用户名: 密码: 验证码:
发动机曲轴疲劳极限载荷预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机曲轴的应力集中现象严重,特别是在曲柄销圆角和主轴颈圆角部位的应力集中现象尤为突出,曲轴疲劳破坏往往发生于这些区域。随着发动机强化程度的提高,对于曲轴强度要求也越来越高,传统的通过曲轴形状系数和经验公式计算曲轴疲劳强度的方法已经无法满足发动机机高可靠性、低重量、低成本的设计要求。因此,分析结构参数和处理工艺对曲轴疲劳强度的影响,研究准确预测构件的疲劳极限载荷的方法,探讨如何对曲轴疲劳试验数据进行有效的统计分析,对于研究曲轴的疲劳强度可靠性具有实际意义。
     为此,本文围绕曲轴疲劳强度可靠性研究主题,主要开展了以下工作:
     (1)曲轴结构关键参数对疲劳强度的影响分析。基于iSIGHT-FD平台和DOE方法,将有限元分析、变结构参数设计与试验设计相结合,分析了曲轴关键结构参数对疲劳强度的影响。
     (2)处理工艺对曲轴疲劳强度的影响分析。应用“F”检验法、“t”检验和秩和法,分析了氮化时间和滚压工艺对曲轴疲劳强度的影响。
     (3)基于裂纹模拟技术与试验数据结合的曲轴疲劳极限载荷预测方法研究。通过某种型号曲轴疲劳试验数据推导出该零件等效标准裂纹体材料的扩展门槛值△Kth,并利用得到的ΔKth值,通过曲轴与标准裂纹体等效关系,预测曲轴的疲劳极限载荷。
     (4)基于缺口件等效与渐进插值法预测曲轴的疲劳极限载荷方法研究。采用应力梯度拟合方法将曲轴应力集中等效为标准缺口件,并通过渐进插值法,引入虚拟短裂纹进行短裂纹修正,预测曲轴的疲劳极限载荷。
     (5)曲轴疲劳试验数据处理技术研究。对曲轴的疲劳试验数据分布进行数据统计回归分析,对各种分布规律与曲轴疲劳试验数据的吻合程度进行拟合效果评价,并将极大似然法用于曲轴弯曲疲劳性能曲线测定。
     通过上述工作,获得了以下主要结论:
     (1)在需要提高曲轴疲劳强度时,增大圆角半径或增大曲柄厚度比改变重叠度和曲柄半径的效果要显著。氮化时间长短对曲轴疲劳强度有一定的影响,但影响效果不大,滚压工艺能改善曲轴疲劳强度性能。
     (2)曲轴应力集中可以较好地等效为标准裂纹体模型,等效裂纹体扩展门槛值ΔKth的确定与预测曲轴疲劳极限载荷的准确性密切相关,通过已有试验数据推导出门槛值ΔKth,能比较准确的预测曲轴疲劳极限载荷。
     (3)裂纹体与实际构件之间有本质不同,标准缺口件与实际构件的疲劳强度同属于应力集中问题,标准缺口件与实际构件等效比裂纹体与实际构件等效效果更好,标准缺口件等效的优势在于可以将经过工艺处理的实际构件等效为相同工艺处理的标准缺口件。
     (4)曲轴疲劳强度试验数据与6种统计分布包括两参数威布尔分布、三参数威布尔分布、正态分布、对数正态分布、极大值分布、极小值分布拟合达到很高的吻合度,极大似然法能应用于曲轴疲劳强度性能曲线的测定,但存在较大的误差。
The phenomenon of engine crankshaft stress concentration is serious, especially in the crankpin round and spindle neck round. The fatigue damage of crankshaft often occurs in these areas. Along with the rising of engine aggrandizement degree, the demand for crankshaft fatigue strength is also growing higher. The traditional method calculating crankshaft fatigue strength by the crankshaft shape coefficients and experience formula has failed to meet the design requirements of high reliability, low weight and low cost. Therefore, the researches including the fatigue strength influence analysis of crankshaft structure and process parameters, the accurate predicting study of component fatigue limit load, and the discussion for how to analyze the crankshaft fatigue test data effectively, have the practical significance for studying the crankshaft fatigue strength reliability.
     Therefore, around the research topic of crankshaft fatigue strength reliability, this paper mainly carries out the following contents:
     The impact analysis of key structure parameters on crankshaft fatigue strength. Based on the multi-disciplinary collaborative design optimization platform, combining the finite element analysis, variable structure parameters of design and design of experiment, the impact of crankshaft key structure parameters on fatigue strength is analyzed.
     The impact analysis of processing technic on crankshaft fatigue strength. By use of the parent standard deviation test-"f'test, parent average test-"t"test and rank sum test, the impact of nitridation time and rolling process on crankshaft fatigue strength is analyzed.
     Prediction of crankshaft fatigue limit load by integrated crack-modeling technique with test data. The standard crack growth threshold value-△Kth which is equivalent to the stress concentration of real component, is derived through the fatigue test data of a type of crankshaft. And by use of the value-△Kth and through the equivalent relationship between crankshaft with standard crack body, the fatigue limit load of the different crankshaft, which is made of the same material and has the same processing technic, can be predicted.
     Component fatigue limit prediction based on the integrated method of notched specimen equivalence and asymptotic interpolation. By the stress gradient matching method, the crankshaft stress concentration can be equivalent with the standard notched specimen, and through the asymptotic interpolation and introduction of virtual short crack correction, the fatigue limit load of crankshaft is predicted.
     Statistical analysis of crankshaft fatigue strength test data. Based on the experimental data, the statistical regression analysis is carried out. The degree of fitting effect between the experimental data with the statistical distributions is evaluated. And the crankshaft fatigue property curve is determined by the method of maximum likelihood estimation.
     The main conclusions were as follows
     In order to improve the crankshaft fatigue strength, the effect should be more significant by increasing fillet radius or crank thickness than changing overlapping degree or crank radius. And it can be concluded that the length of nitriding time has little impact on the crankshaft fatigue strength and the rolling process can improve the performance of crankshaft fatigue strength.
     The crankshaft stress concentration can be equivalent to the standard crack model. The prediction accuracy of crankshaft fatigue limit load is closely related to the standard crack growth threshold value-△Kth And the prediction of the crankshaft fatigue limit load is accurate by the standard crack growth threshold value-△Kth, which is derived through the fatigue strength test data.
     Crack body and actual component differ in nature, the fatigue strength of actual component belonging to the stress concentration problem, is the same as the standard notched specimen. The equivalent fitting effect between actual component with standard notched specimen is better than the fitting effect between actual component with standard crack body. The advantage of standard notched specimen equivalence lies in that the actual component with processing technic can be equivalent to the standard notched specimen with the same processing technic.
     The six kinds of statistical distributions, including weibull(two-and three-parameter), normal, lognormal, extreme minimum value, extreme maximum value, have good fitting effect. And the crankshaft fatigue property curve can be determined by the method of maximum likelihood estimation with certain error.
引文
[1]2009年我国汽车产销突破1300万辆http://finance.sina.com.cn/roll/20100112/01597226724.shtml
    [2]2010中国汽车产销双超1800万创世界纪录http://auto.sina.com.cn/news/2011-01-10/1631701565.shtml
    [3]是什么限制了我国汽车技术研发能力的提高http://auto.gasgoo.com/news/b/2008-09-02/b52f8dc1-3175-46a9-b977-45b2e4a29e95.html
    [4]中国汽车零部件接近国际水平尚须时日http://ad.gushi360.com/finance/cydt/2010-08-12/773341.shtml
    [5]汽车产业调整和振兴规划http://www.gov.cn/zwgk/2009-03/20/content_1264324.htm
    [6]周迅.曲轴疲劳行为及可靠性的理论与试验研究[D].浙江大学博士学位论文,2006.
    [7]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2004.
    [8]徐灏.疲劳强度设计[M].北京:机械工业出版社,1981.
    [9]赵少汴.抗疲劳设计[M].北京:机械工业出版社,1994.
    [10]程育仁.疲劳强度[M].北京:中国铁道出版社,1990.
    [11]Kim J, Kim M. Effects of structure and defect on fatigue limit in high strength ductile irons [J]. KSME International Journal,2000,4(5):530-536.
    [12]郝瑞贤,谈嘉祯,李威,李元宗37SiMn2MoV调质齿轮弯曲疲劳强度的试验研究[J].机械传动,2008,32(2):67-68.
    [13]王志成,卞明,高宏阁.1P68F曲轴强度有限元分析[J].小型内燃机与摩托车,2009,38(3):23-26.
    [14]郭同生,彭永明,杨俊杰.HXD2机车构架结构与强度研究[J].机车电传动,2008,(6):9-12.
    [15]杜发荣,李明辉.YT1115型柴油机曲轴疲劳强度分析[J].洛阳工学院学报,2001,22(1):24-27.
    [16]石秀勇,李国祥,胡玉平.发动机飞轮螺栓的三维有限元计算分析[J].中国机械工程,2006,17(8):845-848.
    [17]叶晓琰,许国乐,蒋小平.基于MSC有限元分析的五缸往复泵曲轴疲劳强度校核[J].流体机械,2008,36(10):50-53.
    [18]屠丹红,姜树李,鱼春燕.498柴油机连杆的改进设计[J].车用发动机,2005,(1):16-19.
    [19]赵莹,姜树李,杨磊.JS190柴油机机体的有限元分析及改进设计[J].小型内燃机与摩托车,2007,36(1):35-38.
    [20]高慧.矿用发动机曲轴断裂关键影响因素的分析与研究[J].煤炭工程,2008,(7):73-76.
    [21]秦东晨,梁颖,陈立平等.基于疲劳强度的铰链梁结构优化设计研究[J].机械强度,2006,28(2):306-310.
    [22]国旭华,郁鼎文,李宏伟,等.扭力轴疲劳强度有限元分析与试验研究[J].新技术新工艺,2010,(5):120-122.
    [23]姚海南.发动机曲轴疲劳强度的三维有限元分析[J].上海第二工业大学学报,2009,26(2):119-122.
    [24]陈丽娜,钱幸毅,程广庆,等.基于有限元法的柱塞泵曲轴疲劳强度分析[J].流体传动与控制,2010,38(1):24-27.
    [25]王远,朱会田,曹永晟,等.基于有限元法的发动机连杆疲劳强度分析研究[J].机械传动,2010,34(3):68-71.
    [26]杨广雪,谢基龙,周素霞.4D轴货车焊接构架的疲劳强度分析方法[J].北京交通大学学报:自然科学版,2009,,33(1):24-27,31.
    [27]王文静,刘志明,李强,缪龙秀.CRH2动车转向架构架疲劳强度分析[J].北京交通大学学报:自然科学版,2009,33(1):5-9.
    [28]胡玉梅,陶丽芳,邓兆祥,等.车身台架疲劳强度试验方案研究[J].汽车工程,2006,28(3):300-303,228.
    [29]王小群,霍东菊.齿根过渡曲线对齿轮弯曲疲劳强度影响的研究[J].机械设计与制造,2008(8):114-116.
    [30]姚枚,王声平,李金魁,等.表面强化件的疲劳强度分析及金属的内部疲劳极限[J].金属学报,1993,29(11):511-519.
    [31]姚枚,王仁智.金属材料工程力学行为学及其微细观过程理论[J].机械工程学报,2000,36(11):1-4.
    [32]GAO Yu—hui, YAO Mei, SHAO P G. Another mechanism for fatigue strength improvement of metallic parts by shot peening[J]. Journal of Materials Englnering and Performance,2003,12(5):507-511.
    [33]Brlnekmann S, Van der Giessen E. Towards understanding fatigue crack initiation:a discrete dislocation dynamics study[C]. Proceedings of ICM9, May 25-29, Geneva 2003.
    [34]张定铨.残余应力对金属疲劳强度的影响[J].理化检验·物理分册,2002,38(6):231-235.
    [35]赵少汴,王忠保.抗疲劳设计—方法与数据[M].北京:机械工业出版社,1997.
    [36]史菲,林香祝.1Cr18Ni9Ti钢等离子氮化工艺参数的优化[J].铸造技术2008,29(11):1601-1604.
    [37]Kloos,KH,缪炳祺.强化滚压工艺参数对与部件相似样疲劳强度的影响[J].工程设计学报,1995,(4):7-11.
    [38]王勉,王自勤.Tcl6螺栓头下圆角滚压工艺参数与疲劳强度研究[J].贵州工业大学学报,2008,37(5):108-110.
    [39]唐琦,董宏,朱棣,等.用深滚压技术提高曲轴疲劳强度的应用研究[J].汽车技术,2005,(8):31-33.
    [40]汪新衡,刘世军.强力喷丸对提高碳氮共渗齿轮接触疲劳强度的研究[J].润滑与密封,2004(6):75-76.
    [41]Klemenz M, Schulze V. Application of the concept of local fatigue strength after shot peening of notched components based on numerical simulations[J]. Materials Science Forum,2010,638:912-917.
    [42]Spiteri P, Lee Y-L, Segar R. An exploration of failure modes in rolled, ductile, cast-iron crankshafts using a resonant bending testing rig[J]. SAE Technical Paper,2005-01-1906.
    [43]Spiteri P, Ho S, Lee Y-L. Assessment of bending fatigue limit for crankshaft sections with inclusion of residual stress[J]. Int J Fatigue,2007,29:318-329.
    [44]Maluf O, Milan MT, Spinelli D. Effects of surface rolling on fatigue behavior of a pearlitic ductile cast iron[J]. J Mater Eng Perform,2004,13:195-199.
    [45]Kloos KH, Fuchsbauer B, Adelmann J. Fatigue properties of specimens similar to components deep rolled under optimized conditions [J]. Int J Fatigue,1987,9:35-42.
    [46]Chi en WY, Pan J, Close D, Ho S. Fatigue analysis of crankshaft sections under bending with consideration of residual stresses[J]. Int J Fatigue,2005,27:1-19.
    [47]K.S. Choi, J. Pan. Simulations of stress distributions in crankshaft sections under fillet rolling and bending fatigue tests [J]. Int J Fatigue,2009,31:544-557.
    [48]Simon Ho, Yung-Li Lee, Hong-Tae Kang, Cheng J Wang. Optimization of a crankshaft rolling process for durability [J]. Int J Fatigue,2009,31:799-808.
    [49]黄冀.表面合金镀层和合金化提高铸铁机械零件接触疲劳强度研究[J].机械传动,2009,33(2):9-11.
    [50]D. Taylor. Geometrical effects in fatigue:a unifying theoretical model[J]. Int J Fatigue, 1999,21(5):413-420.
    [51]D. Taylor. The theory of critical distances [J]. Engineering Fracture Mechanics,2008,75 (7):1696-1705.
    [52]Taylor D, The theory of critical distances:a history and a new definition[J]. Structural Durability and Health Monitoring,2006,2:1-10.
    [53]Taylor D, Hoey D. High cycle fatigue of welded joints:the TCD experience[J]. International Journal of Fatigue,2009,31:20-27.
    [54]Susmel L, Taylor D. A simplified approach to apply the theory of critical distances to notched components under torsional fatigue loading[J]. International Journal of Fatigue, 2006,28:417-430.
    [55]Crupi G, Crupi V, Guglielmino E, Taylor D. Fatigue assessment of welded joints using critical distance and other methods[J]. Engineering Failure Analysis,2005,12:129-142.
    [56]Taylor D, Kasiri S. A comparison of critical distance methods for fracture prediction[J]. International Journal of Mechanical Sciences,2008,50:1075-1081
    [57]Susmel L, Taylor D. On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features[J]. Engineering Fracture Mechanics,2008,75:4410-4421.
    [58]D.Taylor. Analysis of fatigue failures in components using the theory of critical distances[J]. Engineering Failure Analysis,2005,12:906-914.
    [59]Yao W X. Stress field intensity approach for predicting fatigue life[J]. International Journal of Fatigue,1993,15(3):213-219.
    [60]姚卫星.金属材料疲劳行为的应力场强法描述[J].固体力学学报,1997,18(1):38-48.
    [61]Shang D G, Wang D K, Ming L, Yao W X. Local stress-strain field intensity approach to fatigue life prediction under random cyclic loading [J].International Journal of Fatigue,2001,23:903-910.
    [62]尚德广,姚卫星.随机疲劳寿命预测的局部应力应变场强法[J].机械工程学报,2002,38(1):67-70.
    [63]李玉春,姚卫星,温卫东.应力场强法在多轴疲劳寿命估算中的应用[J].机械强度,2002,24(2):258-261.
    [64]郭伟彬,何玉怀,苏彬.应力场强法在旋弯及扭转疲劳极限分析中的应用[J].物理测 试,2008,26(2):43-47.
    [65]夏开全,姚卫星.关于疲劳缺口系数[J].机械强度,1994,16(4):19-26.
    [66]夏开全,姚卫星.疲劳缺口系数评述[J].南京航天航空大学学报,1994,26(5):676-685.
    [67]Tovo R, Livieri P. An implicit gradient application to fatigue of complex structures[J]. Engng Fract Mech 2008,75(7):1804-1814.
    [68]Tovo R, Livieri P, Benvenuti E. An implicit gradient type of static failure criterion for mixed-mode loading[J]. Int J Fract,2006,141(3):497-511.
    [69]Tovo R, Livieri P. An implicit gradient application to fatigue of sharp notches and weldments[J]. Engng Fract Mech,2007,74:515-526.
    [70]El Haddad MH, Smith KN, Topper TH. Fatigue crack propagation of short cracks [J].Journal of Engineering Materials and Technology(Transaction on ASME),1979,101:42-62.
    [71]Lukas P, Klesnil M. Fatigue limit of notched bodies[J]. Materials Science and Engineering, 1978,34:61-66.
    [72]Waddoups ME, Eisenmann JR, Kaminski BE. Macroscopic fracture mechanics of advanced composite materials[J]. Journal of Composite Materials,1971,5:446-454.
    [73]Smith RA, Miller KJ. Fatigue cracks at notches[J]. International Journal of Mechanical Sciences,1977,19(1):11-22.
    [74]Seweryn A, Lukaszewicz A. Verification of brittle fracture criteria for elements with V-shaped notches[J].Engineering Fracture Mechanics,2002,69:1487-1510.
    [75]Taylor D, Cornetti P, Pugno N. The fracture mechanics of finite crack extension[J]. Engineering Fracture Mechanics,2005,72:1021-1038.
    [76]A Carpinteri, P Cornetti, N Pugno, etc. A finite fracture mechanics approach to structures with sharp V-notches[J]. Engineering Fracture Mechanics,2008,75:1736-1752.
    [77]Taylor D. Crack modelling:A novel technique for the prediction of fatigue failure in the presence of stress concentrations[J]. Computational Mechanics,1997,20:176-180.
    [78]Wang G, Taylor D, Bouquin B, Devlukia J, Ciepalowicz A. Prediction of fatigue failure in a camshaft using the crack modelling method[J]. Engineering Failure Analysis,2000,7: 189-197.
    [79]Taylor D, Ciepalowicz AJ, Rogers P, Devlukia J. Prediction of fatigue failure in a crankshaft using the technique of crack modelling[J]. Fatigue & Fracture Of Engineering Materials & Structures,1997,20:13-21.
    [80]Taylor D, Carr AJ. The crack-modelling technique:optimization of parameters [J]. Fatigue & Fracture Of Engineering Materials & Structures,1999,22:41-50.
    [81]Liu Y M, Sankaran M. Fatigue limit prediction of notched components using short crack growth theory and an asymptotic interpolation method[J]. Engineering Fracture Mechanics, 2009,76:2317-2331.
    [82]戴树森,费鹤良,王玲玲,等.可靠性试验及其统计分析(上册))[M].北京:国防工业出版社,1983.
    [83]戴树森,费鹤良,王玲玲,等.可靠性试验及其统计分析(下册))[M].北京:国防工业出版社,1984.
    [84]高镇同等.疲劳应用统计学.北京:国防工业出版社,1986
    [85]高镇同等.疲劳可靠性.北京:北京航空航天大学出版社,2001
    [86]赵永翔,王金诺,高庆.确定有限疲劳可靠性数据良好假设分布的一种统一方法[J].中国机械工程,2001,12(12):1343-1347.
    [87]赵永翔,孙亚芳,高庆.分析常用7种统计分布的统一线性回归方法[J].机械强度,2001,23(1):102—106.
    [88]高镇同.疲劳性能测试[M].北京:国防工业出版社,1980.
    [89]凌静,高镇同.P-S-N曲线测定的最大似然法[J].航空学报,1992,13(5):A247-A252.
    [90]傅惠民,高镇同.p-S-N曲线拟合法[J].航空学报,1988,9(7):34-39.
    [91]张朋.用极大似然法求二维概率模型p-S-N曲线[J].机械设计,2003,20(1):31-33.
    [92]苏彦江.寿命服从Weibull分布时求p-S—N曲线的极大似然法[J].兰州铁道学院学报(自然科学版),2002,21(3):6-8.
    [93]傅惠民,高镇同,徐人平.母体百分位值的置信下限[J].北京航空航天大学学报,1990,11(3):1-8.
    [94]傅惠民.二维单侧容限系数方法[J].航空学报.1993,14(3):A166-172.
    [95]傅惠民.正态分布百分位值和百分率的置信限和容忍限公式[J].航空学报,1994,15(1):94-101.
    [96]张继旺,鲁连涛,张艳斌,张卫华.疲劳极限小样本评估方法[J].哈尔滨工程大学学报,2010,31(3):336-339.
    [97]盛骤,于渤.对数正态或正态寿命元件及系统的贮存可靠性的近似置信下限[J].应用数学,1995,8(3):267-272.
    [98]肖刚.评估复杂可维修系统可靠度与瞬态可用度的蒙特卡罗方法[J].兵工学报,2001,23(2):215-218.
    [99]陈文华,李奇志,张为鄂.产品可靠性的Bootstrap区间估计方法[J].机械工程学报,2003,39(6):106-109.
    [100]杨小安,张伟社,高勇,成建联.基于BP网络的齿轮弯曲疲劳强度极限的确定[J].机械传动,2009,33(3):94-96.
    [101]孙军,桂长林,李震.内燃机曲轴强度研究的现状、讨论与展望[J].内燃机学报,2002,20(2):179-184.
    [102]柴油机设计手册编辑委员会.柴油机设计手册(上)[M].北京:中国农业机械出版社,1984.
    [103]尹建民,王德海,袁银南等.X6135柴油机曲轴强度的三维有限元研究[J].内燃机工程,1997,19(2):71-77,86.
    [104]长春汽车研究所.柴油机曲轴强度研究[M].长春:一机部情报所,1980.
    [105]费少梅.柴油机曲轴结构参数的优化设计[J].内燃机工程,1998,19(3):26-29.
    [106]苏铁熊,左正兴,蔡坪.变结构参数结构设计方法及其在曲轴结构设计中的应用[J].车辆与动力技术,1995,(4):44-48.
    [107]马迅,周坤,饶群章,等.基于有限元法的曲轴结构分析及优化[J].湖北汽车工业学院学报,2005,19(3):9-13.
    [108]蒋元广,张保成,左正兴.基于集成仿真技术的曲轴结构优化方法研究[J].内燃机工程,2005,26(3):61-63.
    [109]俞小莉,周迅,刘震涛,等.智能型曲轴弯曲疲劳试验系统[J].兵工学报,2004,25(3):368-371.
    [110]周迅,俞小莉.谐振式曲轴弯曲疲劳试验恒载荷控制方法[J].农业机械学报,2006,37(12):168-171,181.
    [111]邱宣怀.机械设计[M].北京:高等教育出版社,1997.
    [112]熊峻江,高镇同,傅惠民.疲劳对比试验的可靠寿命假设检验[J].实验力学,1995,10(2):120-124.
    [113]赵韩,黄康,丁曙光,等.微线段齿轮齿根应力的对比试验研究[J].机械强度,2003,25(1):110-112
    [114]闫洪.钢的渗氮新技术[J].四川冶金,1999(6):37-40.
    [115]陈文怡,张善庆.34CrAlNi7钢离子渗氮层的显微结构和性能[J].金属热处理,1999,(10):15-16.
    [116]李满良,冯美斌.球墨铸铁曲轴滚压工艺试验研究[J].汽车科技,2001,(5):15-17.
    [117]史效强,周旭东.曲轴圆角滚压强化技术综述[J].内燃机配件,2005,(6):26-29.
    [118]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社,1994.
    [119]周迅,俞小莉.曲轴疲劳试验及其数据统计分析方法的研究[J].内燃机工程,2007,28(2):51-55.
    [120]TIAN Z S, Zhao F D. Stress concentration in a solid with symmetric u-shaped grooves[J]. Strain Analysis,2001,36(2):211-217.
    [121]李成,郑艳萍,铁瑛.不同荷载作用下圆孔板孔边及孔口附近应力场的仿真分析
    [122]CHEN X P, YU X L, HU R F, LIJ F. Prediction of crankshaft fatigue limit load by crack-modeling technique. Journal of Advanced Manufacturing Systems, in press.
    [123]顿志林,高家美.岩土力学及其在岩土工程中的应用[M].北京:煤炭工业出版社,2003.
    [124]杨桂通.弹性力学[M].北京:高等教育出版社,1998.
    [125]HADDAD E I, TOPPER M H, SMITH K N. Prediction of nonpropagating cracks[J]. Engng Fract Mech,1979,11:573-84.
    [126]《正交试验设计法》编写组.正交试验设计法[M].上海:上海科学技术出版社,1979.
    [127]徐灏.安全系数和许用应力[M].北京:机械工业出版社,1981.
    [128]程成,须文波,冷文浩.基于iSIGHT平台DOE方法的螺旋桨敞水性能优化设计[J].计算机工程与设计,2007,28(6):1455-1459.
    [129]崔玉娥.柴油机曲轴失效分析及应对措施[D].天津大学硕士论文,2008.
    [130]崔银轩.蓝擎WP12柴油机曲轴的强化工艺研究[D].天津大学硕士论文,2007.
    [131]张高贤.U形件成形工艺参数优化研究[D].浙江大学硕士论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700