用户名: 密码: 验证码:
自转旋翼飞行器总体设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自转旋翼飞行器(以下简称旋翼机)是一种以自转旋翼作为升力面、螺旋桨推/拉力或其它供能方式为前进动力的旋翼类飞行器,具有机构简单、安全性高、成本低等特点。为设计具有鹞跃起飞性能的旋翼机,解决其总体设计过程中遇到的关键技术问题,本文针对自转旋翼气动特性、旋翼机飞行动力学特性、鹞跃和超短距起飞技术、参数多目标优化设计、旋翼系统及其操纵系统设计等进行了深入的研究,并最终完成了ZX1型旋翼机总体方案设计。本文主要研究内容如下:
     (1)基于叶素理论,采用数值积分的方法,引入动态入流理论,建立了自转旋翼气动计算模型。经过旋翼自转气动特性风洞吹风试验的验证,最终提出了自转旋翼气动力和稳定转速计算方法,分析了影响旋翼自转气动特性的主要因素对气动特性的影响规律,明确了自转旋翼的气动优势和改善其气动性能的方法。
     (2)建立了旋翼机飞行动力学数学模型,分析了所设计的旋翼机平衡操纵特性和稳定特性,得出了带平尾高、前重心布局是旋翼机合理布局的结论。并以能量转换和变参数的方法,对鹞跃和超短距起飞特性进行了全面分析,得出各项参数和操纵变量与起飞特性的关系及改善跳飞性能的方法,并对实现鹞跃起飞的传动系统进行了方案设计。
     (3)结合Pareto概念,引入模糊理论,增加群体排序、小生境技术、精英保存策略等改进的遗传算法和能提高优化结果鲁棒性和可靠性的六西格玛设计方法,形成了适合于旋翼机参数多目标优化设计的方法。算例表明了多目标优化方法的正确可行性,并针对ZX1型机研制总要求,对旋翼机分别进行了总体参数和推&升力系统参数多目标优化设计,得到了满足设计要求的最佳参数组合。
     (4)通过分析跷跷板式旋翼的挥舞、摆振和变距特性及自转旋翼的特点,设计了适用的跷跷板式自转旋翼及其周期变距和总距操纵机构,解决了自转旋翼要在转速差别很大的地面预转和空中飞行两种状态下使用的问题。
     (5)在以上研究的基础上,依据ZX1型旋翼机研制总要求,通过运用CATIA、FLUENT、AUTOCAD,MATLAB等计算机辅助设计软件,研究了旋翼机总体构型、气动布局、重量重心布置等,并经试验验证和多轮次设计改进,完成了满足研制总要求的ZX1型自转旋翼飞行器总体方案设计。
     本文从自转旋翼飞行器总体设计要求出发,研究了旋翼机研制过程中遇到的关键技术问题。主要完成了自转旋翼气动特性的理论和试验研究,形成了自转旋翼的分析和设计方法;进行了旋翼机飞行动力学及鹞跃起飞建模研究,形成了旋翼机飞行动力学和跳飞分析方法;完成了ZX1型旋翼机总体方案设计(包括参数优化设计),形成了一套较完整的合理可行的旋翼机总体及系统设计方法。
     论文不仅解决了针对具体旋翼机设计的关键技术难题,所建立的设计理论和方法也可应用于其它旋翼飞行器设计分析中。
Gyroplane is an aircraft that achieves lift by a free spinning rotor and achieves propulsion by airscrew,and it can takeoff vertically and land in extremely short distance. It has inherent safety, simplicity of operation, and outstanding short field point-to-point capability with lower expenses. To design a state-of-the-art gyroplane with jump takeoff capability, some key technologies have been investigated further which include the aerodynamic characteristics of autorotating rotor, the flight dynamic characteristics of gyroplane, the technology of jump start and takeoff in ultrashort distance, the multiobjective optimization design for gyroplane parameters, and the scheme of gyroplane rotor system and its control system. The preliminary design scheme of ZX1 type gyroplane is presented finally. The main contents of the thesis are as the followings.
     (1) An aerodynamic model of autorotating rotor is established through numerical integral method based on blade element theory, and dynamic inflow theory is introduced into this model. After demonstrated by the wind tunnel tests which carried out in the NKLRA of NUAA, the computation methods for predicting aerodynamic force of autorotating rotor and steady autorotation speed are presented. Then the relationships between the aerodynamic characteristics of autorotating rotor and design parameters are investigated, and the aerodynamic virtues of autorotating rotor are analyzed, as a result, the method for improving the performance of autorotating rotor is given.
     (2) The mathematic model of gyroplane flight dynamics is built. The trimming, controllability and stability characteristics of the ZX1 gyroplane are calculated and analyzed based on the model, and the results indicate that high&front profile gyros with horizontal stabilizer are reasonable configuration. The characteristics of jump start and takeoff in ultrashort distance are studied thoroughly by using energy equation and changing parameters. The thesis details the relationships among takeoff performance, design parameters and control of rotor. The method for improving the performance of jump takeoff is presented, and the scheme of the transmission system for jump takeoff is designed.
     (3) The improved Genetic algorithm, which integrates Pareto approach, fuzzy theory and the three tactics (colony ordination, niche technology, elitism preservation), is combined with DFSS(Design for Six Sigma) which can improve the reliability and robust of the optimized result. As a result, a novel multiobjective optimization approach for selecting the parameters of gyroplane is proposed. It demonstrates by numerical examples that the approach is feasible and efficient in design optimization. Aiming at the ZX1’s requirements, the multiobjective optimization design for general parameters and thrust’s & lift’s system parameters is carried out, and a set of optimal parameters satisfying the design requirements are presented.
     (4) By analyzing the characteristics of teetering rotor’s flap/lag/feather and the design trait of autorotating rotor, the rotor system and its control system of ZX1 are designed in drawing. And the system can run reliably for both prerotation on the ground and autorotation in the sky.
     (5) According to the ZX1’s general requirements, the design about the structure, configuration, weight and gravity center of the gyroplane are investigated by applying CATIA, FLUENT, AUTOCAD, MATLAB, etc., on the basis of those forenamed studies. The research course is complicated and iterative. After balancing a lot of charts, diagrams, outlines, the preliminary design scheme of ZX1 gyroplane which satisfies the general requirements and the constraints from disciplines, is presented in conclusion, at the same time, the design scheme is validated in the wind tunnel tests in the NH-2 Lab of NUAA.
     The key technologies that come from design demand are investigated in the view of preliminary design. Some investigations are performed, such as theoretical calculation and experiments about the aerodynamic characteristics of autorotating rotor, the mathematic model of gyroplane flight dynamic characteristics and jump takeoff, and the scheme of whole gyroplane (including optimization design of parameter). Additionally, several practicable conclusions are presented, which are the method for designing and analyzing the performance of autorotating rotor, the approach for analyzing the characteristics of gyroplane flight dynamics and studying jump takeoff, the technique for designing aircraft and its systems.
     The solution to key technologies of the gyroplane development is detailed in this thesis, and the techniques and methods developed in the thesis can also be applied into other rotorcrafts researchs and developments.
引文
[1] J.Gordon Leishman. Development of the Autogiro: a Technical Perspective[J]. Journal of Aircraft. 2004, 41(4):765-781
    [2] J.Gordon Leishman. A Chronicle of Early British Rotorcraft[J]. The 60nd Annual Forum and technology Display of the A.H.S.,2004(109).
    [3] Dr.Bruce H. Charnov. A Critical Re-Examination of the Franklin Institute Rotating Wing aircraft Meeting of October 28-29,1938: Facts and Myths Surrounding the foundations of Autogiro/Convertiplane/Helicopter Development in America and Europe. The 62nd Annual Forum and technology Display of the A.H.S.,2006:1583-1646
    [4] Bruce H Charnov. The Buhl“Pusher”Autogiro of 1931: a Critical Reappraisal. The 61nd Annual Forum and technology Display of the A.H.S.,2005(41).
    [5] Bruce H Charnov. From the Cierva C.4 to the Cartercopter: an Analysis of How the Autogiro Became the Gyroplane[J]. The 60nd Annual Forum and technology Display of the A.H.S., Baltimore, MD,2004(106).
    [6] Norm Goyer著,航空世界杂志社译.航空运动[M].北京:航空工业出版社,2006:120-132。
    [7] Troy C.Schank. The McDonnell Aircraft Corporation Tip-Jet, Convertiplane Programs. The 62nd Annual Forum and technology Display of the A.H.S.,2006:1671-1684
    [8] D.Gibbings. The Fairey Rotodyne-Technology Before Its Time?[J]. the Aeronautical Journal. 2004(108):565-574
    [9] George Swinford, Bruce H Charnov. The Last Autogiro:Skyway Engineering AC-35 of 1961-1966. The 61nd Annual Forum and technology Display of the A.H.S.,2005(42).
    [10] Jay Groen. Groen Brothers Aviation: Autogiros in the 21ST Century. AIAA 2003-2519, 2003
    [11] R.D.Connor. Grasshoppers and Jump-Takeoff: The Autogiro Programs of the U.S. Army Air Corps. The 62nd Annual Forum and technology Display of the A.H.S., 2006:1647-1670.
    [12] Jay Carter, Jr. CarterCopter Aircraft. The 59nd Annual Forum and technology Display of the A.H.S., Phoenix, AZ, 2003(276).
    [13] J A J Bennett. the Flight of an Autogiro at High Speed. T.M. No.729,NACA,24(17), 1933.
    [14] Louis Breguet. the Gyroplane-Its Principles and Its Possibilities. T.M. No.816, NACA, 1936.
    [15] M Schrenk. Static Longitudinal Stability and Longitudinal control of Autogiro rotors. T.M. No.879, 15(6),NACA, 1938.
    [16] G Sissingh. Contribution to the Aerodynamics of Rotating-Wing Aircraft. Technical Memorandums National Advisory Committee for Aeronautics, No.921, 15(6), 1938.
    [17] G Sissingh. Contribution to the Aerodynamics of Rotating-Wing Aircraft—Part 2. T.M. No. 990, NACA,1940.
    [18] F J Bailey Jr. A Study of the Torque Equilibrium of an Autogiro Rotor. T.R. No.623, NACA,1938.
    [19] John B Wheatley. An Analysis of the Factors That Determine the Periodic Twist of an Autogiro Rotor Blade, With a Comparison of Predicted and Measured Results. T.R. No.600, NACA,1937.
    [20] John B Wheatley. An Analytical and Experimental Studt of the Effect of Periodic Blade Twist on the Thrust, Torque, and Flapping Motion of an Autogiro Rotor. T.R. No.591, NACA,1937.
    [21] Robert c Platt. Turbulence Factors of NACA Wind Tunnels as Determined by Sphere Tests. T.R. No.558, NACA,1936.
    [22]John B Wheatley, Carlton Bioletti. Wind-Tunnel Tests of 10-Foot-Diameter Autogiro Rotors. T.R. No.552, NACA,1936.
    [23]John B Wheatley, Carlton Bioletti. Wind-Tunnel Tests of 10-Foot-Diameter Gyroplane Rotor. T.R. No.536, NACA,1935.
    [24] John B Wheatley. The Influence of Wing Setting on the Wing Load and Rotor Speed of a PCA-2 Autogiro as Determined in Flight. T.R. No.523, NACA,1934.
    [25] John B Wheatley, Manley J Hood. Full-Scale Wind-Tunnel Tests of a PCA-2 Autogiro Rotor. T.R. No.515, NACA,1934.
    [26] John B Wheatley. An Aerodynamic Analysis of the Autogiro rotor with a Comparison Between Calculated and Experimental Results. T.R. No.487, NACA,1934.
    [27] John B Wheatley. Wing Pressure Distribution and Rotor-Blade Motion of an Autogiro as Determined in Flight. T.R. No.475, NACA,1933.
    [28] John B Wheatley. Lift and Drag Characteristics and Gliding Performance of an Autogiro as Determined in Flight. T.R. No.434, NACA,1932.
    [29] F J Bailey Jr. Flight Investigation of Control-Stick Vibration of the YG-1B Autogiro. T.N. No.764, NACA,1940.
    [30] Montgomery Knight, Ralph A Hefner. Analysis of Ground Effect on the Lifting Airscrew. T.N. No.835, NACA,1941.
    [31] F J Bailey Jr, F B Gustafson. Observations in Flight of the Region of Stalled Flow over the Blades of an Autogiro Rotor. T.N. No.741, NACA,1939.
    [32] John B Wheatley. The Aerodynamic Analysis of the Gyroplane Rotating-Wing System. T.N. No.492, NACA,1934.
    [33] John B Wheatley, Carlton Bioletti. Analysis and Model Tests of Autogiro Jump Take-Off. T.N. No.582, NACA,1936.
    [34] John B Wheatley. A Study of Autogiro Rotor-Blade Oscillations in the Plane of the Rotor Disk. T.N. No.581, NACA,1936.
    [35] William C Peck. Landing Characteristics of an Autogiro. T.N. No.508, NACA,1934.
    [36] Stevenk, Tayman. Wind Tunnel Tests of a 42 Inch Diameter Self-Starting Autogyro Rotor. NRL/MR/5710--94-7485
    [37] Jayant Sirohi, V T Nagaraj, Inderjit Chopra. Design and Testing of a Rotor for Autonomous Autorotation. The 60nd Annual Forum and technology Display of the A.H.S., Baltimore, MD, 2004(46).
    [38] D.Jensen, M.S., P.E.. Un-manned Autogyro For Cinematography and Reconnaisance. AIAA-2001-5228
    [39] Safety Regulation Group. CAP 643/British Civil Airworthiness Requirements (Section T Light Gyroplanes),Issue 2./www.caa.co.uk :2003
    [40] T P Mullett. Back to the Future of Rotorcraft?—a bi-Rotor Configuration Whose Virtues Went Unexamined for Decades. The 61nd Annual Forum and technology Display of the A.H.S.,2005(21).
    [41]王焕瑾. Rotorcycle的气动设计及其“高速型”方案的可行性研究[博士学位论文].南京:南京航空航天大学,2002
    [42]朱清华,张呈林,倪先平.直升机安全性.第21届全国直升机年会学术论文集,2005:45-51
    [43] Prouty, R.W. Gyroplane Conditions[J]. Rotor & Wing.1999(2):90-92
    [44] Federal Aviation Administration. Rotorcraft Flying Handbook[M]. FAA-H-8083-21,15-1~15-3.
    [45]王适存.直升机空气动力学[M].南京:南京航空航天大学出版社,1993:57-98
    [46]冯德林.直升机稳定自转和减速拉平研究[硕士学位论文].北京:北京航空航天大学,2001
    [47] Peters D.A,Ha Quang N. Dynamic Inflow for Practical Applications[J]. Journal of the American Helicopter Society, 1988, 33(4):64-66
    [48] Byung-Ho Ahn, Daniel DeLaurentis, Dimitri Mavris. Advanced Personal AirVehicle Concept Development Using Powered Rotor and Autogyro Configurations. AIAA 2002-5878
    [49] Yevgeny I. Somov, Oleg Ye. Polyntsev. Nonlinear Dynamics and Control of a Wind-milling gyroplane Rotor. 0-7803-7939-X,2003 IEEE: 151-156
    [50] Allan Yeow-Nam Lee. Optimal Autorotational Descent of a Helicopter with Control and State Inequality Constraints. A90-45344,1989
    [51] Joshua Hintze , Mark Tischler. Simulated Autonomous Landing of a Rotorcraft Unmanned Aerial Vehicle in a Non-cooperative Environment. Presented at the American Helicopter Society 60th Annual Forum, Baltimore, MD, June 7-10, 2004
    [52] Graves, J.D.. Method and Devices to Improve Helicopter Autorotational Characteristics, USAAVRADCOM-TR-82-D83, Sep., 1983
    [53] Pleasant, L.W., Whiter, G.T., Status of Improved Autorotative Landing Research, Journal of American Helicopter Society, Vol.128, No.1, 1983
    [54] Allan Yeow-Nam Lee, Optimal Landing of A Helicopter In Autorotation, Dissertation for The Degree of PhD., Stanford University,1985
    [55] O.Inoue, Y.Hattori and K.Akiyama. Calculations of Vortex Ring Statues and Autorotation in Helicopter Rotor Flow Fields, AIAA97-1847,1997
    [56]王焕瑾,高正.高速直升机方案中旋翼自转状态的实验研究[J].空气动力学学报,2004,22(2):151-156
    [57] Matthew.J.Traum, Rowan G. Carter. Pitch Control Benefits of Elevators for Autogyros in Low-Speed Forward Flight. AIAA 2005-26
    [58] John B. Wheatley and Manley J.Hood. Full-scale wind-tunnel test of a PCA-2 autogiro rotor. Langley Memorial Aeronautical Laboratory, National Advisory for Aeronautics Langley Field,Va. October12,1934
    [59] J.B.Wheatley and C.Bioletti. Wind-Tunnel Test of a 10-Foot-Diameter Gyroplane Rotor. Langley Memorial Aeronautical Laboratory, National Advisory for Aeronautics Langley Field, Va.April 11,1935
    [60] Aviation Publications.Comprehensive Reference Guide to Airfoil Sections for Light Aircraft[M]. Appleton: Aviation Publications, 1982
    [61] F.N.Coton, L.Smrcek, Z.Patek. Aerodynamic characteristics of a gyroplane configuration [J]. Journal of Aircraft. 1998, 35(2):274-279
    [62] Byung-Ho Ahn, Daniel De Laurentis, Dimitri Mavris. Advanced personal air vehicle concept development using powered rotor and autogyro configurations[A]. AIAA Aircraft Technology, Integration and Operations 2002 Technical Forum[C]. Los Angeles, California: AIAA 2002-5878, 2002
    [63]王传斌.螺旋桨滑流与飞机部件气动工程估算方法研究[硕士学位论文].南京:南京航空航天大学,2006
    [64]鄂秦,杨国伟等.螺旋桨滑流对飞机气动特性影响的数值分析[J].西北工业大学学报,1997,15(4):511-516
    [65] Fratell G, Favier D, Maresca C. Experimental and Numerical Study of the Propeller/Fixed Wing Interaction. J Aircraft, 1991, 28 (6): 365-372
    [66] Moens F, Gardarein P. Numerical Simulation of the Propeller/Wing Interactions for Transport Aircraft. AIAA 2001-2404,2001
    [67]顾诵芬,解思适.飞机总体设计[M].北京:北京航空航天大学出版社,2001,380-382
    [68]高正,陈仁良.直升机飞行动力学[M].北京:科学出版社,2003:43-78
    [69]曹义华.直升机飞行力学[M].北京:北京航空航天大学出版社,2005
    [70] A.A. Kalmykov, 0.Ye.Polyntsev, Ye.I.Somov. Autogyro Nesterov Loop Simulation[J]. Actual Problems of Aviation and Aerospace Systems.2002, 7(1): 56-65.
    [71] S.S.Houston. Validation of a Non-Linear Individual Blade Rotorcraft Flight Dynamics Model Using a Perturbation Method[J]. the Aeronautical Journal. 1994,98(977):260-266
    [72] HOUSTON S S. Validation of a Rotorcraft Mathematical Model for Autogyro Simulation [J]. Journal of Aircraft, 2000, 37(3):403-409
    [73] BARNES W M. A Numerical Analysis of Autogyro Performance[A]. 2002 Biennaial International Powered Lift Conference and Exhibit[C]. Williamsburg, Virginia: AIAA 2002-5950, 2002
    [74] D.G.Thomson, S.S.Houston. Application of Parameter Estimation to Improved Autogyro Simulation Model Fidelity [J]. Journal of Aircraft. 2005, 42(1):33-40
    [75] SPATHOPOULOS V M. Validation of a Rotorcraft Mathematical Model in Autorotation by Use of Gyroplane Flight Tests[J]. the Aeronautical Journal, 2004, 108:51-58
    [76]朱宝鎏.无人机空气动力学[M].北京:航空工业出版社,2006:66-67
    [77] HOUSTON S S. Analysis of rotorcraft Flight Dynamics in Autorotation[J]. Journal of Guidance, control, and Dynamics, 2002,25(1):33-40
    [78]牛永红,杨百兴.Z11直升机自转着陆试飞.飞行力学,2001,19(3):74-76
    [79]陈仁良.直升机飞行动力学数学建模及机动性研究.南京航空航天大学博士学位论文,1998
    [80]黄一敏.直升机飞行控制技术研究[D].南京航空航天大学博士学位论文,1999
    [81]王晓勇,邓彦敏.共轴式直升机自转下滑着陆的飞行轨迹近似计算.飞行力学,2002,20(4):10-14
    [82]刘俊强,伞冶,王子才.直升机旋翼自转着陆过程的仿真模型.计算机仿真,2000,17(6): 4-9
    [83] S.S.Houston. Modeling and Analysis of Helicopter Flight Mechanics in Autorotation[J]. Journal of Aircraft. 2003, 40(4):675-682
    [84] S.S.Houston. Analysis of Rotorcraft Flight Dynamics in Autorotation[J]. Journal of Guidance, control, and Dynamics.2002,25(1):33-40
    [85] A.A. Kalmykov, 0.Ye.Polyntsev, Ye.I.Somov. Simulation of an Autogyro Controlled Longitudinal Motion[J]. Actual Problems of Aviation and Aerospace Systems. 2002, 7(1):38-55.
    [86] S.S.Houston, R.e.Brown. Rotor-Wake Modeling for Simulation of Helicopter Flight Mechanics in Autorotation[J]. Journal of Aircraft. 2003, 40(5):938-945
    [87] S.S.Houston. Identification of Autogyro Longitudinal Stability and Control Characteristics[J]. Journal of Guidance, control, and Dynamics.1998,21(3): 391-399
    [88] S.S.Houston. Identification of Autogyro Lateral/Directional Stability and Control Characteristics from Flight Test [J]. Journal of Aerospace Engineering. 1998, 212(G4): 271-285
    [89] S.S.Houston. Longitudinal Stability of Gyroplanes[J]. the Aeronautical Journal. 1996,100(991):1-6
    [90] Vassilios M S, Stewart S H, Douglas G T. Flight Dynamics Issues Relating to Autogyro Airworthiness and Flight Safety. The 54nd Annual Forum of the A.H.S., Washington, DC,1998
    [91] Marat Bagiev, Douglas G T, S S Houston. Autogiro Handling Qualities Assessment. The 60nd Annual Forum and technology Display of the A.H.S., Baltimore, MD,2004(62).
    [92] Martin Hollmann. Modern Gyroplane Design [M]. Monterey:1992
    [93] Johnson W. Helicopter Theory[M]. Princeton: Princeton University Press,1980.9,118-122, 142-146,315-318
    [94] Masoud R Bordbar. An Analytical Study of Autogiro Aerodynamic Relevent to the Design Process[D]. Dissertation for the Degree of Master, Long Beach, California State University,2004.
    [95]刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社,2006:75-81
    [96] Renooij,M.,Slingerland,R..Propeller Slipstream and Wing-fuselage Interference Effects on Three-axis Stability and Control,AIAA 2004-214,2004
    [97]朱清华.直升机总体参数优化设计[硕士学位论文].北京:中国航空研究院,2003
    [98]《飞机设计手册》总编委会.飞机设计手册(第1册-常用公式、符号、数表)[M].北京:航空工业出版社,1996
    [99]郭士龙,郭才根.直升机总体设计[M].北京:航空工业出版社,1995. 39-55,69-73,111-113.
    [100]黄俊,武哲等.飞机总体优化设计的新进展[J].航空学报,2000,21(6):481-487
    [101] Yongchang Li, Daniel DeLaurentis, Dimitri Mavris. Advanced Rotorcraft Concept Development and Selection Using a Probabilistic Methodology. AIAA 2003-6759,2003
    [102]李士勇,陈永强,李研.蚁群算法及其应用.哈尔滨工业大学出版社,2004
    [103]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006:242-247
    [104] Patrick Koch. Designing for Six Sigma in iSIGHT Short Course. iSIGHT International Users Conference July 15th 2002
    [105] Sang Wook Lee, Oh Joon Kwon. Robust Airfoil Shape Optimization Using Design for Six Sigma[J]. Journal of Aircraft,2006,43(3):843-846
    [106]陈刚,万自明等.飞行器轨迹优化应用遗传算法的参数化与约束处理方法研究.系统仿真学报,2005,17(11):2737-2740
    [107]朱清华,张呈林,倪先平等.基于改进遗传算法的纵列式直升机总体参数优化设计.南京航空航天大学学报,2006,38(1):1-5
    [108] Gao W. An Improved Fast-Convergent Genetic Algorithm [A]. Proceedings of the 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing [C]. Changsha, China: IEEE, 2003. 1197-1202.
    [109] Niewierowicz T, Escarela P R , Campero L E. Hybrid Genetic Algorithm for the Identification of High-Order Synchronous Machine Two-Axis Equivalent Circuits[J]. Computers and Electrical Engineering, 2003, 29(4):505-522.
    [110]冯秋红,刘全坤,胡龙飞.基于多目标优化的扁挤压筒结构设计[J].中国机械工程,2006,17(17):1850-1853
    [111] Floros M W, Johnson W. Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration [A]. Conference Program and Proceedings for the Fourth Decennial Specialists' Meeting on Aeromechanics[C]. San Francisco :AHS, January 2004.96-114.
    [112] Bagai A, Leishman J G. Free-wake Analysis of Tandem, Tilt-Rotor and Coaxial Rotor Configurations [J]. J. AHS, 1996, 41(3): 196-207.
    [113] Harris F D. Twin Totor Hover Performance [J]. J. AHS, 1999, 44(1):34-37.
    [114]陈国平.纵列式双旋翼直升机气动性能分析[D].南京:南京航空航天大学航空宇航学院,2004.
    [115]《飞机设计手册》总编委会.飞机设计手册(第19册-直升机设计)[M].北京:航空工业出版社,2005
    [116]张呈林,张晓谷等.直升机部件设计.北京:航空专业教材编审组,1986
    [117] National Transportation Safety Board. Robinson Helicopter Company R22 Loss of Main rotor Control Accidents. Washington, D.C. 20594: PB96-917003 TSB/SIR-96/03
    [118]航空航天工业部科学技术研究院.直升机载荷手册[M].北京:航空工业出版社,1991
    [119] Matthew J. Whitney, Akbar H. Shah. Dynamic Analysis of the Hawk-4 Rotor Blade. AIAA-2002-1605
    [120] Yevgeny I.Somov, Oleg Ye.Polyntsev. Nonlinear Dynamics and Control of a Wind-Milling Gyroplane Rotor[J]. 0-7803-7939-X/03, 2003 IEEE:151-156
    [121] R.M.McKillip, M. H.Chih. Instrumented Blade Experiments Using a Light Autogyro[A]. In Proceedings of the 16th European Rotorcraft Forum, Glasgow, Scotland: ERF, 1990.
    [122] Shreyas Ananthan, J.Gordon Leishman. Predictions of Transient Rotor Wake Aerodynamics in Response to Time-Dependent Blade Pitch Inputs. The 59nd Annual Forum and technology Display of the A.H.S., Phoenix, AZ,2003(44).
    [123]张呈林,郭才根.直升机总体设计[M].北京:国防工业出版社,2006
    [124]郦正能等.飞机部件与系统设计.北京航空航天大学出版社,2006
    [125]金海波,丁运亮.飞机概念设计中的外形参数化模型的研究[J].南京航空航天大学学报,2003,35(5):540-544
    [126] Donald F Dixon. Variable Configuration Aircraft Patented in the U.S. Before the Second World War. The 60nd Annual Forum and technology Display of the A.H.S., Baltimore, MD,2004(108).
    [127] T.Lutz, S.Wagner. Drag Reduction and Shape Optimization of Airship Bodies[J]. Journal of Aircraft. 1998, 35(3):345-351
    [128] Vivek Sanghi, S.Kishore Kumar, V.Sundararajan. Engine-Airframe Integration During Conceptual Design for Military Application[J]. Journal of Aircraft. 1998, 35(3):380-386
    [129]恽起麟.风洞试验.北京:国防工业出版社,2000
    [130]程厚梅.风洞实验干扰与修正.北京:国防工业出版社,2003
    [131]王哲.飞机结构设计过程中的重量控制[J].飞机设计,2001(1):69-71
    [132]步秀双. K8飞机研制中重量重心的控制[J].洪度科技,1999(3):7-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700