用户名: 密码: 验证码:
月球车仿叶轮式半步行轮设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地球环境和资源问题的日益加剧,宇宙其他星系资源的探索和开发迫在眉睫。作为距离地球最近的星球——月球成为人类近代深空探索的首要目标。尤其是在以中国的“嫦娥工程”为代表的近几年,国际上再次掀起了月球探测高潮。月球车车轮作为承担着人类登陆月球前探索任务的月球车的关键机构,它的开发设计自然成为各科研机构的研发热点。
     月球表面的特殊行走环境对月球车的车轮性能提出了很高的要求。月球车着陆地点一般选取在月海区域,此区域内月壤相对较厚、表面松软、分布着零星的陨石障碍。为了使月球车能够在这种行走环境下高效行走,并针对前人设计车轮的缺陷和不足,设计出一款新型的仿叶轮式半步行轮结构。该半步行轮基于车辆地面力学原理,结合传统连续轮缘车轮和步行轮的结构及性能优势,创新的采用双排叶片的倒“八”字排列以及非连续轮缘的圆柱形外截面设置,可以在面对坚实路面时最大限度克服步行轮的多边形效,发挥传统车轮连续轮缘的高效性,同时转向性能优越;面对松软轮面时能提高牵引力,减小下陷深度和推土阻力,具有良好的通过性。
     由于仿叶轮式半步行轮的特殊构造,本文引用库仑被动土理论推导其叶片正面受力公式,结合其他方面受力分析,得出一组叶片入土情况下该车轮的牵引力计算结果。接下来运用ADAMS软件对装备本步行轮的月球车模型进行运动学仿真,仿真结果表明该步行轮在平直路面上行驶平稳,可以翻越一定高度的障碍物且一侧越障能力高于两侧越障能力,继承了传统车轮的高平顺性和步行轮的优越越障性。
Today earth environment and resource problems are becoming more and more serious, which causes that the exploration and development of other galaxy resources are urgent. Moon, as the nearest planet to Earth, is the first target of human mordern space esploration.Lunar Exploration has set off the international study boom, particularly in recent years of the project " goddess in the moon" in China. As the critical structure of lunar rover which takes the exploration task for human before landing on the moon,the development and design of Lunar rover have become a research and development hotspot in reasearch institutions.
     The special walking evnironment on the surface of the moon makes higg requirements to the performance of lunar rover.The landing site of lunar rover is generally chosen to be the area of lunar mare where the soil is relatively thick with soft surface and sporadic meteorites obstacles. In order to ensure the effective walking of lunar rover in this eviornment and considering defects and shortconming of previous design, one Semi-step Walking Wheel modeled on impeller with new structure is designed. This Semi-step Walking Wheel, based on vehicl ground mechanics principle, combined the structures and performance advantages of traditional continuous rim wheel and walking wheel, adopted innovatively designs of eight-shaped in reverse of double-row vanes and the discontinuous circle cross section of its rim, can maximumly overcome polygons effect of the lunar rover in the face of solid road and exert the efficiency of continuous rim wheel with superiot steering perfprmance; in case of the soft soil,can reduce the depth of subsidence and resistance of earth-moving with excellent passage.
     Considering the special structure of Semi-step Walking Wheel modeled on impeller, Based on Passive earth pressure of soil mechanics put forward by C.A.Coulomb, the front force formula of the vane of Semi-step Walking Wheel modeled on Impeller is reduced and the wheel traction force when a set of vanes insert the earth is derived. Some Kinematics Simulations are conducted for installing Lunar rover model with this walking wheel with ADAMS software which shows this walking wheel is able to travel smoothly on straight road,climb over bump obstacles with some high as the same time the ability of the lunar rover one-side surmounting obstacle is better than the ability of two-sides and this walking wheel inherits high ride comfort of traditional wheel and excellent cross obstacle ability of walking wheel.
引文
[1]杨孟飞,贾阳,陈建新.月球巡视探测器系统研究[J].空间控制技术与应用,2008,34(3):3-7.
    [2]欧阳自远.我国月球探测的总体科学目标与发展战略[J].地球科学进展,2004,(3):351-358.
    [3]叶培建,彭兢.深空探测与我国深空探测展望[J].中国工程科学,2006,8(10):13-18.
    [4]欧阳自远.月球探测推动科学的创新与发展[J].科学中国人,2007,1:6-12.
    [5]郑永春,欧阳致远,王世杰,等.月壤的物理和机械性质[J].矿物岩石,2004(12):14-19.
    [6]陈百超.月球车新型移动系统设计[D].长春:吉林大学交通学院,2009.
    [7]A Л 姆尔吉安.行星车[R].中国空间技术研究院总体部翻译,2006.
    [8]陶建国,邓宗全,高海波,等.六圆柱-圆锥轮式月球车的设计[J].哈尔滨工业大学报,2006,38(1):4-7.
    [9]Anthony H Young. The Quest for Mars[M]. The United State:Springer New York,1978.
    [10]John J Caruso, Phillip B Abel, James J Zakrajsek. Gravity Effects on Lunar Mobility and the Human-Robotic Systems Program [A].45th AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada,2007.
    [11]Anthony H Young. Lunar and Planetary Rovers [M]. The United State:Springer New York, 1978.
    [12]Anthony H Young. From concept to reality [M]. The United State:Springer New York, 1978.
    [13]Bekker M G. Introduction to Terrain-vehicle Systems [M]. Michigan:the University of Michigan Press,1969.
    [14]陈泽宇.适用于月球车的可伸缩叶片复式步行轮的研究[D].长春:吉林大学交通学院,2009.
    [15]陈德兴,陈秉聪,张书军.步行轮机构原理[J].农业工程学报,1994,10(2):123-129.
    [16]高峰.智能可变直径半步行轮,中国:200510077266.7[P].2005,06,20.
    [17]孙鹏,高峰,李雯,等.深空探测车可变直径车轮牵引通过性分析[J].北京航空航天大学学报,2007,33(12):1404-1407.
    [18]崔莹,高峰.可变直径轮月球探测车运动学建模与分析[J].北京航空航天大学学报,2008,34(3):349-352.
    [19]庄继德.计算汽车地面力学[M].北京:机械工业出版社,2002.
    [20]庄继德.仿驼蹄轮胎,中国:97222912.4[P].1997,05,09.
    [21]李杰,庄继德,裘熙定,等.仿驼足车辆行走机构的设计与试验[J].中国机械工程,1999:979-979.
    [22]陈德兴,杨文志,陈强.一种新型行走机构——机械传动式步行轮的研究[J].有色金属,1994,46(3):7-11.
    [23]岳荣刚,王少萍,焦宗夏,等.一种新型轮爪式车轮设计与性能仿真[J].北京航空航天大学学报,2007,33(12):1408-1411.
    [24]邓宗全,高海波,胡明,等.行星越障轮式月球车的设技计[J].哈尔滨工业大学学报,2003,35(2):203-209.
    [25]邓宗全,高海波,王少纯,等.行星轮式月球车的越障能力分析[J].北京航空航天大学学报,2004,30(3):197-201.
    [26]庄继德.计算汽车地面力学[M].北京:机械工业出版社,2002.
    [27]Bekker M G. Off-Road Locomotion:Research and Development in Terramechanics[J]. The Univ.of Michigan Press, Ann Arbor, Michigan,1960
    [28]Taylor JH, Burt E, Bailey AC. Effect of total load on subsurface soil compaction[J]. Trans ASAE,1980,23(3):568-70.
    [29]Alakukku L, Elonen P.Finnish experiments on subsoil compaction by vehicles with high axle load[J].Soil till Res.,1994,29(3):15-25.
    [30]J. Y. Wong, A. R. Reece. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses. Part I:performance of driven rigid wheel. Journal of Terramechanics.1967,4(1):81-98.
    [31]J. Y. Wong, A. R. Reece. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses. Part II:performance of towed rigid wheel. Journal of Terramechanics.1967,4(2):7-25.
    [32]0. Onafeko, A. R. Reece.Soil stresses and deformations beneath rigid wheel. Journal of Terramechanics.1967,4(1):59-80.
    [33]黄祖永.地面车辆原理[M].北京:机械工业出版社,1985.
    [34]J.Y.Wong. "Wheels vs. tracks" - A fundamental evaluation from the traction perspective. Journal of Terramechanics.2006,43(1):27-42.
    [35]Z. Janosi, Hanamoto B. Analytical Detemination of Drawbar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils[C]. Proc. 1st Int. Conf. of ISTVS, Torino,1961.
    [36]陈秉聪.土壤-车辆系统力学[M].北京:中国农业机械出版社,1981.
    [37]沈杰,余群.湿软土壤压力下陷时间关系的建立[J].农业机械学报,1989,20(4):15-19.
    [38]张克健,张相麟.履刺效应的有限元分析[J].兵工学报,1982,(4):54-60.
    [39]庄继德.汽车地面力学[M].北京:机械工业出版社,1980.
    [40]王庆年,王志浩,李杰敏.车轮重复通过对沙土力学特性影响及参数预测[J].农业工程学报,1995,11(4):33-38.
    [41]Bekker. M. G. Theory of Land Locomotion[M]. Michigan:The Univ. of MichiganPress,1956.
    [42]陈秉聪.土壤-车辆系统力学[M].北京:中国农业机械出版社,1981.
    [43]M. G. Bekker.地面-车辆系统导论[M].北京:机械工业出版,1978.
    [44]K.太沙基著.理论土力学[M].北京:地质出版社,1960.
    [45]全齐全.月球车车轮与土壤作用的力学特性测试系统的研制与实验[D].哈尔滨,哈尔滨工业大学机电工程学院,2007.
    [46]陈秉聪,陈德兴.无轮缘车轮动力性能的研究[J].农业机械学报,1982,13(2):1-15.
    [47]陈百超,王荣本,贾阳,等.高通过性与平稳性月球车移动系统设计[J].机械工程学报,2008,44(12):143-149.
    [48]王林,月球车车轮与土壤作用的力学特性分析与测试系统设计[D].哈尔滨,哈尔滨工业大学机电工程学院,2007.
    [49]张彦辉.胎面花纹对轮胎湿附着性能的影响及轮胎滚动特性研究[D].合肥,合肥工业大学机械工程学院,2007.
    [50]赵一兵.一种仿叶轮式半步行轮:中国,201120187314.9[P].2011,06,03.
    [51]刘国华.土质学与土力学[M].北京:化学工业出版社,2009.
    [52]张克健.车辆地面力学[M].北京:国防工业出版社,2007.
    [53]张克恭,刘松玉.土力学[M].北京:中国建筑工业出版社,2001
    [54]焦峰,扶壁式挡土墙结构的最优化设计[D].兰州,兰州理工大学建筑工程学院,2004.
    [55]李春生,减力板式挡土墙土压力的计算与研究[D].沈阳,沈阳农业大学建筑工程学院,2004.
    [56]顾慰慈.挡土墙土压力计算[M].北京:中国建材工业出版社,2001.
    [57]杨艳春,鲍劲松,金烨.基于虚拟现实环境的六轮月球车运动性能分析[J].上海交通大学学报,2010,44(8):1079-1083.
    [58]刘吉成.月球车车轮驱动性能及其综合评价的研究[D].哈尔滨,哈尔滨工业大学机电工程学院,2009.
    [59]焦震.基于地面力学的月球车动力学建模与仿真研究[D].哈尔滨,哈尔滨工业大学机电工程学院,2009.
    [60]冯启山.刚性轮与松软地面相互作用研究及仿真软件开发[D].长春:吉林大学交通学院,2001.
    [61]仝光.基于ADAMS月球车仿真平台的研究[D].长春:吉林大学交通学院,2007.
    [62]陈斌.基于模拟月壤的轮壤关系研究[D].长春:吉林大学交通学院,2010.
    [63]陈希红.转子系统既有故障的仿真研究[D].沈阳:东北大学机械工程学院,2008.
    [64]Carrier W D, Olhoef G R, Mendel W. Phisical Properties of Lunar Surface. Lunar Sourcebook[M]. Cambridge University Press.1991.
    [65]Costes N C, Farmer J E, George E B. Mobility Performance of the Lunar Roving Vehicle[R]. Terrestrial Studies-Apollo 15 Results, NASA TR-R-401.1972.
    [66]W David Carrier. LUNAR SOIL SIMULATION and TRAFFICABILITY PARAMETERS [J]. Lunar Geotechnical Institute.2006,12(3):334-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700