用户名: 密码: 验证码:
新型智能化校直加工装置理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对轴类零件塑变校直技术的基础理论、基本方法和自动化校直加工技术进行了较为深入的研究和探讨。
     采用非线性有限元方法对目前工程上广泛应用的3点弯曲法校直的工艺过程和机理进行了分析与计算,计算结果表明,通过施加合理大小的载荷和载荷作用方式,一次加载即可得到较高的校直精度。同时得出结论:施载机构的作用节点数须选择适当,节点过多时会产生明显的弹性核,节点过少时又会形成局部塑性铰。
     在充分分析和借鉴国内外现有自动校直机研究和技术现状的基础上,提出一种全新的低成本四导柱卧式自动校直机结构模型,并设计制作了原理样机。该样机在工件较长时只需相应增加导柱的长度,因此可改变自动校直机一般只能对中小型工件进行自动化校直加工的技术现状。样机结构简单、加工容易、易于保证精度。而目前国内外普遍采用的门式或C型结构自动校直机受工作台面长度的限制,只能校直中小型轴类零件。
     针对模型样机的具体结构建立了工件轴线和导柱挠曲变形的误差模型,分析并说明了模型样机对工件弯曲变形的检测原理及校直施载机构的行程控制与误差补偿方法,基于需求分析与人机工程学的原理研制了模型样机的自动控制系统,包括硬件平台的建立和全部工作软件的开发。实现了工件测量和校直加工的自动化。控制系统的软、硬件体系结构可完全移植到产品样机中。
     本文还重点探讨了校直加工过程中的智能控制方法。在总结人工操作经验的基础上,设计了以需校直工件的塑性变形量及其变化量作为输入,以加载行程为输出的具有自学习功能的二维模糊控制器,提高了校直加工的效率和精度。在定义了数据结构和变量数组的基础上,给出了参数自学习过程算法,改善了模型样机对不同规格样本工件的适应性。
     在模型样机上进行了大量的校直加工实验,实验结果验证了本文提出的全自动校直加工方法及控制算法的有效性。实验数据表明,对于多数工件,一般只需要3到5次加载即可达到较高的校直精度。样机工作稳定、可靠,具备了从模型样机到产品样机的转化条件。
In this paper, the basic theory and method about plastic deformation straightening technology of shafts together with the automatic straightening processing technology are studied and discussed.
     A method for straightening named variable constraint three points bending is proposed, and the technological process and the straightening mechanism based on the method proposed are analyzed and calculated by nonlinear finite element method. The results of calculation show that higher precision can be gained through once loading while the magnitude and the application mode of loading are reasonable. Meanwhile, a conclusion also can be reached that the number of application nodes must be chosen properly, if not, obvious elastic region can occur when there are too many nodes, and local plasticity can appear while there are few nodes.
     The structural model of a new low cost horizontal automatic straightener with four pillars is proposed in the basis of analyzing and referencing existing research and technology about automatic straightener, and a principle prototype with simple structure, handling ease and easy guaranteed precision is deigned and fabricated. The prototype can straighten longer parts through lengthening pillars, changing the state of automatic straightener only suitable to straighten micromidi parts. Whereas, the existing automatic straightener which is gate type or C type can only straighten micromidi shafts in restraint of the length of work top.
     An error model about axial line of parts and flexural deflection of pillar is established according to concrete structure of the prototype, and the detecting principle of flexural deflection, motion control of loading mechanism and error compensation process are analyzed. Moreover, the automatic control system of the prototype is developed including hardware platform and all software based on demand analysis and ergonomical principle. So the automation of parts measurement and straightening process are realized. The hardware and software of the control system can be implanted in products.
     Intelligent control method in straightening process is also researched,a two-dimensional fuzzy controller with self-learning function is designed to promote efficiency and precision of straightening process. Inputs of the controller are amount of plastic deformation and its variance, and output is loading course. A parameter self-learning algorithm is presented after defining data structure and variable array to improve the prototype’s adaptability to different size of workpieces.
     At last, lots of straightening processing experiments are done on the prototype, and experimental results proof effectiveness of the processing method and the control algorithm proposed in the paper. Experiment data show that the higher straightening precision can be reached by three to five loading for most of workpieces. However, the prototype is stable and reliable so that products can be fabricated based on the prototype.
引文
[1]蓝恭谦.精密型材校直液压机国内外现状及其发展趋势[J].锻压机械,1991,(4):48-52.
    [2]谭伟.校直工艺的现状调查[J].渝州大学学报(自然科学版),1997,14(1):18-21.
    [3]单淑梅.液压自动校直机的应用与研究[J].汽车技术,1998(11):27-29.
    [4]于晓平.轴类全自动校直机[J].金属热处理,2002,27(9):45-46.
    [5]钦明浩,柯尊忠,张向军,等.精密矫直机中轴类零件矫直工艺理论研究[J].机械工程学报,1997,33(2):48-53.
    [6]柯尊忠,翟华.基于滚动优化的校直工艺理论及实验研究[J].合肥工业大学学报(自然科学版),2002,25(5):663-666.
    [7]钦明浩,张向军,蒋守仁,等.轴类零件校直理论分析[J].合肥工业大学学报(自然科学版),1996,19(4):22-28.
    [8]翟华,韩春明,蒋守仁,等.轴类零件精密校直行程算法研究[J].重型机械,2001,(5):35-38.
    [9]蒋守仁,翟华,蒋叶青.一种行程控制精密校直工艺理论[J].锻压机械,1997,(5):10-12.
    [10]钦明浩,吴焱明,蒋守仁,等.轴类零件校直的有限元解法[J].合肥工业大学学报(自然科学版),1996,19(2):24-29.
    [11]李骏,邹慧君,熊国良,等.压力矫直过程模型的有限元分析及应用[J].重型机械, 2004, (1): 28-30.
    [12]翟华.台阶轴校直工艺计算方法及实验研究[J].机械强度,2002,24(3): 388-390.
    [13]李骏,邹慧君,熊国平.压力校直工艺理论研究的现状与展望[J].机械设计与研究,2004,(4):69-71.
    [14]李骏,熊国良,邹慧君.校直机行程计算经验公式的理论依据分析[J].锻压装备与制造技术,2003,(6):22-24.
    [15]翟华.轴类零件校直工艺理论研究:[博士学位论文].合肥工业大学,2003.
    [16]李骏.基于校直过程模型的校直工艺理论及实验研究:[博士学位论文].上海交通大学,2004.
    [17]张向军,蒋守仁.轴类零件校直设计理论和计算的修正研究[J].机械设计,1997,(11):9-11.
    [18]司奎壮,岳峰杰.细长轴的一次反压校直[J].矿山机械,2004,(3):87-88.
    [19]陈翔.冷校直工艺在扭力轴上的应用[J].金属热处理,1991,(11):42-43.
    [20]弓海霞,闰通海,王进礼.钻具校直的理论研究[J].哈尔滨工程大学学报,2002,23(3):116- 119.
    [21]王春雨,范永海,李丽山.汽车变速箱齿轮轴校直策略[J].现代制造工程,2004,(7):81-82.
    [22] Katoh Takaaki, Urata Eizo, Nakanishi Minoru, Yamazaki Kazuo. Control for straightening process of seamless pipe [J]. JSME International Journal, Series3: Vibration Control Engineering, Engineering for Industry, 1991, 34(3): 427-432.
    [23] Schwenzfeier W, Finstermann G. Computer aided straightening of round bars and wires[J]. Wire World International, 1986,28(5):80-83.
    [24] Tani G, Tomesani L. Adaptive control in the straightening process of case hardened parts Proceeding[J]. International Manufacturing Engineering conference,1996: 356-358.
    [25] Wei Yuhua. Discussion on the accident of curved tune shaft and its straightening[J]. Proceedings of the CSEE, 1992,12(4):28-34.
    [26] Katoh T, Urata E. Measurement and control of a straightening process for seamless pipes [J]. Journal of Engineering for Industry, 1993,115(3):347-351.
    [27] Jonsson R. Straightening of heat-treated work pieces [J].HTM-Haerterei-Technische Mitteilungen, 1998, 53(1): 5-8.
    [28] Shaktov A S, Tkachenko A K, Bagno A N. Application of electrohydraulic pulse operation for the straightening and bending of parts. Mekanizatsiya i, Automatizatsiya Proizvodstva no.1:8-101.1989(In Russian).
    [29] Makhnenko VI, Shekera V M, Fortunatova NN, et al.The efficiency of pulsed loading in the straightening of thin-walled welded structures by the elecronhydraulic pulsed method.Automatic Welding, 1980,33(5):7-11.
    [30] Yi Jing Gang, Wang Ze He, Yao Yong Qiang, et al. Study on Straightening Technology of Shaft Parts Based on On-line Measurement System. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(1).
    [31] Qin Ming Gao,Ke Zun Zhong, Zhang Xiang Jun, et al. The Remedy Craft Theory Research of Shaft Parts in Precised Remedy Machine. Chinese Journal Mechanical Engineering, 1997, 33(2):48-53.
    [32] Hanus, F. Hubo, R. Flame straightening of thermomechanically rolled structural steel. Steel Research, 1999, 12(4-5):193-197.
    [33]庄树明,孙艳明,邵燕翔,等.ASC-II型自动轴类校直机[J].试验技术与试验机,2006,46(2):60-63,71.
    [34]魏斯亮,林厚波,熊国良.超高速主轴的精密校直工艺[J].制造技术与机床,2001,(12):21-22.
    [35]崔甫.矫直理论与参数计算[M].北京:机械工业出版社,2002.
    [36]崔甫.矫直原理与矫直机械[M].北京:治金工业出版社,2002.
    [37]李继凯.曲轴校直工艺分析[J].内燃机工程,2002,23(2):28-31.
    [38]叶金铎,温殿英.空拔管成型过程的非线性有限元分析[J].重型机械,2001,6:41-44.
    [39]陈章华,韩明芬.金属成型特殊非协调大变形有限元数据模拟[J].北京科技大学学报,2002, 24(4):436-440.
    [40]王祖唐.金属塑性变形极限判据[J].应用力学学报,2002,19(2):104-106.
    [41]李育文,王红卫.一种增量型弹塑性平面应力模型及其应用[J].锻压技术,2001,26(5):49-51.
    [42]王愈艺,杨永印.径向水平钻井钻杆截面的塑性变形及轴向受力分析[J].石油学报, 1998, 19 (4): 109-112.
    [43]李宪奎,陈广友.连铸机两个矫直区的连续矫直曲线[J].重型机械,1994,(5): 10-14.
    [44]赵炳利,刘志亮.连续拉伸弯曲矫直带材时延伸率的研究[J].东北重型机械学院学报,1994,18(4):314-317.
    [45]朱美华.降低辊式矫直机传动轴扭矩的研究与应用[J].钢铁钒钛,l994,15(1):16-21.
    [46]周叮.两对边简支另两对边任意支承的板内有任意多个弹性点支矩形板横向自振的精确解析解[J].振动与冲击,1993,8(3):25-31.
    [47]曹振生.WK一4型挖掘机拉紧轴的火焰校直[J].工业机械与维修,1999,16(2):12-15.
    [48]蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1988.
    [49]张恩勤,施颂椒,高卫华,等.模糊控制系统近年来的研究与发展[J].控制理论与应用,2001,18(1):7-11.
    [50] Procyk T J.A linguistic self-organizing process controller [J].Automatica,1979,15(1):15-30.
    [51] Shao S.Fuzzy self-organizing controller and its application for dynamic processes[J].Fuzzy Sets and Systems,1988,26(1):151-164.
    [52] Rhee F V D,Vander Rhee F,et a1.Knowledge based fuzzy control of systems [J].IEEE Trans Automatic Control,199O,35(2):148-155.
    [53] Linkens D A,Nie J.Constructing rule-bases for multivariable fuzzy control by self-learning,Part I,system structure and learning algorithms [J].International Journal of Systems Sciences,1993,24(1):117-127.
    [54] Rhee F V D, Linkens D A.Constructing rule-bases for multivariable fuzzy control by self-leafing,Part II,rule-base formation and blood pressure control application[J].International Journal of Systems Sciences,1993,24(1):129-157.
    [55] Kim Y T,Zeungnam B.Robust self-learning fuzzy controller design for a class of nonlinear MIMO systems [J].Fuzzy Sets and Systems ,2000,111(2):117-135.
    [56] Layne J R, et al.Fuzzy model reference learning control for cargo ship steering [J]. IEEE Control Syst,1993,13(5):23-24.
    [57] He S Z, et al.Design of on-line rule adaptive fuzzy control system[C].San Diego,USA:IEEE Int Conf on Fuzzy Systems, 1992.
    [58] Wang L X.Stable adaptive fuzzy control of nonlinear systems[J].IEEE Trans Fuzzy Syst,1993,1(1):146-155.
    [59]王永富,柴天佑.自适应模糊控制理论的研究综述[J].控制工程,2006,13(3):193-198.
    [60]蔡自兴,徐光佑.人工智能及其应用[M].清华大学出版社,1996.
    [61]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1998.
    [62]王立新.自适应模糊系统与控制[M].北京:国防工业出版社,1995.
    [63]李竞成,曹秉刚,康龙云,等.电动汽车运动学建模与模糊控制[J].系统仿真学报,2003, 15 (3): 372-374.
    [64]傅连东,戴智华,陈新元.自适应模糊PID在脱硫搅拌速度控制系统中的应用[J].机床与液压,2002(2):67-68,117.
    [65]李鹏,杜继宏,李春文.舞台台板同步模糊控制系统[J].电子技术应用,1998,(9):22-24.
    [66]梁亮,罗云林.通用模糊控制器研究[J].中国民航学院学报,2002,20(1):38-40.
    [67]罗振中,罗乐.模糊控制节水洗衣机模型[J].广东自动化与信息工程,2002,23(3):14-17.
    [68]刘向杰.模糊控制研究现状和新发展[J].信息和控制,1999,28(4):283-292.
    [69]郭大勇,梁利华,李英,等.最优控制理论在电液力矩伺服系统中的应用研究[J].机床与液压,2002,(2):33-34.
    [70]吴良.提高BP人工神经网络热处理工艺及材料性能预测模型的泛化能力研究[J].金属热处理, 2003,(5):42-45.
    [71]杜红彬,邵惠鹤.一类非线性系统的自适应神经网络控制[J].控制与决策,2005,(4):455-458.
    [72]党开放,林廷圻,杜彦亭,等.离心力场电液伺服振动台的鲁棒H_∞控制[J].机床与液压,2001 (5):85-86.
    [73]葛彩霞.基于神经网络的模糊综合评判[J].大连海事大学学报,1997,22(3):96-99.
    [74]章卫国,等.模糊控制理论与应用[M].西安:西北工业大学出版社,1999:49-71,149-150.
    [75]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003:10-37.
    [76]李国勇.智能控制及其MatLab实现[M].北京:电子工业出版社,2005.
    [77] Shin, Kwang Keun .Adaptive control of active balancing systems for speed varying rotating machinery. Dissertation Abstracts International,Volume:62-01, Section:B,2001,Page:0506.
    [78] Chantranuwathana, Supavut.Adaptive robust for control for vehicle active suspensions. Dissertation Abstracts International,Volume:62-06,Section:B,2001,Page:2916.
    [79] Branko Soucek and the IRIS GrouP. Neural and Intelligent System Integration [M]. New York:John Wiley and Sons, 1991.
    [80] Paech, Marcus. Computerized Straightening[A], Proceedings of the 1998,68th Annual Convention Proceedings of the Annual Convention of the Wire Association International [C].Cleveland, OH,USA :Wire Assoc Int Inc, 1998:94-102.
    [81] MOSSE R L. An adaptive state estimation solution to the maneuvering target problem [C]. IEEE translations on Automatic control,1995,20(6):15-21.
    [82] Spurgeon S K,Davies R. A Nonlinear Control Strategy for Robust Sliding Mode Performance in the Presence of Unmatched Uncertainty. Int. J. Contr.,1993,57(5):1107-1124.
    [83] Patrick K. SimPson. Artificial neural systems foundations,Paradigm, applications and implementations. Pergamon Press,1990.
    [84] I.D.LANDAU. Adaptive control-The Model Reference Approach [M]. Marcel Dekker, inc, 1979.
    [85] Yang Ming, Shima Susumu. Development of new bending die development of an intelligent bending system[J].Journal of the Japan Society for Technology of Plasticity,1991, 32(370):1377-1382.
    [86] ClarkD. W., Gawthrop P.J. Self-Tuning Control.Proc. IEE,1979,126: 633-640.
    [87] Richalet J, et al. Model Predictive Heuristic Control:Application to Industrial Processes, Automatica, 1978, 14(5):413-428.
    [88] Rouhani, R. Mehra,R.K. Model Algorithmic Control (MAC), Base Theoritical Properties, Automatica, 1982, 18(4):401-414.
    [89] Culter,C.R., Ramaker,R.L. Dynamic Matric Control–A Computer Control Algorithm, PROC. Of Joint Automatic Control Conference, 1980.
    [90] Clarke,D.W. , Mohradi,C. Properties of Generalized Predictive Control, Automatica, 1989,125(6):859-875
    [91] ClarkD.W., Montadi C.and TuffsP.S. Generalized Predictive Control Part l : The Basic Algorithm..Automatica,1987,23(2):137-160.
    [92] Henson M.A, SeborgD.E. An internal model control strategy for nonlinear system. AIChE,JI37, 1991:1065-1081.
    [93] G.P.Liu,S.Daley. Optimal-tuning nonlinear PID control of hydraulic system [J].Control Engineering Practice, 2000(8):1045-1053.
    [94] NahasE.P., Henson M.A., Seborg D.E. Nonlinear internal model control strategy for neural network models. Computer Chem.eng.,1992, 16(12):1039-1057.
    [95] Asriel U.Levin, KumPati S. Narendra. Control of nonlinear dynamical system using neural network: Control lability and stabilization. IEEE Trans. On neural networks,1993.4(3).
    [96] Miller D E. Adaptive stabilization using a nonlinear time-varying controller. IEEE Trans on Automatic Control, 1994, 39(7): 1347-1359.
    [97] HuntK.j.,SbarbaroD. Neural network for nonlinear internal model control. Proc. IEE,PtD,1991:431-438.
    [98] Riehalet J., et al. Predictive functional control: Application to fast and accurate robots. IFAC the world congress Munieh, FRG, 1987:251-258.
    [99] Coulibaly E, et al. Internal Model Predictive control. Automatica, 1995,31 (10):1471-1482
    [100] Riehalet J. Industrial application of model Predictive control. Automatica, 1993:1251-1274.
    [101] Tsaug T T,etal.Generaliged Predictive control with input constraints. IEEE Proc Part D,1988.135(6):451-460.
    [102] Satoshi N,Hiroshi N,AkiraK,etal. Adaptive approach to improve the accuracy of a rolling load prediction model for a plate rolling process [J]. ISIJ International, 2002, 40(5):1216-1223.
    [103] Juvinall R C. Stress,strain,and strength[M].New York: McGraw Hill, 1967:145-152.
    [104] Marokh M,Seredynski F. Roll force estimation in plate Rolling [J]. Journal of the Iron and Steel Institute,1970,208(7):695-702.
    [105] Ginzburg V B. High quality steel rolling:theory and practice [M]. New York: Marcel Dekker Inc,1993:240-243.
    [106] Jiang Jiuchun, Zhang Weige. Research on a fuzzy neural hybrid controller. 2002: 151-155.
    [107] Han-Xiong Li, H. B. Gatland. Conventional Fuzzy Control and Its Enhancement. IEEE Transactions on systems, Man and Cybernetics-part B: Cybernetics, 1996, 26(5).
    [108] Saito Y, Enami T, Tanaka T. The Mathematical Model of Hot Deformation Resisitance with Reference to Micostrictual Changes during Rolling in Plate Mill [J].Transactions ISIJ,1985,25(11):1146.
    [109] Tarokh M, Seredynki H. Roll-force Estimation in Plate Rolling [J]. Transactions ISIJ, 1970, 208(7):695.
    [110] Gupta S, Ford H. Calculation Method for Hot Rolling of Steel Sheet and Strip [J]. Transactions ISIJ, 1967,2:186.
    [111]王显正,陈正航,等.控制理论基础[M].北京:科学出版社,2001.
    [112]王孝武.现代控制理论基础[M].机械工业出版社,1998.
    [113]顾瑞龙.控制理论及电液控制系统[M].北京:机械工业出版社,1984.
    [114]谢克明.现代控制理论基础[M].北京:北京工业大学出版社,2000.
    [115]高深年[日].机电一体化[M].上海:上海科学出版社,2001.
    [116]王占林.近代液压控制[M].北京:机械工业出版社,1997:19-24.
    [117]韩璞,朱希彦.自动控制系统数字仿真[M].北京:中国电力出版社,1996.
    [118]黄忠霖.控制系统MATLAB计算与仿真[M].北京:国防工业出版社,2001.
    [119]薛定字.反馈控制系统设计与分析一Matlab语言应用[M].北京:清华大学出版社,2000.
    [120]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996:34-41.
    [121]张乃尧.神经网络与模糊控制[M].北京:清华大学出版社,1996.
    [122]黄忠霖.控制系统MATLAB计算与仿真[M].北京:国防工业出版社,2001,1.
    [123]程卫国,冯峰.MATLAB应用指南[M].北京:人民邮电出版社,1999:250-270.
    [124]楼顺天,施阳.基于MATLAB的系统分析与设计—控制系统[M].西安:西安电子科技大学出版社.1997.
    [125]清源计算机工作室.MATLAB6.0基础及应用[M].北京:机械工业出版社,2001.
    [126]张平.MATLAB基础与应用[M].北京:北京航空航天大学出版社,2001.
    [127]彭侃,钟肇新.可编程控制器原理及应用[M].广州:华南理工大学出版社,1991.
    [128]田成军,杨阳.VC与MATLAB的混合编程方法研究[J].长春理工大学学报,2003, 26(3): 57-59.
    [129]袁勇,吴禄慎,潘俊伟.实现Matlab与VC++混合编程的有效途径[J].飞机设计,2003,(1): 69-71.
    [130]孙星,陈迎春,周东方.VC++6.0中调用Matlab6.1的方法分析[J].现代电子技术,2003 (5): 55-57.
    [131]都丹,欧阳祥波.VC下利用Matlab实现科学计算的可视化[J].计算机与现代化,2003(8):87-89.
    [132]吴正平.用VC++6.0开发监控界面的方法[J].工业控制计算机,2002,15(6): 43-45.
    [133]张靖,刘少强.检测技术与系统设计[M].北京:中国电力出版社,2001.
    [134]强锡富.传感器[M].北京:机械工业出版社,1992.
    [135]黄长艺,等.机械工程测试技术基础[M].北京:机械工业出版社,2001.
    [136]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2002.
    [137]吴石增,黄鸿.传感器与测控技术[M].北京:中国电力出版社,2003.
    [138]金篆芷,王明石.现代传感器技术[M].北京:电子工业出版社,1995.
    [139]邓善熙、吕国强.在线检测技术[M].北京:机械工业出版社,1996.
    [140]吴兴惠,王彩君.传感器与信号处理[M].北京:电子工业出版社,1998.
    [141]阳宪惠.工业数据通信与控制网络[M].北京:清华大学出版社,2003.
    [142]常健生.检测与转换[M].北京:机械工业出版社,199O.
    [143]常太华.检测技术与应用[M].北京:中国电力出版社,2003.
    [144]梁德沛,李宝力.机械工程参量的动态测试技术[M].北京:机械工业出版社,1996.
    [145]刘君华.检测技术与测试系统设计[M].西安:西安交通大学出版社,2001.
    [146]邵世煌.计算机控制技术[M].北京:纺织工业出版社,1991.
    [147]熊静琪.计算机控制技术[M].北京:电子工业出版社,2003.
    [148]杨劲松,张涛.计算机工业控制[M].北京:中国电力出版社,2003.
    [149]李博轩.Visual C++6.0数据库开发指南[M].北京:清华大学出版社,2000.
    [150]张宇强,李春生.一种基于实时数据采集系统的数据处理方法[J].计算机自动测量与控制,2001,9(2):46-47.
    [151]李和贵.快速数据采集与处理系统[J].电气自动化,2003,25(2):55-58.
    [152] Diao Xiu Min, Liu Ya Bin, Yu Shou Qian,et al. Several Problems Related to the Realization of High-speed Data Acquisition in the Environment of Visual C++. Computer Measurement & Control, 2003, 11(2).
    [153] Zhu Hong hai, Ni Xiao Hua, Cheng Shu Xiang. The Research to Axis Measurement Way of the Bended Shaft Parts [J].Detecting Technology, 2000, 29(6).
    [154]丁曙光,韩春明,翟华,等.精校机自动检测系统中数据处理方法的研究[J].机械科学与技术, 2000,19(9):62-63.
    [155]洪占勇,邓善熙,吕国强.轴类工件的校直参数在线检测方法的研究[J].机械设计与制造, 2002,(2):68-70.
    [156]王宏喜.直线度测量数据的微机处理法[J].沈阳建筑工程学院学报,1989,(3):97-103.
    [157]孙宝寿.直线度误差评定方法研究[J].华东冶金学院学报,1996,(3): 269-273.
    [158] Hastie, T. Principal curves and surfaces: [Dissertation], Stanford Univ., 1984.
    [159] B. Kegl, A. Krzyzak, T. Linder, and K. Zeger.Learning and design of principal curves. TPAMI, 2000, 22(3):281-297.
    [160] G. T. Sallee. Stretching chords of space curves. Geom. Dedicata, 1973,(2): 311-315. C. E. Soteros and S. G. Whittington. Polygons and stars in a slit geometry. J. Phys. A, 1988, 21: 857-861.
    [161] Li-Xin Wang, Jerry M. Mendel.Generating Fuzzy Rules by Learning from Examples. IEEE Trans. on Systems, Man, and Cybernetics,1992,22(6): 1414-1427.
    [162]国家机械工业委员会统编.初级工具钳工工艺学[M].北京:机械工业出版社,1988:82-85.
    [163]机械加工工艺辞典编委会.机械加工工艺辞典[M].北京:学苑出版社,1990:634.
    [164]朱奇志.机械制造标准术语大全[M].北京:机械工业出版社,1994.
    [165] GALDABINI公司2000年产品样本.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700