用户名: 密码: 验证码:
次同步扭振动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“西电东送、南北互供、全国联网”发展战略实施,大型煤电基地相继投运,普遍采用单机容量为600 MW-1000 MW的大型汽轮发电机组,并且大量应用加装串补电容的输电线路来提高传输能力。大容量机组与大电网相互作用,特别是与串补线路相互作用,极易引起汽轮发电机组轴系次同步扭振问题。因此,次同步扭振问题是我国顺利实现“西电东送、南北互供、全国联网”发展战略、协调大电网大机组安全稳定运行所急需解决的重要问题。本文开展次同步扭振动态建模与分析方法研究,主要工作如下:
     现存的电机参数与等值电路参数关系主要包括经典参数关系、近似精确参数关系以及迭代参数关系。本文分析了这3种参数关系存在的问题,分别建立了基于“静止频率响应”和“空载三相突然短路”试验的严格参数关系,分析了各种参数关系的区别与联系。并且分别应用同步电机运算电抗频率响应特性和特征值分析,研究了各种近似参数关系对次同步扭振分析结果的影响。研究结果显示了应用严格参数关系的必要性。
     推导了在同步电机dq坐标系下的5阶感应电动机动态方程,此方程能够与包含电网电磁暂态的动态方程接口。进而建立了包含恒阻抗、恒电流、恒功率及动态负荷的次同步扭振分析线性化方程,分析了不同类型负荷对次同步扭振模态阻尼的影响。分析结果显示,只有当系统等值阻抗特别小的情况下,才可以忽略负荷对扭振模态阻尼的影响;在通常系统等值阻抗情况下,仅考虑RLC谐振电路影响而忽略负荷与扭振模态之间互作用,结果可能过于乐观。
     应用机电耦合模型推导了扭矩线性解,定义了扭矩模态型及扭矩贡献因子,把小扰动扭振动态与机电系统模态联系起来,建立了小扰动扭振动态解析方法。另外,定义了“转子角全模态型”、“扭振模态型”等物理概念,推导了受迫振动模型的解。并应用上述分析回答了3个问题:“机电耦合模型”、“自由振动模型”和“受迫轴系模型”等3种模型的轴系扭振动态是否等价;为何模态型和自然扭振频率的计算值和测量值有很大偏差;怎样直接分析小扰动扭振动态特性。
     针对大扰动扭振动态问题,推导了扭矩2阶解,定义了模态非线性指标及非线性贡献因子,把大扰动扭振动态特性分析与非线性模态分析联系起来,建立了分析大扰动扭振动态特性解析方法。提出了模态叠加原理,并将该原理应用于2阶解,提出了一种预测暂态扭矩放大的方法。
     最后,应用上述建模及分析方法研究了某实际6机串补系统汽轮发电机组轴系扭振动态特性。分析结果表明,同步电机参数转化对实际多机系统扭振模态阻尼的计算结果有重要影响,各种近似参数转化方法都无法保证其自身计算结果的保守性。在实际多机系统中振荡模态繁多,应用本文所提出的大(小)扰动扭振动态特性研究方法,能够将这些模态与大(小)扰动扭振动态直接联系起来,也能够深入理解扭振动态的内部机制,提供描述大(小)扰动扭振动态特性的定量信息。这些定量信息指导机电系统安全运行,为研究汽轮发电机轴系次同步扭振抑制措施奠定了基础,进一步显示了本文所提出的建模及分析方法的优势。
With the implementation of the strategic plan of "transmission of electricity from the west to the east, exchange electricity between the south and the north, and the interconnection of power grids", the coal power bases have been commissioned one after another. They have commonly employed the turbine-generators with the unit capacity from 600 MW to 1000 MW. Series capacitive compensation measure has been widely used for enhancing the transmission capability of the corridors. The interactions of the high-capacity generator units and the large-scale grid, especially the series capacitive compensation transmission lines, readily lead to turbine-generator shaft torsional fatigue. Thus, subsynchronous torsional dynamics is an imperative problem for the implementation of the strategic plan and the security operation of large-scale interconnected power system and high-capacity units. In this dissertation, the modelling and analysis methodologies of subsynchronous torsional dynamics are studied, which is mainly composed of following parts.
     The three categories of parameter translations between measured parameters and equivalent circuit parameters for synchronous machines, including the classic parameter, the approximate accurate parameter and the iterative parameter translations, are given, and their drawbacks are revealed. The accurate translations are respectively established based on standstill-frequency-response tests and sudden short-circuit tests. The relations and differences between all kinds of the above mentioned parameter translations are clarified. The effect of parameter translations on torsional dynamics are analyzed by using the frequency-response characteristics for operational reactance and the eigenvalues method. The analysis results show that it is necessary to adopt the accurate translations for subsynchronous torsional dynamics analysis.
     The fifth-order dynamic equation for induction motors is derived in the dq-coordinates of synchronous machines. This equation can interface with the dynamic equations including the electromagnetic transients of electrical networks. Furthermore, the linear equations including fifth-order induction motors and constant impedance (Z), constant current (I), constant power (P) load models, are established for investigating subsynchronous torsional dynamics. Effects of different loads on the damping torsional modes are analyzed. The results show that the effect of loads on the damping of torsional modes can be neglected under the system with the very small equivalent impedance; the loads have the important effect on the damping of torsional modes under the system with the average equivalent impedance. The calculated damping of torsional modes can be overly optimistic without the consideration of load models under the average equivalent impedance.
     The linear solutions of torsional torques are derived based on the electromechanical coupling model, and then they are used to define mode shapes and mode contribution factors of torques, which directly relate the electromechanical system modes to shaft torsional dynamics. Thus, the analytical method is established for analyzing small-signal torsional dynamics. Additionally, all-mode shapes and torsional mode shapes are defined. The solutions of forced vibration model are developed under the same electrical torque for the electromechanical coupling model. By using the above analyses, the three questions are answered:whether the three models of "electromechanical coupling model", "free vibration model" and "forced vibration model" are equivalent or not, why there is large deviation between the calculated and measured values for mode shapes and natural torsional frequencies, how shaft torsional dynamics can be directly represented.
     Based on the modal series method, the second-order solutions of torsional torques are derived, and the nonlinearity modal indices and contributor factors of torques are defined to quantify the effects of nonlinear modal interactions on torsional dynamics. The analytical method is established for investigating nonlinear torsional dynamics directly from the physical concepts. Moreover, the principle of modal superposition is developed and it is used to establish a methodology for predicting transient torque amplification based on the second-order solutions of torques.
     Finally, the proposed modelling and analysis methodologies are used to investigate the torsional dynamics for an actual series compensation system with six turbine-generators from the China Grid. The numerical results shows that the parameter translations have the significant effect on the damping for the calculated torsional modes for the actual system; all kinds of parameter translations can not make sure that they are conservative for the calculated torsional modes. Additionally, there exist a lot of oscillation modes. The proposed analysis method for investigating the large (small) disturbance torsional dynamics can establish the direct relationships of the fundamental modes of the electromechanical system and the large (small) disturbance torsional dynamics, and it can provide the quantitative analysis for the large (small) disturbance torsional dynamics. These quantitative analyses can provide recommendations for the actual operation and lay the foundation for developing the measures for suppressing the subsynchronous shaft torsional dynamics problems. The advantages for employing the proposed modelling and analysis methodologies are shown in the actual systems.
引文
[1]Walker D N, Bowler C E J, and Jackson R L, et al. Results of subsynchronous resonance test at Mohave. IEEE Trans on Power Apparatus and Systems,1975, 94(5):1878-1889.
    [2]周孝信,郭剑波,胡学浩,汤涌.提高交流500kV线路输电能力的实用化技术和措施.电网技术,2001,25(3):1-6.
    [3]Kilgore L A, Ramey D G, and Hall M C. Simplified transmission and generation system analysis procedures for subsynchronous resonance problems. IEEE Trans on Power Apparatus and Systems,1977,96(6):1840-1846.
    [4]于立宏.能源资源替代战略研究.北京:中国时代经济出版社,2008:1~200.
    [5]吕伟业,孙寿广,吕健.北通道“西电东送”规划研究概况.电力建设,2002,23(11):51~70.
    [6]韩晓琪,王怡萍,董凤宇,等.提高500kV电网向北京输送能力的措施.电力设备,2005,6(10):14~16.
    [7]周小谦.我国“西电东送”的发展历史、规划和实施.电网技术,2003,27(5):1-5.
    [8]胡江溢,黄家裕,卞蓓蕾.阳城500kV输电系统次同步谐振的研究.电网技术,1998,22(9):27~30.
    [9]杨煜,陈陈.伊敏-大庆500kV输电次同步谐振分析——兼论发电机轴系共振频率.电网技术,2000,24(5):10~12.
    [10]任树东.上都电厂串补输电方案次同步谐振专题研究.北京:北京国电华北电力工程有限公司,2005:1-20.
    [11]许楚镇,张恒涛.汽轮发电机组轴系扭振事故剖析和技术展望.动力工程,1990,10(72):9~14.
    [12]李士勇,周畅,王西田.抑制大型汽轮发电机组轴系扭振的控制技术综述.热能动力工程,2000,15(89):451~454.
    [13]余颖辉,张保会.汽轮发电机组轴系扭振研究的发展与展望.电力系统自动化,1999,23(10):56~60.
    [14]强彦,谢永慧,张荻.汽轮发电机组转子及轴系弯扭耦合振动发展现状与展望.汽轮机技术,2006,48(5):321~326.
    [15]Bahram M, Larsen E V, and Piwko R J, et al. Experience with HVDC turbine-generator torsional interaction at Square Butte. IEEE Trans on Power Apparatus and Systems,1980,99(3):966-975.
    [16]Mortensen K, Larsen E V, and Piwko R J. Field tests and analysis of torsional interaction between the Coal Creek turbine-generators and the CU HVDC system. IEEE Trans on Power Apparatus and Systems,1981,100(1):336-344.
    [17]Piwko R J, Wegner C A, and Kinney S J, et al. Subsynchronous resonance performance tests of the Slatt thyristor-controlled series capacitor. IEEE Trans on Power Delivery,1996,11(2):1112-1119.
    [18]Bowler C E J, Baker D H, Mincer N A, and Vandiveer P R. Operation and Test of the Navajo SSR Protective Equipment. IEEE Trans on Power Apparatus and Systems,1978,97(4):1030-1035.
    [19]Bowler C E J, Baker D H, and Mincer N M, et al. Operation and test of the Navajo SSR protective equipment. IEEE Trans on Power Apparatus and Systems,1978, 97(4):1030-1035.
    [20]Hauer J F, Mittelstadt W A, and Piwko R J. Modulation and SSR tests performed on the BPA 500KV thyristor-controlled series capacitor unit at Slatt Substation. IEEE Trans on Power Systems,1996,11(2):801-806.
    [21]Kinney S J, Mittelstadt W A, and Suhrbier R W. Test results and initial operating experience for the BPA 500kv thyristor controlled series capacitor design, operation, and fault test results. Northcon 95:IEEE Technical Applications Conference and Workshops Northcon 95, Oct,1995:268-273.
    [22]Famer R G, Schwalb A L, and Katz E. Navajo project report on subsynchronous resonance analysis and solutions. IEEE Trans on Power Apparatus and Systems, 1977,96(4):1226-1232.
    [23]IEEE Subsynchronous Resonance Working Group. Proposed terms and definitions for subsynchronous oscillations. IEEE Trans on Power Apparatus and Systems, 1980,99(2):506-511.
    [24]IEEE Subsynchronous Resonance Working Group. Terms, Definitions and Symbols for subsynchronous oscillations. IEEE Trans on Power Apparatus and Systems,1985,104(6):1326-1334.
    [25]IEEE Committee Report. A bibliography for the study of subsynchronous resonance between rotating machines and power systems. IEEE Trans on Power Apparatus and Systems,1976,95(1):216-218.
    [26]IEEE Committee Report. First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems. IEEE Trans on Power Apparatus and Systems,1979,98(6):1872-1875.
    [27]IEEE Committee Report. Second supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems. IEEE Trans on Power Apparatus and Systems,1985,104(2):321-327.
    [28]IEEE Committee Report. Third supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems. IEEE Trans on Power Systems,1991,6(2):830-834.
    [29]IEEE Committee Report. Fourth supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems. IEEE Trans on Power Systems,1997,12(3):1276-1282.
    [30]IEEE Subsynchronous Resonance Task Force. First benchmark model for computer simulation of subsynchronous resonance. IEEE Trans on Power Apparatus and Systems,1977,96(5):1565-1572.
    [31]IEEE Subsynchronous Resonance Task Force. Second benchmark model for computer simulation of subsynchronous resonance. IEEE Trans on Power Apparatus and Systems,1995,104(5):1057-1066.
    [32]IEEE Subsynchronous Resonance Task Force. Comparison of SSR calculation and test results. IEEE Trans on Power Systems,1989,4(1):336-344.
    [33]IEEE Slow Transients Task Force. Modeling and analysis guideline for slow transients:part I torsional oscillations; transient torques; turbine blade vibrations; fast bus transfer. IEEE Trans on Power Delivery,1995,10(4):1950-1955.
    [34]IEEE Torsional Issues Working Group. Reader's guide to subsynchronous resonance. IEEE Trans on Power Systems,1992,7(1):150-157.
    [35]IEEE Subsynchronous Resonance Working Group. Countermeasures to subsynchronous resonance problems. IEEE Trans on Power Apparatus and Systems,1980,99(5):1810-1818.
    [36]IEEE subsynchronous resonance working group. Series capacitor controls and settings as countermeasures to subsynchronous resonance. IEEE Trans on Power Apparatus and Systems,1982,101(6):1281-1287.
    [37]Piwko R J, and Larsen E V. HVDC system control for damping of subsynchronous oscillations. IEEE Trans on power apparatus and systems,1982,101(7): 2203-2211.
    [38]Shi W, and Iravani M R. Effect of HVDC line faults on transient torsional torques of turbine-generator shafts. IEEE Trans on Power Systems,1994,9(3):1457-1464.
    [39]刘晓东,杨煜,陈陈.基于采样-数据模型方法的可控串联补偿系统对次同步振荡抑制作用的计算.中国电机工程学报,2001,21(2):1-5.
    [40]杨秀,陈陈.高压直流输电的采样数据动态建模.中国电机工程学报,2004,24(7):30~34.
    [41]吴俊勇,程时杰.具有直流输电的电力系统次同步谐振的研究.电力系统自动化,1996,20(11):9-12.
    [42]杨煜,胡蓉,洪潮,任成.兴安直流输电工程单极投运后次同步振荡问题及抑制措施.南方电网技术,2007,1(2):25~30.
    [43]周长春,徐政.一种评价多个直流换流站系统次同步谐振相互作用的新指标.中国电机工程学报,2004,24(4):6~11.
    [44]周长春,徐政.由直流输电引起的次同步振荡的阻尼特性分析.中国电机工程学报,2003,23(10):6~10.
    [45]Hammons T J, and Bremner J J. Analysis of variable-frequency currents superimposed on DC currents in asynchronous HVDC links in stressing turbine-generator-exciter shafts. IEEE Trans on Energy Conversion,1995,10(1): 95-104.
    [46]Hammons T J, and Goh M W. Turbine, generator, system modeling and impact of variable-frequency ripple currents on torsional stressing of generators in Poland and Sweden:Lithuania/Poland and Sweden/Poland HVDC links. IEEE Trans on Energy Conversion,2000,15(4):384-394.
    [47]Tsai J I, Lin C H, and Tsao T P. Assessment of long-term life expenditure for steam turbine shafts due to noncharacteristic subharmonic currents in asynchronous links. IEEE Trans on Power Systems,2004,19(1):507-516.
    [48]Kin D J, Nam H K, and Moon Y H. A practical approach to HVDC system control for damping subsynchronous oscillations using the novel eigenvalue analysis program. IEEE Trans on Power Systems,2007,22(4):1926-1934.
    [49]Pandey R K. Stability Analysis of AC/DC System with Multirate Discrete-time HVDC Converter Model. IEEE Trans on Power Delivery,2008,23(1):311-318.
    [50]吕世荣,刘晓朋,郭强,等.含TCSC的电力系统次同步谐振的复转矩系数分析法.电力系统自动化,1999,23(12):16~20.
    [51]韩光,童陆园,葛俊,等.TCSC抑制次同步谐振的机理分析.电力系统自动化,2002,26(2):18~21.
    [52]吕世荣,刘晓朋,郭强,等.TCSC对抑制次同步谐振的机理分析.电力系统自动化,1999,23(6):14~18.
    [53]曹路,陈珩.可控串联补偿抑制次同步谐振的机理.电力系统自动化,2001,25(4):25~30.
    [54]Othman H A, and Angquist L. Analytical modeling of thyristor controlled series capacitors for SSR studies. IEEE Trans on Power Systems,1996,11(1):119-127.
    [55]Jalali S G, Lasseter R H, and Dobson I. Dynamic response of a thyristor-controlled switched capacitors. IEEE Trans on Power Delivery,1994,9(3):1609-1615.
    [56]Perkins B K, and Iravani M R. Dynamic modeling of a TCSC with application to SSR analysis. IEEE Trans on Power Systems,1997,12(4):1619-1625.
    [57]Tabesh A, Iravani R. On the application of the complex torque coefficient method to the analysis of torsional dynamics. IEEE Trans on Energy Conversion,2005, 20(2):268-275.
    [58]Daneshpooy A, and Gole A M. Frequency response of the thyristor controlled series capacitor. IEEE Trans on Power Delivery,2001,16(1):53-58.
    [59]Pilotto L A S, and Bianco A, and Long W F, etal. Impact of TCSC control methodologies on subsynchronous oscillations. IEEE Trans on Power Delivery, 2003,18(1):243-252.
    [60]Kakimoto N, and Phonohanphanee A. Subsynchronous resonance damping control of thyristor-controlled series capacitor. IEEE Trans on Power Delivery,2003, 18(3):1051-1059.
    [61]Kabiri K, S Henschel, and Dommel H W. Resistive behavior of the thyristor-controlled series capacitor at subsynchronous frequency. IEEE Trans on Power Delivery,2004,19(1):374-379.
    [62]Kabiri K, Henschel S, and Marti J R, etal. A discrete state-space model for SSR stabilizing controller design for TCSC compensated systems. IEEE Trans on Power Delivery,2005,20(1):466-474.
    [63]Mattavell P, and Verghese G C, and Stankovic A M. Phasor dynamics of thyristor-controlled series capacitor systems. IEEE Trans on Power Systems,1997, 12(3):1259-1267.
    [64]Mattavell P, Stankovic A M, and Verghese G C. SSR analysis with dynamic Phasor model of thyristor-controlled series capacitor. IEEE Trans on Power Systems, 1997,12(3):1259-1267.
    [65]Padiyar K R, and Prabhu N. Design and performance evaluation of subsynchronous damping controller with STATCOM. IEEE Trans Power Delivery,2006,21(3): 1398-1405.
    [66]Sander S R, and Noworolski J M, et al. Generalized averaging method for power conversion circuits. IEEE Trans on Power Electronics,1991,6(2):252-259.
    [67]Alves J E R, Luiz Jr, Pilotto A S, and Wantanabe E H. Thyristor-controlled reactors nonlinear and linear dynamic analytical models. IEEE Trans on Power Delivery, 2008,23(1):338-346.
    [68]Cheriyan E P, and Kulkarni A M. Discrete-time dynamic model of NGH damper. IEEE Trans on Power Systems,2007,22(4):1888-1897.
    [69]Fang C C. Sampled-data modeling and analysis of one-cycle control and charge control. IEEE Trans on Power Electronics,2001,16(3):345-350.
    [70]Rajaraman R, and Dobson I. Justification of torque per unit velocity methods of analyzing subsynchronous resonance and a swing mode in power systems. IEEE Trans on Circuits and Systems I:fundamental theory and applications,1998, 45(10):1109-1113.
    [71]Rajaraman R, and Dobson I. Damping estimates of subsynchronous and power swing oscillations in power systems with thyristor switching devices. IEEE Trans on Power Systems,1996,11(4):1926-1930.
    [72]Rajaraman R, Dobson I and Lasseter R H, etal. Computing the damping of subsynchronous oscillations due to a thyristor controlled series capacitor. IEEE Trans on Power Delivery,1996,11(1):1120-1127.
    [73]郑超,汤涌,马世英,等.基于等效仿真模型的VSC-HVDC次同步阻尼振荡特性的分析.中国电机工程学报,2007,27(31):33~39.
    [74]Harneforts L. Analysis of subsynchronous torsional interaction with power electronic converters. IEEE Trans on Power and Systems,2007,22(1):305-313.
    [75]Bongiorno M, Svensson J, Angquist L. On control of static synchronous series compensator for SSR mitigation. IEEE Trans on Power Electronics,2008,23(2): 735-743.
    [76]徐政,罗惠群,祝瑞金.电力系统次同步振荡问题的分析方法概述.电网技术,1999,23(6):36~39.
    [77]陈陈,杨煜.几种次同步振荡分析方法和工具的阐述.电网技术,1998,22(8):10~13.
    [78]Agrawal B L, Farmer R G. Use of frequency scanning techniques for subsynchronous resonance analysis. IEEE Trans on Power Apparatus and Systems, 1979,98(2):341-349.
    [79]Padiyar K R. Analysis of subsynchronous resonance in power systems. Boston: Kluwer Academic Publishers,1999:1-247.
    [80]Anderson P M, Agrawal B L, Van Ness J E. Subsynchronous resonance in power system. New York:IEEE Press,1990:4-248.
    [81]徐政.复转矩系数法的适用性分析及其时域仿真实现.中国电机工程学报,2000,20(6):1-4.
    [82]夏道止.《电力系统分析》(下).北京:中国水利电力出版社,1995:170~190.
    [83]倪以信.陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华出版社,2002:298~300.
    [84]Canay I M. A novel approach to the torsional interaction and electrical damping of the subsynchronous machine. PartⅠ:Theory. IEEE Trans on Power Apparatus and Systems,1982,101(10):3630-3638.
    [85]Canay I M. A novel approach to the torsional interaction and electrical damping of the subsynchronous machine. Part Ⅱ:application to an arbitrary network. IEEE Trans on Power Apparatus and Systems,1982,101(10):3639-3647.
    [86]IEEE Joint Working Group on determination of synchronous machine stability constants. Supplementary definitions and associated test methods for obtaining parameters for synchronous machine stability simulations. IEEE Trans on Power Apparatus and Systems,1980,99(4):1625-1633.
    [87]Power System Engineering and Electrical Machinery Committees. IEEE Standard P1110-IEEE Guide for synchronous generator modeling practices in stability analysis. New York:IEEE Inc,2002:1-72.
    [88]Power System Engineering and Electrical Machinery Committees. ANSI/IEEE Standard 115-1995 IEEE Guide:test procedures for synchronous machines. New York:IEEE Inc,1995:1-200.
    [89]Kundur P. Power system stability and control. New York:McGraw-Hill,1994: 271-312.
    [90]Atarod V, Dandeno P L, and Iravani M R. Impact of synchronous machine constants and models on the analysis of torsional dynamics. IEEE Trans on Power Systems,1993,8(3):1336-1374.
    [91]Dandeno P L, and Iravani M R. Third order of turboalternator electrical stability models with applications to subsynchronous resonance studies. IEEE Trans on Energy Conversion,1995,10(1):78-86.
    [92]IEEE joint working group on determination of synchronous machine stability constants. Current usage and suggested practices in power system stability simulations for synchronous machines. IEEE Trans on Energy Conversion,1986, 1(1):77-93.
    [93]EPRI. Advanced load modeling-Entergy pilot study. California:EPRI of US,2006: 1-120.
    [94]IEEE Task Force on Load Representation For Dynamic Performance. Bibliography on load models for power flow and dynamic performance simulation. IEEE Trans Power Systems,1995,10(1):523-538.
    [95]IEEE Task Force on Load Representation For Dynamic Performance. Standard load models for power flow and dynamic performance simulation. IEEE Trans Power Systems,1995,10(3):1302-1313.
    [96]IEEE Task Force on Load Representation For Dynamic Performance. Load representation for dynamic performance analysis. IEEE Trans Power Systems, 1993,8(2):472-482.
    [97]Allen E H, and Ilic M D. Interaction of transmission network and load phasor dynamics in electric power systems. IEEE Trans on Power Apparatus and Systems, 1975,94(5):1878-1889.
    [98]Milanovic J V, and Hisken I A. Effects of load dynamics on power system damping. IEEE Trans on Power Systems,1995,10(2):1022-1028.
    [99]Kao W S. The effect of load models on unstable low-frequency oscillation damping in Taipower system experience w/wo power system stabilizers. IEEE Trans on Power Systems,2001,16(3):463-472.
    [100]赵勇,张建平.福州地区负荷模型影响福建电网暂态稳定性的机理.电力系统自动化,2005,29(12):77~82.
    [101]孙衢,徐光虎,陈陈.负荷模型动态特性不确定性对低频振荡的影响.电力系统自动化,2003,27(10):11~14.
    [102]李颖,贺仁睦.负荷与PSS的相互作用对系统动态稳定的影响.电力系统自动化,2004,28(8):40~44.
    [103]张进,贺仁睦,王鹏,等.送端感应电动机负荷无功特性对送出极限的影响.电力系统自动化,2005,29(4):24~27.
    [104]Agrawal B L, Demcko J A, and Farmer R G. Apparent impedance measuring system (AMIS). IEEE Trans on Power Systems,1989,4(2):575-582.
    [105]He R M, M Jin and David H. Composite load modeling via measurement approach. IEEE Trans on Power Systems,2006,21(3):663-672.
    [106]M Jin, He R M and David H. Load modeling by finding support vectors of load data from field measurements. IEEE Trans on Power Systems,2006,21(2): 726-735.
    [107]Zaid S A, and Taleb M. Structural modeling of small and large induction machines using integral manifolds. IEEE Trans on Energy Conversion,1991,6(3):529-535.
    [108]Pereira L, Kosterev D, and Mackin P, et al. An interim dynamic induction motor model for stability studies in the WSCC. IEEE Trans Power Systems,2002,17(4): 1108-1115.
    [109]EPRI. Steam turbine-generator torsional vibration interaction with the electrical network:tutorial. California:EPRI of US,2006:1-200.
    [110]EPRI. Torsional vibration interaction with the electrical network phenomena and steam turbine-generator shafts:plant vulnerability. California:EPRI of US,2006: 1-100.
    [111]Undrill J M, and Hannett L N. Turbine-generator impact torques in routine and fault operations. IEEE Trans on Power Apparatus and Systems,1979,98(2):618-628.
    [112]Ramey D G, and Kung G C Important parameters in considering transient torques on turbine-generator shaft systems. IEEE Trans on Power Apparatus and Systems, 1980,99(1):311-317.
    [113]Lambrecht D, and King T. Torsional performance of turbine generator shafts especially under resonant excitation. IEEE Trans on Power Apparatus and Systems,1982,101(10):3689-3702.
    [114]Jenning G D, Harly R G, and Levy D C. Sensitivity of subsynchronous resonance predictions to turbo-generator modal parameter values and to omitting certain active subsynchronous modes. IEEE Trans on Energy Conversion,1987,2(3): 470-478.
    [115]Tabesh A, and Iravani R. Frequency-response analysis of torsional dynamics. IEEE Trans on Power Systems,2004,19(3):1430-1437.
    [116]Iravani M R. Coupling phenomenon of torsional modes. IEEE Trans on Power Systems,1989,4(3):881-888.
    [117]Kakimoto N, Nakanishi A, and Tomiyama K. Instability of interarea oscillation mode by autoparametric resonance. IEEE Trans on Power Systems,2004,19(4): 1961-1970.
    [118]Sanchez-Gasca J J, Vital V, and Gibbard M J. Inclusion of higher order terms for small-signal (modal) analysis:committee report-task force on assessing the need to include higher terms for small-signal (modal) analysis. IEEE Trans Power Systems,2005,20(4):1886-1904.
    [119]Kshatriya N, Annakkage U D, Gole A M, and Fernando I T. Improving the accuracy of normal form analysis. IEEE Trans Power Systems,2005,20(1): 286-293.
    [120]邓集祥,赵丽丽.主导低频振荡模式二阶非线性相关作用的研究.中国电机工程学报,2005,25(7):75~80.
    [121]邓集祥,华瑶,韩雪飞.大扰动稳定中振荡模式的作用.中国电机工程学报,2003,23(11):60~64.
    [122]吴复霞,吴浩,韩祯祥,等.电力系统非线性模式分析方法的比较.中国电机工程学报,2007,27(34):19~25.
    [123]Shanechi H M, Pariz N, and Vaahedi E. General nonlinear modal representation of large scale power systems. IEEE Trans Power Systems,2003,18(3):1103-1109.
    [124]邓集祥,陈武晖,涂进,等.电力系统3阶解析解的推导及验证.中国电机工程学报,2007,27(28):12~18.
    [125]邓集祥,陈武晖,贺建明.应用模态级数3阶解析解分析大扰动低频振荡机理.电力系统自动化,2007,22(25):27~30.
    [126]Dobson I, and Barocio E. Scaling of normal form analysis coefficient under coordinate change. IEEE Trans Power Systems,2004,19(3):1438-1444.
    [127]Dobson I, Zhang J F, and Greene S. Is strong modal resonance a precursor to power system oscillations. IEEE Trans Circuits Systems I,2001,48(3):340-349.
    [128]Dobson I. Strong resonance effects in normal form analysis and subsynchronous resonance. Japan:Bulk Power System Dynamics and Control V, Aug,2001: 563-574.
    [129]Andrade M A, Messina A R, and Rivera C A, et al. Identification of instantaneous attributes of torsional shaft signals using the Hilbert transform. IEEE Trans on Power Systems,2004,19(3):778-785.
    [130]Dobson I, and Barocio E. Perturbation of weakly resonant power system electromechanical modes. IEEE Trans Power Systems,2005,20(1):330-337.
    [131]Mugwanya D K, and Van Ness J E. Mode coupling in power systems. IEEE Trans Power Systems,1987,2(2):264-269.
    [132]Abolins A, Lambrecht D, Joyce J S, and Rosenberg L T. Effect of clearing short circuits and automatic reclosing on torsional stress and life expenditure of turbine-generator shafts. IEEE Trans on Power Apparatus and Systems,1976, 95(1):14-25.
    [133]Joyce J S, Kulig T, and Lambrecht D. Torsional fatigue of turbine-generator shafts caused by different electrical system faults and switching operations. IEEE Trans on Power Apparatus and Systems,1978,97(5):1965-1977.
    [134]Faried S O, Upadhyay S, and Senaidi S A. Impact of six phase transmission line faults on turbine-generator shaft torsional torques. IEEE Trans on Power Systems, 2002,17(2):365-370.
    [135]Faried S O. An adaptive short-time compensation scheme for improving power system stability and reducing turbine-generator shaft torsional torques. IEEE Trans on Power Systems,2000,15(2):785-790.
    [136]Anderson P M and Farmer R G. Series compensation of power systems. California: PBLSH!Inc,1996:158-195.
    [137]Willims R A, Adams S L, Placek R J, Klufas O, Gonyea D C and D K Sharma. A methodology for predicting torsional fatigue crack initiation in large turbine-generator shafts. IEEE Trans Power Energy Conversion,1986,1(3): 80-86.
    [138]Achilles R A. Predicting shaft torque amplification. IEEE Trans on Power Apparatus and Systems,1995,10(1):407-412.
    [139]Pourbeik P, and Ramey D G. Vulnerability of large steam turbine generators to torsional interactions during electrical grid disturbances. IEEE Trans Power Systems,2007,22(3):1250-1258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700