用户名: 密码: 验证码:
离心压缩机再制造叶轮服役寿命预测模型及数值仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械装备再制造是再制造产业发展和循环经济建设的重点技术领域,为此,国家重点基础研究发展计划(973计划)专门设立了“机械装备再制造的基础科学问题”项目(2011CB013400),以离心式压缩机为典型对象,开展机械装备再制造的若干基础科学问题研究,为再制造技术攻关提供理论依据。其中再制造零件寿命预测涉及多个学科领域,已成为机械零件再制造的技术关键之一,迫切需要相关理论和方法的支持。本研究在973项目研究课题之一“再制造零部件的寿命预测与再制造产品服役安全验证”(2011CB013400-5)的资助下,开展了离心式压缩机再制造叶轮服役寿命预测模型及数值仿真研究,为再制造叶轮服役机理分析、服役安全性能评价提供理论和方法支持。
     首先,在断裂力学和损伤累积理论的基础上,结合再制造叶轮工艺修复结构特征和服役特征载荷,提出一种再制造叶轮零部件服役寿命预测模型。将材料或试件现有的寿命预测方法拓展到再制造后的离心压缩机叶轮上,建立起包含面向多失效特征的再制造叶轮几何精确建模方法、基于计算域虚拟规划的再制造叶轮流道自适应网格划分方法、基于数值分析的再制造叶轮服役特征载荷求解方法和FE-SAFE寿命计算软件以及再制造工艺寿命修正试验的再制造叶轮服役寿命预测模型,为再制造叶轮服役安全性能判定提供一种理论方法。
     其次,针对再制造叶轮模型缺失或已有模型无法反应再制造特征的问题,提出了面向多失效特征的再制造叶轮几何特征精确建模方法,构建体现再制造工艺特征的再制造叶轮精确几何模型;在有限元误差估算理论、几何拓扑同坯原理的基础上,建立再制造叶轮几何关键区域识别准则和计算域虚拟规划算法,形成再制造叶轮零件的全六面体网格生成方法,对再制造叶轮精确几何模型进行网格划分,产生疏密有致的高精度再制造叶轮流道自适应有限元网格模型。
     然后,在有限元传热理论、弹塑性力学、微积分原理基础上,利用ANSYS仿真技术分析并讨论了再制造叶轮服役的四种典型特征载荷,包括再制造工艺诱发的残余应力载荷、装配产生的装配应力载荷、高速离心应力载荷和气体介质等效应力载荷。基于分析与模拟结果综合评判再制造叶轮的服役静态强度,并为再制造叶轮服役寿命预测的载荷谱拟合提供幅值依据。
     最后,开展某型号大型离心压缩机再制造开式叶轮寿命预测的应用研究。根据再制造叶轮服役的五个阶段特性和四种典型特征载荷建立再制造叶轮服役的载荷谱曲线,利用再制造叶轮服役寿命预测模型对再制造叶轮服役寿命进行预测,并通过基体材料FV520B的激光熔覆试验所得寿命修正系数算出了再制造叶轮的可服役年限。同时,也讨论了再制造工艺载荷对叶轮服役寿命的影响。
Mechanical equipment manufacturing is animportant technical fieldforremanufacturing industry development and cycling economy constructing.For thatreason, a program named basic scientific problems of mechanical equipmentmanufacturingis supported by the Major State Basic Research Development Program ofchina (973Program)(No.2011CB013400).With proposed to make technologicalbreakthrough, centrifugal compressor as a typical object is used to study some basicscientific problemsinvolvemechanical equipment manufacturing, such as life predictionof remanufactured parts. Life prediction of remanufactured parts urgently needs thesupport of theories and methods. This problem has become one of the key technologiesof mechanical parts remanufacturing. Study on life prediction model and numericalsimulationfor remanufactured impeller of centrifugal compressor is supported by asubproject named life prediction of remanufactured parts and service securityverification of remanufactured product(No.2011CB013400-5). The purpose of thestudy is providing theory and method to the mechanism analysis and the safetyperformance evaluation of remanufactured impeller.
     Firstly, this paper developeda life prediction model of remanufactured impeller ofcentrifugal compressorbased on fracture mechanics and damage accumulation theory.The remanufacturing process repaired structure features and the service characteristicload are also integrated the model. Existing life prediction method oftest specimen isextended toremanufactured impeller of centrifugal compressor.Service life predictionmodel of remanufactured impeller is established. Its core contains geometry precisionmodeling method based on more failure features, passage adaptive meshing methodbased on domain virtual planning, service characteristic load solution method based onthe numerical analysis, life calculation by FE-SAFE software and remanufacturingprocess life correction test. The model provides a theory method to judge safetyperformance of the remanufactured impeller.
     Secondly,a precise geometric model of remanufactured impeller of centrifugalcompressor is constructed by remanufactured impeller geometric modelingmethod.Because remanufactured impeller geometric model is always absent or existingmodel can't response remanufactured featuresin the analysis.By researching keytechnologies such as finite element mesh error estimation theory, the key areas identification of remanufactured impeller parts, virtual planning of calculation domain,the grid generation algorithm and node encryption algorithm, the adaptive precisionhexahedron mesh of remanufactured impeller was generated.
     Then, four kinds of typical characteristics loads of centrifugalcompressorremanufactured impeller are analyzed and discussed by ANSYS simulationtechnique. Finite element heat transfer theory, elastic-plastic mechanics and calculusprinciple are also integrated the analysis procedure. The analyses focused onthermallyinduced residual stress during laser cladding repair process and assembly stress loadfrom assembly process. The high speed centrifugal stress and pneumatic equivalentstress is also simulated.The analysis and simulation resultsprovide the load spectrumamplitude for the subsequent life prediction of remanufactured impeller.
     Finally,it carried out application research onservice life prediction model ofremanufactured impeller.Service load spectrum of remanufacturing impeller isestablished according to the five stages characteristics and four kinds typical loadduring remanufactured impeller service. The service life of remanufactured impeller canbe calculated by usinglife prediction model and numerical simulation method. Lifecorrection coefficient was getting from laser cladding tests of the substratematerialFV520B is used. Also,it explored the influence of remanufacturing processloads to service life of remanufactured impeller.
引文
[1]中国科学院可持续发展战略研究组.2006中国可持续发展战略报告[R].北京:科学出版社,2006.
    [2]中国科学院可持续发展战略研究组.2012中国可持续发展战略报告[R].北京:科学出版社,2012.
    [3]中华人民共和国国家统计局.国家统计年鉴[M].北京:中国统计出版,2012.
    [4]行业中国.机床产业加速迈进自动化时代[EB/OL].http://www.mei.net.cn/jcgj/01304/490437.html,2013-08-28.
    [5]徐滨士.再制造与循环经济[M].北京:科学出版社,2007.
    [6]徐滨士.再制造工程基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [7]徐忠.离心式压缩机原理[M].北京:机械工业出版社,1990.
    [8] LundR.T..The Remanufacturing Industry:Hidden Giant[R].Boston,Boston University.Finalreport of Argonne National Laboratory study,1996.
    [9] Caterpillar[EB/OL].http://www.cat.com/,2012-04-15.
    [10]徐滨士.装备再制造工程的理论与技术[M].北京:国防工业出版社,2007.
    [11] Giuntini, R., Gaudette, K..Remanufacturing: the next great opportunity for boosting USproductivity[J].Business Horizons,2003,(11-12):41-48.
    [12] HauserW.,LundR.Remanufacturing: operating practices and strategies[R].Boston, MA,Boston University,2008.
    [13]黄海峰,刘京辉.德国循环经济研究[M].北京:科学出版社,2007.
    [14] Remanufacturing in the UK:A significant contributor to sustainable development?[R].Skipton:The Resource Recovery Forum.Oakdene Hollins Ltd.,2004.
    [15] Adrian Chapman,Caroline Bartlett,Ian McGill,et al.Remanufacturingin the UK[R].http://www.remanufacturing.org.uk,2009.
    [16]赵立祥.日本的循环型经济与社会[M].北京:科学出版社,2007.
    [17] Mitsutaka Matsumoto, Yasushi Umeda.An analysis of remanufacturing practices inJapan[J].Journal of Remanufacturing,2011:1-2.
    [18] Automotive Parts Remanufacturers Association[EB/OL].http://www.apra.org/,2012-04-15.
    [19] PERA[EB/OL].http://www.pera.org/,2012-04-15.
    [20] National Center for Remanufacturing and Resource Recovery[EB/OL].http://www.reman.rit.edu,2012-04-15.
    [21] Environmentally Responsible Design and Manufacturing(ERDM)Research Group inMichigan Technological University[EB/OL].http://www.mfg.mtu.edu/erdm/,2012-04-15.
    [22] Energy, Environment and Resources Center in The University of Tennessee[EB/OL].http://eerc.ra.utk.edu/,2012-04-15.
    [23] The Remanufacturing Institute[EB/OL].http://reman.org/,2012-04-15.
    [24] Lund R, Denny W. Opportunities and implications of extending product life[J]. SymponProductDurability and Life, Gaithersburg, MD,1977:1-11.
    [25] Daniel R, Guide J.Production Planning and Control for Remanufacturing:Industry Practiceand Research Needs[J].Journal of Operations Management,2000,18(4):467-483.
    [26] The Centre for Remanufacturing&Reuse[EB/OL].http://www.remanufacturing.org.uk/,2012-04-15.
    [27] HR Krikke. Recovery strategies andreverselogisticnetwork design[D]. Netherlands: BETA,1998.
    [28] Bras B.,Mcintosh W..Product,process,and organizational design for remanufacture-anoverview of research[J].Robotics and Computer Integrated Manufacturing,1999,15(3):167-178.
    [29] Aksoy H.K.,Gupta S.M..Near optimal buffer allocation in remanufacturing systems withN-policy[J].Computers&Industrial Engineering,2010,59(4):496-508.
    [30] XanthopoulosA.,IakovouE..On the optimal design of the disassembly and recoveryprocesses[J].Waste Management,2009,29(5):1702-1711.
    [31] Boyer J..A proven technique for planning and executing core control in a remanufacturing industry[C].1990Conf Proc American Production and Inventory Control Society.New Orleans,LA: Falls Church,VA:APICS,1990:9-666.
    [32] Thierry M.,Solomon M.,Van Nunen J.,et al.Strategic issues in product recovery management[J].California Mgmt Rev1995,37(2):36-114.
    [33] Inderfurth K..Optimal policy in hybrid manufacturing/remanufacturing systems withproduct substitution[J].International Journal of Production Economics,2004,90(3):325-343.
    [34] Gharbi A.,Pellerin R.,Sadr J..Production rate control for stochastic remanufacturingsystems[J].International Journal of Production Economics,2008,112(1):37-47.
    [35] Wendy K.,Chris R..Eco-efficiency gains from remanufacturing: A case study ofphotocopier remanufacturing at Fuji Xerox Australia[J].Journal of Cleaner Production,2001,(9):75-81.
    [36]杜彦斌.退役机床再制造评价与再设计方法研究[D].重庆:重庆大学博士学位论文,2012.
    [37]国务院.关于做好建设节约型社会近期重点工作的通知[EB/OL]. http://www.gov.cn/zwgk/2005-09/08/content_30265.htm,2005-06-27.
    [38]国务院.关于加快发展循环经济的若干意见[EB/OL].http://www.gov.cn/zwgk/2005-09/08/content_30305.htm,2005-07-02.
    [39]国家发展改革委员会.关于组织开展循环经济试点(第一批)工作的通知[EB/OL]. http://www.sdpc.gov.cn/zcfb/zcfbtz/zcfbtz2005/t20051101_47934.htm,2005-10-27.
    [40]中华人民共和国主席令.中华人民共和国循环经济促进法[EB/OL].http://www.gov.cn/flfg/2008-08/29/content_1084355.htm,2008-08-29.
    [41]国家发展改革委员会.关于印发机电产品再制造试点单位名单(第一批)和机电产品再制造试点工作要求的通知[EB/OL].http://www.miit.gov.cn/n11293472/n11505629/n11506364/n11513631/n11513895/n11927826/12904713.html,2009-12-11.
    [42]国家发展改革委员会.关于确定第二批再制造试点的通知[EB/OL].http://www.sdpc.gov.cn/zcfb/zcfbtz/2013tz/t20130321_533371.htm,2013-02-27.
    [43]中国科学院可持续发展战略研究组.2008中国可持续发展战略报告-政策回顾与展望
    [R].北京:科学出版社,2008.
    [44] Jiping Yang,Dong Xiang,Jinsong Wang, et al.Removal force models forcomponent disassembly from waste printed circuit board[J].Conservation And Recycling,2009,53:448-454.
    [45] Xiuying Guo,Dong Xiang,Guanghong Duan, et al.A review of mechanochemistryapplications in waste management[J].Waste Management,2010,30(1):4-10.
    [46] Wang Xiang,Chen Ming.Implementing extended producer responsibility:vehicleremanufacturing in China[J].Journal of Cleaner Production,2011,19(6-7):680-686.
    [47]曹华军,刘飞,何彦,等.基于模型集的面向绿色制造工艺规划策略研究[J].计算机集成制造系统,2002,18(12):978-982.
    [48]刘飞,曹华军,杜彦斌.机床再制造技术过程及产业化策略研究[J].中国表面工程,2006,19(5):25-28.
    [49]曹华军,刘飞,阎春平,等.制造过程环境影响评价方法及其应用[J].机械工程学报,2005,41(6):163-167.
    [50] He Yan, Liu Fei, Cao Hua-jun, et al. A bi-objective model for the job-shop scheduling problem to minimize both energy consumption and makespan[J]. Journal of CentralSouth University of Technology,2005,12(s2):167-171.
    [51]王淑旺,刘志峰,刘光复,等.基于回收元的回收设计方法[J].机械工程学报,2005,41(10):102-106.
    [52]张雷,刘志峰,杨明,等.基于解释结构模型的产品零部件拆卸序列规划[J].计算机辅助设计与图形学学报,2011,23(4):667-675.
    [53]刘光复,刘志峰.绿色制造[M].北京:中国科学文化出版社,2003.
    [54]吴玉林.通风机和压缩机[M].北京:清华大学出版社,2005.
    [55]黄钟岳,王晓放.透平式压缩机[M].北京:化学工业出版社,2004.
    [56]吴犀甲.金属材料寿命的演变过程[M].北京:中国科学技术大学出版社,2009.
    [57] Felkins C.. HAL T-HASS tutorial[C]//Proceedings of the43rd Annual Technical Meeting Institute of Environmental Sciences, Los Angeles, USA, l997,5:4-8.
    [58] Silverman M.. Summary of HALT and HASS results at an accelerated reliability test center[C]. Proceedings of Annual Reliability and Maintainability Symposium, Anaheim,USA, January19-22,1998:30-36.
    [59]高镇同,熊峻江.疲劳可行[M].北京:北京航天航空大学出版社,2000.
    [60]刘瑞堂.机械零件失效分析[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [61]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [62] Wang W., Kececioglu D.B..Fitting the weibull loglinear model to accelerated life test data[J].IEEE Trans. on Reliability,2000,49(3):217-223.
    [63] Mazzuchi T.A., Soyer R.. Dynamic models for statistical inference from accelerated life tests[C].Proceedings of Annual Reliability and Maintainability Symposium, Los Angeles, USA, January23-25,1990:67-70.
    [64] Hirose H.. Estimation of threshold stress in accelerated life testing[J]. IEEE Transactions on Reliability,1993,42(4):650-657.
    [65] Watkins, A.J.. Review: Likelihood method for fitting wei bull log-linear models to accelerated life-test data[J]. IEEE Transactions on Reliability,1994,43(3):361-365.
    [66] Bugaighis M.M.. Exchange of censorship types and its Impact on the estimation of parameter of a weibull regression model[J]. IEEE Transactions on Reliability,1995,44(3):496-499.
    [67] Mclinn J.A.. New analysis methods of multilevel ace-lerated life tests[C]. IEEE Proceedings of Annual Reliability and Maintainability Symposium, Washington DC, USA, January18-21,1999:38-42.
    [68]张春华,陈循,温熙森.步降应力加速寿命试验(上篇)-方法篇[J].兵工学报,2005,26(5):661-665.
    [69]张春华,陈循,温熙森.步降应力加速寿命试验(下篇)-统计分析篇[J].兵工学报,2005,26(5):666-669.
    [70]汪亚顺,张春华,陈循.步降应力加速寿命试验(续篇)-优化设计篇[J].兵工学报,2007,28(6):686-691.
    [71]汪亚顺,张春华,陈循.仿真基加速寿命试验优化设计方法研究[J].宇航学报,2006,27(4):755-760.
    [72]邢海燕,徐成,赵金洋,等.装备再制造工程中毛坯筛选的最新无损检测技术[J].炼油与化工,2010,21(2):7-9.
    [73] Maciej Roskosz. Metal magnetic memory testing of welded joints of ferritic and austenitic steels[J]. NDT&E International,2011,44(3):305-310.
    [74] John W.. Wilsona, Gui Yun Tian, et al. Residual magnetic field sensing for stress measurement[J]. Sensors and Actuators A: PhysicalVolume,2007,135(2):381-387.
    [75]董丽虹,徐滨士,董世运,等.金属磁记忆技术用于再制造毛坯寿命评估初探[J].中国表面工程,2010,23(2):106-111.
    [76]董世运,徐滨士,董丽虹,等.金属磁记忆检测技术用于再制造毛坯寿命预测的试验研究[J].中国表面工程,2006,19(5):71-75.
    [77]姚巨坤,朱胜,时小军.再制造毛坯质量检测方法与技术[J].新技术新工艺,2007,7(3):72-74
    [78]董世运,徐滨士,董丽虹,等.金属磁记忆检测技术用于再制造毛坯寿命预测的试验研究[J].中国表面工程,2006,5(10):71-75.
    [79]朱胜,姚巨昆.再制造设计理论及应用[M].北京:机械工业出版社,2009.
    [80]王海斗,徐滨士,姜祎,等.超音速等离子喷涂层的组织及性能分析[J].2011,32(9):1-4
    [81]柳忠雨.再制造铲运机传动轴寿命预测研究[D].兰州:兰州理工大学硕士学位论文,2012.
    [82]袁熙,李舜酩.疲劳寿命预测方法的研究现状与发展[J].航空制造技术,2005(12):80-84.
    [83] Griffith A.A..The phenomenon of rupture and flow in solids[J].Philosophical Transactions of the Royal Society of London, Series A,1920(221):163-198.
    [84] Paris P.C., Erdogan F..A critical analysis of crack propagation laws[J].Journal of BasicEngineering,1963,85(4):528-534.
    [85] Janson J..Dugdale-crack in a material with continuousdamage formation[J].EngineeringFracture Mechanics,1977,9(4):891-899.
    [86] Dattoma V., Giancane S., Nobile R., et al.Fatigue life prediction under variable loading based on anew non-linear continuum damage mechanics model[J].International Journal of Fatigue,2006,28(2):89-95.
    [87] Makkonen M..Predicting the total fatigue life inmetals[J].International Journal of Fatigue,2009,31(7):1163-1175.
    [88] Fan Z.C., Chen X.D.,Chen L., et al.An equivalentstrain energy density life predictionmodel[C].5thFracture Mechanics Symposium, October31-November5,2007, Changsha,China.Shanghai: East ChinaUniversity Science and Technology Press,2007:277-282.
    [89] Newan J.C., Phillips E.P., Swain M.H..Fatigue-life prediction methodology using small-crack theory[J].International Journal of Fatigue,1999,21(2):109-119.
    [90] Chen X., Kim K.S..Multiaxial fatigue life prediction of weld joints[C]. Fracture Mechanics Symposium, August19-22,2003, Shanghai, China.Shanghai: East China University Science and Technology Press,2003:241-247.
    [91] Das J., Sivakumar S.M..Multiaxial fatigue life prediction of a high temperature steam turbine rotor using a critical plane approach[J].Engineering Failure Analysis,2000,7(5):347-358.
    [92] Morel F..A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading[J].International Journal of Fatigue,2000,22(2):101-119.
    [93]吴文健.125MW机组转子寿命评估与预测在线监测系统的试验研究[J].浙江电力,2000(6):9-14.
    [94]谢永慧,孟庆集.汽轮机叶片疲劳寿命预测方法的研究[J].西安交通大学学报,2002,36(9):912-915.
    [95]富涛,许春生.在翼航空发动机剩余寿命预测[J].中国民航飞行学院学报,2006,17(3):18-21.
    [96]付娜.某航空发动机涡轮盘和叶片的强度分析与寿命计算[D].西安:西北工业大学硕士学位论文,2006.
    [97] Wang X.L., Nie H..Fatigue life prediction of key structural parts in aeronautics and astronautics based on fuzzy theory[C]//2nd International Symposium on Systems and Control in Aerospace and Astronautics, December10-12,2008, Shenzhen, China.New York:IEEE,2008:637-640.
    [98] Nowacki.J., WiderP.S′.. Producibility of brazed high-dimension centrifugal compressorimpellers[J]. Journal of Materials Processing Technology,2003,133:174-180.
    [99] NowackiJ.. Weldability of17-4PH stainless steel in centrifugal compressor impeller applications[J]. Journal of Materials Processing Technology,2004,157-158:578-583.
    [100] SivaprasadS., NarasaiaN.H., Das S.K., et al. Investigation on the failure of air compressor[J]. Engineering Failure Analysis,2010,17:150-157.
    [101]王凭慧,范本尧,傅惠民.卫星推力器可靠性评估和寿命预测[J].航空动力学报,2004,19(6):745-748.
    [102]冯蕴雯,薛小锋,冯元生.老龄飞机机群与单机结构剩余寿命分析方法[J].西北工业大学学报,2006,24(2):237-240.
    [103]汤清洪,马吉胜,赵琦,等.自行火炮履带板疲劳寿命预测仿真研究[J].系统仿真学报,2007,19(9):1983-1986,2011.
    [104]冯勋欣,冯兵,张静萍.履带式自行火炮扭力轴疲劳寿命预测[J].火炮发射与控制学报,1999(4):32-34.
    [105]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [106]毛义军,祁大同,许庆余.离心压缩机叶轮叶片疲劳断裂故障的数值分析[J].西安交通大学学报,2008,42(11):1336-1339.
    [107]谷晓勇.基于ANSYS的离心压缩机主要零件建模和受力分析[D].大连:大连理工大学硕士学位论文,2010.
    [108]张小丽,陈雪峰,李兵,等.机械重大装备寿命预测综述[J].机械工程学报,2011,47(11):100-116.
    [109]张成成.复杂应力场下结构高周疲劳寿命分析[D].南京:南京航空航天大学博士学位论文,2010.
    [110]刘万青.大型离心压缩机焊接叶轮疲劳分析[D].大连:大连理工大学硕士学位论文,2008.
    [111] Coffin L.F.. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Socioety of Mechanical Engineers,1954,76:931-950.
    [112] Manson S.S.. Behaviovur of materials under condition of thermal stress[M]. NACA TN-2933,1954.
    [113]张国庆.零件剩余疲劳寿命预测方法与产品可再制造性评估研究[D].上海:上海交通大学博士学位论文,2007.
    [114]尚德广,王德俊.多周疲劳强度[M].北京:科学技术出版社,2007.
    [115] Findely W.N..A theory for the effect of mean stress on fatigue of metals under combined torsional and axial load or bending[J].ASME Journal of Engineering for Industry,1959,81:301-306.
    [116] McDiarmid D.L.A.. General criterion of fatigue under multiaxial stress and international conference on pressure vessel technology[J].1973, II-61:851-862.
    [117] BrowM W., Miller K.J.. A Theory for fatigue under multiaxial stress-strain conditions[J]. Proceeding of Institute of Mechanical Engineers,187:745-755.
    [118] Bannantine J.A.. A variable amplitude multiaxial fatigue life prediction method[D]. University of Illinois at Urbana-Champaign,1989.
    [119] Smith K.N.,Watson P., Topper T.H.. A stress-strain function for the fatigue of metals[J]. Journal of Materials,1970,4(5):767-778.
    [120] Fatemi A., Socie D.F.. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J], Fatigue and Fracture of Engineering Materials and Structures,1988,11(3):149-165.
    [121]李良碧,潘广善,万正权,等.高强钢锥柱结合壳焊接残余应力的数值模拟和试验研究[J].船舶力学,2010,14(10):1143-1150.
    [122]王贵君.有限元法基础[M].北京:中国水利水电出版社,2011.
    [123]张洪才.有限元分析[M].北京:机械工业出版社,2011.
    [124]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007.
    [125]王毅.大流量离心压缩机首级叶轮流固耦合数值模拟[D].大连:大连理工大学硕士学位论文,2010.
    [126] Hanlon P.C..压缩机手册[M].郝点,译.北京:中国石化出版社,2003.
    [127] Labib M.N., Kim S.S., Choi D., et al. Numerical investigation of the effect of inlet skew angle on the performance of mechanical vapor compressor[J]. Desalination,2012,284:66-76.
    [128] Abraham E.. Experimental and numerical investigation of the performance of a240kWcentrifugal compressor with different diffusers[J]. Experimental Thermal and Fluid Science,2003,28(1):55-72.
    [129] Nowacki J., Swider P.. Producibility of brazed high-dimension centrifugal compressor impellers [J]. Journal of Materials Processing Technology:2003,133:174-180.
    [130] Nowacki J. Weldability of17-4PH stainless steel in centrifugal compressor impeller applications[J]. Journal of Materials Processing Technology:2004:157-158:578-583.
    [131] Sivaprasad S., Narasaiah N., Das S.K., et al. Investigation on the failure of air compressor[J]. Engineering Failure Analysis,2010,17:150-157.
    [132] Sivaprasad S., Naransaiah N., Das S.K.. Fatigue failure of a centrifugal compressor[J].Engineering Failure Analysis,2007,14:1313-1321.
    [133]李廷宾,汪志远,闻苏平,等.跨音速离心压缩机叶轮分流叶片的数值研究[J].流体机械,2009,9(37):10-14.
    [134]刘瑞韬,徐忠.离心压缩机半开式叶轮与叶片扩压器级内流动的数值模拟[J].风机技术.2003(2):3-6.
    [135]刘军.大流量离心压缩机首级叶轮强度分析及结构改进设计研究[D].大连:大连理工大学硕士学位论文,2009.
    [136]黄素珍.大型离心压缩机叶轮的可靠性稳健设计[D].沈阳:东北大学硕士学位论文,2009.
    [137] Ruiz-Girone′sE.,SarrateJ.. Generation of structured hexahedral meshes in volumes withholes[J]. Finite Elements in Analysis and Design,2010,46:792-804.
    [138] White D.. Automatic quadrilateral and hexahedral meshing of pseudo-cartesian geometries using virtual subdivision[D]. Brigham Young University,1996.
    [139] Kiran H., Shivanna, Srinivas C., et al. Feature-based multiblock finite element mesh generation[J]. Computer-Aided Design,2010,42:1108-1116.
    [140] SuY., LeeK.H., KumarA.S.. Automatic hexahedral mesh generation using a new grid-based method with geometry and mesh transformation[J]. Computer methods in appliedmechanics and engineering,2005,194:4071-4096.
    [141] Masoud D., Alireza N.. Multiblock hybrid grid finite volume method to solve flow inirregular geometries[J]. Computer methods in applied mechanics and engineering,2006,196:321-336.
    [142] Jason F., Shepherd, Mark W., et al. Adaptive mesh coarsening for quadrilateral and hexahedral meshes[J]. Finite Elements in Analysis and Design,2010,46:17-32.
    [143] Dae Y., Kwak, Yong T.. Hexahedral mesh generation for remeshing in three-dimensional metal forming analyses[J]. Journal of Materials Processing Technology,2003,138:531-537.
    [144] FernandesJ.L.M., MartinsP.A.F.. All-hexahedral remeshing for the finite element analysis of metal forming processes[J]. Finite Elements in Analysis and Design,2007,43:666-679.
    [145] MerhofD., GrossoR., TremelU., et al. Anisotropic quadrilateral mesh generation: An indirect approach[J]. Advances in Engineering Software,2007,38:860-867.
    [146]赵国群,虞松,王广春.六面体网格自动划分和再划分算法[J].机械工程学报,2006,42(3):188-192.
    [147]肖周芳,陈建军,曹建,等.多源多目标扫掠体的全六面体网格自动生成算法[J].计算机辅助设计与图形学学报,2012,24(8):989-996.
    [148] Lu Sun, Guoqun Zhao, Xinwu Ma. Adaptive generation and local refinement methodsof three-dimensional hexahedral element mesh[J]. Finite Elements in Analysis and Design,2012,50:184-200.
    [149]李涛,左正兴,廖日东.结构仿真高精度有限元网格划分方法[J].机械工程学报,2009,45(6):304-308.
    [150]杨晓东,申长雨,李倩,等.结构自适应有限元分析中的高质量网格生成方案[J].机械工程学报,2009,45(8):292-297.
    [151]蔡力钢,马仕明,赵永胜,等.多约束状态下重载机械式主轴有限元建模及模态分析[J].机械工程学报,2012,48(2):165-173.
    [152] Toshihiro Maeda, So Noguchi, Hideo Yamashita, et al. An automatic hexahedral meshgeneration method for hexahedral elements towards rotating machine[J]. Journal of Materials Processing Technology,2005,161:101-106.
    [153]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2003.
    [154] PENG Yinghong, YIN Zhongwei. The algorithms for trimmed surfaces construction and tool path generation in reverse engineering[J]. Computers&Industrial engineering,2008,54:624-633.
    [155]赵慧慧,张广军,范庆,等.基于焊接的多道单层再制造熔覆层组织及性能[J].焊接学报,2011,32(2):45-48.
    [156]杨培,徐滨士,吴林.基于结构光三维视觉的再制造工件的测量及重建[J].焊接学报,2005,26(8):12-15.
    [157]王尚锦.离心压缩机三元流理论及应用[M].西安:西安交通大学出版社,1991.
    [158]朱报祯,郭涛.离心压缩机[M].西安:西安交通大学出版社,1989.
    [159]麻栋兰.大型离心压缩机叶轮可靠性研究[D].大连:大连理工大学硕士学位论文,2009.
    [160]吴玉林.通风机和压缩机[M].北京:清华大学出版社,2005.
    [161]朱明正,袁卫星,花严红.基于CFX软件设计离心压缩机三元叶轮[J].风机技术,2009,6:48-51.
    [162]翁立伟,刁全,杨永江.整体齿轮组装式离心压缩机设计[J].风机技术,2009,4:34-36.
    [163]秦玉兵,苏莫明,李泰勋.控制加载规律下的离心压缩机叶轮设计方法及数值计算[J].风机技术,2007,6:36-39.
    [164] Santhanakrishnan S., Kong F.R., Kovacevic R.. An experimentally based thermo-kinetichardening model for high power direct diode laser cladding[J]. J Mater Process Technol,2011,211:1247-1259.
    [165] Yan J., Gao M., Zeng X.Y.. Study on microstructure and mechanical properties of304stainless steel joints by TIG, laser and laser-TIG hybrid welding[J]. Opt Laser Eng,2010,48:512-517.
    [166] Abderrazak K., Bannour S., Mhiri H.. Numerical and experimental study of molten pool formation during continuous laser welding of AZ91magnesium alloy[J]. Comp Mater Sci,2009,44:858-866.
    [167]黄钟岳,王晓放.透平式压缩机[M].北京:化学工业出版社,2004.
    [168]席光,王晓锋,蒋三红,等.基于三维粘性流动分析的离心压缩机叶轮设计方法[J].工程热物理学报,2002,23(增刊):55-57.
    [169]王晓锋,席光,王尚锦.离心压缩机叶轮的响应面优化设计Ⅰ:优化设计方法[J].工程热物理学报,2004(3):50-52.
    [170]席光,王晓锋,王尚锦.离心压缩机叶轮的响应面优化设计Ⅱ:实例及讨论[J].工程热物理学报,2004(3):53-55.
    [171]刘瑞韬,徐忠,孙玉山.含分流叶片的离心压缩机级内三维流场数值分析[J].应用力学学报,2004(1):82-85,179.
    [172]沈阳鼓风机集团股份有限公司[EB/OL]. http://zj821633229.b2b.chemm.cn/.
    [173]陕西鼓风机集团有限公司[EB/OL]. http://www.shaangu-group.com/.
    [174]朱胜,姚巨坤.基于再制造的装备多寿命周期工程[J].装甲兵工程学院学报,2009,23(4):1-5.
    [175]徐滨士.再制造工程的现状与前沿[J].材料热处理学报,2010,31(1):10-14.
    [176]张伟,徐滨士,张纾,等.再制造研究应用现状及发展策略[J].装甲兵工程学院学报,2009,23(5):1-5.
    [177] Xu,Binshi.The remanufacturing engineering and automatic surface engineering technology[J].Key Engineering Materials,2008,373:1-10.
    [178]阎楚良,卓宁生,高镇同.雨流法实时计数模型[J].北京航空航天大学学报,1998,24(5):623-624.
    [179] McInnesC.H., MeehanP.A.. Equivalence of four-point and three-point rainflow cycle counting algorithms[J]. International Journal of Fatigue,2008,30:547-559.
    [180]赵勇铭.多轴疲劳寿命模型及疲劳试验谱编制方法研究[D].南京:南京航空航天大学博士学位论文,2009.
    [181]姜年朝.ANSYS和ANSYS/FE-SAFE软件的工程应用及实例[M].南京:河海大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700