic stainless steel316fabricated I-sections have been analyzed. A new residual stress model for austenitic stainless steel316fabricated I-sections has been proposed, serving a base for further study on the effect of the residual stress on stainless steel components.
引文
[1]伍千思主编,钢铁材料手册.第五卷,不锈钢[M].北京:中国标准出版社,2009.
    [2]BS_EN10088-3. Stainless steel-Part 3:Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes[S].2005.
    [3]GB/T 20878-2007.不锈钢和耐热钢牌号及化学成分[s].北京:中国标准出版社,2007.
    [4]Gardner,L. The use of stainless steel in structures [J].Progress in Structural Engineering and Materials, 2005, 7:2,pp.45-55.
    [5]王元清,袁焕鑫,石永久等.不锈钢结构及其应用和研究现状[J].钢结构,2010(2):1-13.
    [6]沈晓明.不锈钢受弯构件及构件中的受压板件(组)的理论分析和试验研究[D].南京:东南大学,2010.
    [7]EN 1993-1-4. Eurocode 3:Design of steel structures-Part1-4:General rules-Supplementary rules for stainless steels [S].2006.
    [8]ASCE. Specification for the Design of Cold-Formed Stainless Steel Structural Members [S]. SEI/ASCE 8-02. (Standard No. 02-008). American Society of Civil Engineers. 2002.
    [9]AS/NZS 4673:2001. Cold formed stainless steel structures [S].2001.
    [10]The Design and Construction Standards for Stainless Steel Structures[S]. Stainless Steel Building Association of Japan, 1995 [in Japanese].
    [11]Ramberg W, Osgood W R. Description of stress-strain curves by three parameters [R]. Technical Note No. 902, National Advisory Committee for Aeronautics. Washington, D.C. 1943.
    [12]Rasmussen. Full-range stress-strain curves for stainless steel alloys [J]. Journal of Constructional Steel Research,2003,59(1):47-61.
    [13]Gardner L, Nethercot DA. Experiments on stainless steel hollow sections-Partl:Material and cross-sectional behaviour [J]. Journal of Constructional Steel Research,2004,60(9):1291-1318.
    [14]W.M.Quach, J.G.Teng, K.F.Chung. Three-Stage Full-Range Stress-Strain Model for Stainless Steels[J]. Journal of Structural Engineering, 2008,134(9):1518-1527.
    [15]Bouchair A, J.Averseng, A.Abidelah. Analysis of the behavior of stainless steel bolted connections[J]. Journal of Constructional Steel Research,2008,64(11):1264-1274.
    [16]Kim,T.S.,Kuwamura,H.,and Cho,T.J. A parametric study on ultimate strength of single shear bolted connections with curling. Thin-Walled Structures,2008,46(1):38-53.
    [17]Ryan I. Development of the use of stainless steel in construction. WP4.2, ECSC Project No.7210-SA/327.
    [18]Tae Soo Kim, Byum Seok Han, Sung Woo Shin. Prediction of ultimate behavior of bolted connections in cold-formed stainless steel using numerical analysis[C]. Ansan, Korea: Sustainable Building Research Center, Hanyang University, 2001.
    [19]Tae Soo Kim, Hitoshi Kuwamura. Finite element modeling of bolted connections in thin-walled stainless steel plates under static shear[J]. Thin-Walled Structures, 2007, 45:407-421.
    [20]D. A. Nethercot, E. L. Salih, L. Gardner. Behaviour and Design of Stainless Steel Bolted Connections[J]. Advances in Structural Engineering, 2011,14(4): 647-658.
    [21]E.L. Salih, L. Gardner, D.A. Nethercot. Numerical investigation of net section failure in stainless steel bolted connections[J]. Journal of Constructional Steel Research, 2010, 66(12): 1455-1466.
    [22]J. Averseng, A. Bouchair. Modelling and analysis of bolted stainless steel cover plate joints[J]. European Journal of Environmental and Civil Engineering, 2009, 13(4): 442-456.
    [23]E.L. Salih, L. Gardner, D.A. Nethercot. Bearing failure in stainless steel bolted connections[J]. Engineering Structures, 2011,33(2): 549-562.
    [24]Bouchair A, Baptista A. Strength and deformation of stainless steel bolted joints with reference to Eurocode 3 [C].3rd Eurosteel conference,2002,64: 879-888.
    [25]李开禧,肖允徽.钢压杆的柱子曲线[J].重庆建筑工程学院学报,1985(1):24-33.
    [26]European Convention for Constructional Steelworks. Manual on stability of steel structures part 2.2 mechanical properties and residual stresses[S]. Second Edition, Bruxelles: ECCS Publ., 1976.
    [27]陈骥.综合考虑残余应力、初偏心和初弯曲时轴心压杆的稳定系数[C].全国钢结构标准技术委员会.钢结构研究论文报告选集(第一册).北京:水利水电出版社,1982:1-14.
    [28]班慧勇,施刚,石永久,王元清.超高强度钢材焊接截面残余应力分布研究[J].工程力学,2008,25(增刊Ⅱ):57-61.
    [29]Chernenko, D. E., and Kennedy, D. J. L. An analysis of the performance of welded wide flange columns[J]. Can. J. Civ. Eng., 1991,18 (14):537-554.
    [30]Swedish design code for steel structures[S], Boverket. 1999.
    [31]European Convention for Constructional Steelwork, ECCS. Ultimate limit state calculation of sway frames with rigid joints[S]. Technical Committee 8-Structural Stability Technical Working Group 8.2-System. Publication no. 33,1984.
    [32]施刚,石永久,王元清,李少甫,陈宏.钢结构端板连接高强度螺栓应变松弛的试验研究[J].施工技术,2003,32(11):15-17.
    [33]石永久,施刚,王元清,李少甫.高强度螺栓应变松弛的长时间试验监测[J].施工技术,2004,33(11):11-13.
    [34]施刚,金建钢,傅爱华.钢结构大六角头高强度螺栓应变松弛分析[J].清华大学学报(自然科学版),2010,50(3):342-345.
    [35]F.V.Ellis, Sebastian Tordonato. Calculation of Stress Relaxation Properties for Type 422 Stainless Steel[J]. Journal of Pressure Vessel Technology, 2000, 122(1):66-71.
    [36]关建,王元清,张勇,石永久.各国规范不锈钢结构螺栓连接节点的设计方法比较分析[J].建筑科学与工程学报,2012,29(1):115-120.
    [37]王国周.钢结构残余应力分布的若干特点[J]工业建筑,1981,(08):31-35,20.
    [38]班慧勇,施刚,石永久,王元清.超高强度钢材焊接截面残余应力分布研究[J].工程力学,2008,25(增刊Ⅱ):57-61.
    [39]Bredenkamp, P.J., van den Berg, G.J., and van der Merwe, P. Residual stresses and strength of stainless steel I-section columns[J]. Proc., Structural Stability Research Council, Annual Technical Session, Pittsburgh, 1992:69-86.
    [40]Lagerqvist, O., and Olsson, A. Residual stresses in welded I-girders made of stainless steel and structural steel[C]. Proc. 9th Nordic Steel Construction Conf., 2001:737-744.
    [41]L.Gardner, R.B.Cruise. Modeling of residual stress in structural stainless steel sections [J]. Journal of Structural Engineering, 2009, 135(1):42-53.
    [42]Ashral M, Gardner L, Nethercot D A. Finite element modeling of structural stainless steel cross sections [J]. Journal of thin walled structures,2006,44:1048-1062.
    [43]张贵祥,石永久,王元清,程明.铝合金构件螺栓连承压性能分析与设计方法[J].桂林工学院学报,2006,26(04):501-505.
    [44]Hyeong J. Kim, Joseph A. Yura. The effect of ultimate-to-yield ratio on the bearing strength of bolted connections. [J] Journal of Constructional Steel Research,1999,49(3), P255-263.
    [45]王元清,袁焕鑫,石永久,张贵祥.铝合金板件螺栓连接承压强度试验与计算方法[J].四川大学学报:工程科学版,2011,05:203-208.
    [46]常婷.不锈钢力学性能和不锈钢梁变形性能试验研究[D].大连:大连理工大学,2011,6.
    [47]张贵祥.铝合金构件螺栓连接抗拉抗剪受力性能与计算方法研究[D].北京:清华大学,2006,11.
    [48]钢结构高强度螺栓连接技术规程(JGJ82-2011)[S].2011.10
    [49]杨涯学,曹卫亮.达克罗高强螺栓扭矩系数的影响因素[J].理化检验:物理分册,2011,47(3):196-198.
    [50]石永久,施刚,王元清,李少甫.高强度螺栓应变松弛的长时间试验检测[J].施工技术,2004,11(33):11-13.
    [51]江文琳,梅燕.钢结构高强度螺栓连接面抗滑移系数试验[J].工业建筑,2005,(35)增刊:414416.
    [52]蒋刚,谭明华,王伟明,何闻.残余应力测量方法的研究现状[J].机床与液压,2007,35(6):213-216,220.
    [53]班慧勇,施刚,邢海军等.Q420等边角钢轴压杆稳定性能研究(I)[J].土木工程学报,2010,43(07):14-21.
    [54]Tebedge N, Alpsten G, Tall L. Residual-stress measurement by the sectioning method [J].Experimental Mechanics, 1973,13 (2):88-96.
    [55]王国周,赵家齐.焊接与热轧工字钢残余应力的测定[J].工业建筑,1986,(7):32-37.
    [56]Gardner L. A new approach to stainless steel structural design, phd.thesis Structures Section [D], Department of Civil and Environmental Engineering, Imperial College London; 2002.
    [57]Hyeong J. Kim, Joseph A. Yura. The effect of ultimate-to-yield ratio on the bearing strength of bolted connections. [J] Journal of Constructional Steel Research 49 (1999), P255-263.
    [58]高博.焊接工字形不锈钢受弯构件变形性能及稳定性研究[D].重庆:重庆大学,2011.
    [59]Bredenkam P.P.J. Behacvior of hot-rolled and built-up stainless steel structural members[J]. Journal of Constructional Steel Research,1998,46(1-3):464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700