用户名: 密码: 验证码:
自密实混凝土性能及混凝土多场耦合时变性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自密实混凝土以其优异的工作性能及环保性,逐渐得到广大工程界的接受。本文以核电工程应用自密实混凝土为工程背景,试验研究自密实混凝土配合比设计及力学性能、耐久性、收缩抗裂性能,并与普通振捣混凝土性能进行了比对;针对复杂环境中混凝土结构耐久性问题,探讨多因素作用下混凝土时变性模拟分析,论文的主要研究工作有:
     (1)根据Heywood单颗粒骨料表面积计算方程,考虑实际操作的简便性建立了表征骨料比表面积简易计算方法,以表征骨料比表面积反映骨料粗细程度以及各粒径分布,提出富余砂裹厚度以及净浆包裹骨料厚度概念,并以此为切入点,提出新的自密实混凝土配合比设计方法。用此方法成功配制C35和C50自密实混凝土,经实验室及现场试验进行比对,效果良好。
     (2)以现场材料配制的C35、C50自密实混凝土与基准普通振捣混凝土为研究对象,通过试验研究长达560天的立方体抗压强度、立方体劈裂抗拉强度、棱柱体轴心抗压强度、受压静弹性模量、四点弯拉(抗折)强度、钢筋握裹粘结强度以及弯拉初裂拉应变,研究自密实混凝土与对比普通振捣混凝土各长期力学性能随龄期发展规律及相互关系;同时通过抗渗性、抗氯离子渗透性、抗碳化性试验以及自由收缩、平板约束抗裂、环形约束抗裂试验以综合评价自密实混凝土与对比普通混凝土耐久性与收缩抗裂性能差异。结果表明自密实混凝土力学性能、耐久性以及收缩抗裂性能均不弱于同强度的对比普通振捣混凝土。
     (3)根据Fick扩散定律与质量守恒定律建立湿度场理论模型,依据湿度场与温度场的相似性,实现湿度场问题转化为温度场问题模拟求解;结合湿度场的干缩湿胀效应,提出基于不同干燥环境下混凝土自由收缩实测曲线去实现湿度场参数自动识别的方法,并通过4种不同混凝土配合比的算例验证表明,此法是方便可行的。
     (4)在基于混凝土单元各向异性应变损伤假定的基础上,引入损伤系数,提出各向异性湿度、氯离子、二氧化碳扩散放大因子对因应力损伤开裂的混凝土单元各扩散系数进行修正调整。这些扩散放大因子均易于在有限元程序中实现并通过算例分析表明其效果良好。
     (5)在参考国内外相关文献资料的基础上,根据Fick扩散定律与质量守恒定律建立了考虑温度、湿度、应力等多因素作用下二氧化碳分布场以及氯离子分布场的理论模型;依据两场理论模型与温度场的相似性,将氯离子与二氧化碳在混凝土中的扩散问题实现映射到温度场中模拟分析,并与快速碳化试验以及带裂缝混凝土氯离子侵蚀试验的测试结果的对比表明,两场模拟结果均与试验测试结果吻合良好。同时基于目前通用有限元程序平台,提出了考虑应力、温度、湿度、氯离子以及二氧化碳等因素耦合作用下混凝土结构时变性数字模拟分析的基本流程框架。
     论文的研究一方面为自密实混凝土更广泛的应用于核电工程或其它工程建设提供了简便可行的配合比设计方法与可靠的试验依据;另一方面为今后能有效的对复杂环境下混凝土结构耐久性分析以及服役寿命预测提供了参考。
Self-compacting concrete (SCC) is widely accepted by engineers and researchers due to its excellent workability and environmental friendly properties. In this research, the properties of SCC which was utilized in nuclear power plant, such as mix design, mechanical properties, durability and shrinkage crack resistance, were investigated in comparison with normal vibrating concrete (NVC). Focusing on the concrete structure durability in complicated environment, the time dependence properties simulation and analysis of concrete were discussed in multi-factor coupling conditions. The subjects of this research include:
     (1) In considering the operation convenience, a simplified method on estimating the specific surface of aggregate was put forward based on improved Heywood single aggregate surface calculation equation. The coarse-to-fine degree and particle size distribution of aggregate were taken into account in this method and two new concepts, surplus thickness of sand and thickness of paste around aggregate, were introduced. Then take the two new concepts as the breakthrough point, this research proposed a new mix design method of SCC. Two kinds of SCC, C35 and C50, were designed with this method and tested through both indoor and outdoor experiments. The test results indicated that the SCC designed with new method showed good behaviors in mechanical properties and workability.
     (2) The cubic compressive strength, cubic splitting tensile strength, axial compressive strength, elastic modulus, flexural tensile strength, steel bonding strength and flexural cracking strain of both SCC and NVC in C35 and C50 were investigated from 3d to 560d. The research revealed the long term development of mechanical properties with time and the inter-relationship between them of SCC against NVC. A further comparison of the durability and shrinkage cracking resistance between SCC and NVC was conducted in terms of permeability resistance test, chloride penetration resistance test and carbonation resistance test, as well as the free shrinkage test, plate cracking restraint test and ring cracking restraint test. The test results showed that mechanical properties, durability and shrinkage cracking resistance of SCC all beat NVC.
     (3) Based on Fick diffusion law and mass conservation law, a theoretical model of concrete moisture field was established. The high similarity between moisture field and temperature field of concrete was applied to digitally solve the moisture field problems with converted temperature field. In view of dry-shrinkage and wet-expansion effect of moisture field, this research put forward a new method to identify the moisture field parameters by concrete shrinkage curve under different drying conditions. The calculation on 4 kinds of concretes verified the accuracy and convenience of the new method.
     (4) Based on the assumption of anisotropic strain damage and introduction of damage factor in concrete element, a new concept of anisotropic diffusion enhancing factor was defined and applied to modify moisture, carbon dioxide and chloride diffusion coefficients on damage and cracking of concrete element. The diffusion enhancing factors of moisture, carbon dioxide and chloride can all be easily implemented in finite element analysis and improve the accuracy of simulation calculation.
     (5) Based on literatures review, Fick diffusion law and mass conservation law were applied in theoretically modeling the carbon dioxide field and chloride field under multi-factor coupling conditions, such as temperature, moisture and stress. Carbon dioxide field and chloride field were both translated to temperature field for simulation analysis according to the high similarity between carbon dioxide field, chloride field and temperature field. Simulation analysis of carbon dioxide field and chloride field was verified by accelerated carbonation experiment and chloride penetration experiment with pre-cracked concrete specimen. Both the simulation results of carbon dioxide field and chloride field showed good agreement with experiments results. Aiming at the application on the generally used finite element program platform, basic process framework of time dependence simulation analysis of concrete under multi-factor coupling conditions was built.
     The research can provide a simple and practical mix design method and reliable test data base for a wider application of SCC in nuclear power constructions and other engineering projects. At the same time, this investigation will offer some useful references for durability analysis and service-life-span prediction of concrete structure in complicated environments.
     The research was financially supported by National Science Foundation (Grant No. 50838008), National Basic Research Program of China (973 Program, Grant No. 2009CB623200), Doctoral Program of Higher Education (No. 20070335087) and High Technology Research and Development Program of China (863 Program, 2006AA04Z415).
引文
[1.1]OKAMURA Hajime,OUCHI Masahiro.Self-compacting concrete:development,present use and future[C]// Proceedings of 1st International RILEM Symposium on Self-Compacting Concrete.Paris:RILEM Publication SARL,1999:3-14.
    [1.2]OZAWA K,MAEKAWA K,KUNISHIMA M,etc.Development of high performance concrete based on the durability design of concrete structures[C]//The Second East-Asia and Pacific Concrete on Structural Engineering and Construction(EASEC-2).Tokyo,Japan:[S.l.].1989:445-450.
    [1.3]吴红娟,自密实混凝土配合比设计方法研究[D].天津:天津大学硕士学位论文,2005。
    [1.4]BARTOS P J M.Testing SCC:towards new European Standards for fresh SCC[C]//Proceedings of 1st International Symposium on Design,Performance and Use of Self-Consolidating Concrete.Paris:RILEM Publication SARL,2005:25-46.
    [1.5]SVEN M,ASMUS F,YANG Jianying.State of the art admixtures for high performance SCC in China[C]//Proceedings of 1st International Symposium on Design,Performance and Use of Self-consolidating Concrete.Paris:RILEM Publication SARL,2005:129-136.
    [1.6]BENNENK Wim.SCC:an excellent concrete for the precast industry[C]//Proceedings of 1st International Symposium on Design,Performance and Use of Self-Consolidating Concrete.Paris:RILEM Publication SARL,2005:581-588.
    [1.7]刘运华,谢友均,龙广成.自密实混凝土研究进展[J].硅酸盐学报,2007.5,35(5):671-678。
    [1.8]刘小洁,余志武.自密实混凝土的研究与应用综述[J].铁道科学与工程学报,2006.4,3(2):6-10。
    [1.9]金伟良,赵羽习,混凝土结构耐久性[M],北京:科学出版社,2002。
    [1.10]P.Kumar Mehta,Paulo J.M.Monteiro著,覃维祖等译.混凝土:微观结构性能和材料[M],北京:中国电力出版社,2008:78。
    [1.11]冯乃谦,高性能混凝土[M].北京:中国建筑工业出版社,1996。
    [1.12]尹健,周士琼编译,高性能混凝土与自密实混凝土在国外桥梁中的应用[J].国外公路,2000.20(4):52-54.
    [1.13]Toshiaki MIZOBUCHL,Self-compacting concrete with advantageous performance [C]// Proceedings of the First International RILEM Symposium.Paris:RILEM Publication SARL,1999.
    [1.14]Zhuguo Li.State of workability design technology for fresh concrete in Japan[J].Cement and Concrete Research 2007(37) 1308-1320.
    [1.15]祝雯,自密实混凝土收缩变形的影响因素与控制[D].武汉:武汉大学硕士学位论文,2005.4。
    [1.16]P.L.Domone.Self-compacting concrete:An analysis of 11 years of case studies[J].Cement & Concrete Composites,2006(28):197-208.
    [1.17]Wallevik and Nielsson,3~(rd) International Symposium on Self-Compacting Concrete,Reykjavik,Iceland,2003.
    [1.18]沈晓东.低收缩免振捣自密实高性能混凝土的配制与质量控制技术研究[D].南京:东南大学工程硕士学位论文,2006.2。
    [1.19]韩先福,李清和,段雄辉等,免振捣自密实混凝土的研制与应用[J].混凝土,1996(6):4-15
    [1.20]陈睿,刘真,自密实混凝土应用研究[J].武汉理工大学学报,2001,23(12):24-26。
    [1.21]陈剑雄,张旭,自密实混凝土的研究进展[J].建筑技术开发,2003(12)。
    [1.22]刘小洁,余志武,自密实混凝土的研究与应用综述[J].铁道科学与工程学,2006,3(2):6-10。
    [1.23]齐永顺,杨玉红,自密实混凝土的研究现状分析及展望[J].混凝土,2007(1):25-28。
    [1.24]中国土木工程学会标准,自密实混凝土设计与施工指南[S].北京:中国建筑工业出版社,2005.10。
    [1.25]罗素蓉,郑剑岚,王国杰,自密实高性能混凝土力学性能的研究与应用[J].工程力学,2005,22(1):164-169。
    [1.26]H.Okamura,K.Maekawa and K.Ozawa.High Performance Concrete[M].Tokyo:Gihoudou Pub.,1993.
    [1.27]Japanese Ready-Mixed Concrete Association.Manual of Producing High Fluidity(Self -Compacting) Concrete[S].Tokyo:Japanese Ready-Mixed Concrete Association,1998.
    [1.28]H.Okamura.Self Compacting High Performance Concrete[J].Concrete International,1997,(7):50-54.
    [1.29]C.L.Hwang,S.L.Lee,E Y.Lin,et al.Densified mix design algorithm and early properties of HPC[J].J.Chin.Inst.Civil Hydraul.Eng.,1994,8(2):217.
    [1.30]H.W.Chai.Design and testing of self-compacting concrete[D].London:Department of Civil and Environmental Engineering,University College London,,1998.
    [1.31]KASEMSAMRAR N,TANGTERMSIRIKUL S.A design approach for self-compacting concrete based on deformability,segregation resistance and passing ability models[C]//Proceedings of 1st International Symposium on Design,Performance and Use of Self-Consolidating Concrete.Paris:RILEM Publication SARL,2005:47-54.
    [1.32]逢鲁峰,李志明,赵中和等.免振捣高性能混凝土配合比试验研究[J].混凝土,1999(4):14-16,23。
    [1.33]王国杰,郑建岚,C50-C60粉煤灰自密实高性能混凝土配合比试验研究[J].工程力学增刊,2001:778-783。
    [1.34]雷元新,周绍缨,冼伟华等,正交试验法在自密实混凝土配合比设计中的应用研究[J].佛山科学技术学院学报,2002(9):33-37。
    [1.35]Youjun Xie,Baoju Liu,Jian Yin,etc.Optimum mix parameters of high-strength self-compacting concrete with ultrapulverized fly ash[J].Cement and Concrete Research,2002(32):477-480.
    [1.36]宋学锋,免振捣自密实高性能混凝土的研究[D].西安:西安建筑科技大学硕士学位论文,2002。
    [1.37]陈绪坤,尹明,陶津,自密实混凝土配合比优化研究[J].山东建筑大学学报,2006.10,21(5):410-414。
    [1.38]姜德民,高振林,高性能自密实混凝土的配合比设计[J].北方工业大学学报,2001(9):89-96。
    [1.39]余志武,潘志宏,谢友均等,浅谈自密实高性能混凝土配合比的计算方法[J].混凝土,2004(1):54-57,67。
    [1.40]中国工程建设标准化协会标准,自密实混凝土应用技术规程[S].北京:中国计划 出版社, 2006.8。
    [1.41] N. Su, K.C. Hsu, H.W. Chai. A simple mix design method for Self-Compacting Concrete[J]. Cement and Concrete Research, 2001, 31:1799-1807.
    [1.42] N. Su, B. Miao. A new method for mix design of medium strength concrete with low cement content[J]. Cement & Concrete Composites, 2003, 25:215-222.
    [1.43] EFNARC, Specification and Guidelines for self-compacting concrete[R], Feb. 2002.
    [1.44] EFNARC , Specification and guidelines for self-compacting concrete[R], May 2005.
    [1.45] T.C. Powers. Studies of workability of concrete [J]. Jour ACL 1932, 3: 419.
    [1.46] G H. Tattersail. The principles of measurements of the workability of fresh concrete and a proposed simple two-point test. In Fresh Concrete: Important properties and their measurements[C]// Proc. of a RILEM Seminar, Leeds: [s. n.], 1973, (1):2.
    [1.47] P.L. Domone. A review of the hardened mechanical properties of self-compacting concrete[J]. Cement & Concrete Composites, 2007 (29):1-12.
    [1.48] Bertil Persson. A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete[J]. Cement and Concrete Research, 2001 (31):193-198.
    [1.49] Burak Felekoglu, Selcuk Turkel, Bulent Baradan. Effect of water-cement ratio on the fresh and hardened properties of self compacting concrete[J]. Building and Environment, 2007 (42): 1795-1802.
    [1.50] E. Roziere, S.Granger, Ph.Turcry, et al. Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete[J]. Cement & Concrete Composites, 2007 (29):626-636.
    [1.51] Binu Sukumar, K.Nagamani, R.Srinivasa Raghavan. Evaluation of strength at early ages of self-compacting concrete with high volume fly ash[J]. Construction and Building Materials, 2007 (xxx):xxx-xxx.
    [1.52] ZHU Wen-zhong, Peter J M B. Microstructure and properties of interfacial transition zone in SCC[C]// Proceedings of the 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete. Paris: RILEM Publication SARL, 2005:319-327.
    [1.53] HOLSCHEMACHER Klaus, KIOG Yvette. Pull-out behavior of steel fibers in self compacting concrete[C]//Proceedings of 1st International Symposium on Design,Performance and Use of Self-Consolidating Concrete.Paris:RILEM Publication SARL,2005:523-532.
    [1.54]Fava C,Bergol L,Fornasia G,Giangrasso F,Rocco C.Fracture behaviour of self compacting concrete[C]// Proceedings of third RILEM international symposium on self compacting concrete Reykjavik Iceland.Bagneux,France:RILEM Publications,PRO 33;2003:628-636.
    [1.55]Zhao Y,Ma J,Wu Z,Xu S,Gao H.Study of fracture properties of self-compacting concrete using wedge splitting test[C]// Proceedings of first international symposium on design,performance and use of selfconsolidating concrete,Paris:RILEM Publication SARL,2005:421-428.
    [1.56]金伟良,赵羽习,混凝土结构耐久性研究的回顾与展望[J],浙江大学学报,2002.7,36(4):371-380。
    [1.57]Wenzhong Zhu,Peter J.M.Bartos.Permeation properties of self-compacting concrete [J].Cement and Concrete Research,2003(33):921-926.
    [1.58]POPPE Anne-Mieke,de SCHUTTER G.Hydration modeling filler rich self compacting concrete[C]// Proceedings of 1st International Symposium on Design,Performance and Use of Self-Consolidating Concrete.Pads:RILEM Publication SARL,2005:87-96.
    [1.59]GRAM H E,PIIPARINEN P.Properties of SCC-especially early age and long term shrinkage and salt frost resistance[C]//Proceedings of 1st International RILEM Symposium on Self-Compacting Concrete.Paris:RILEM Publication SARL,1999:211-226.
    [1.60]HELA R.Durability of self-compacting concrete[A]//Proceedings of 1st International Symposium on Design,Performance and Use of Self-consolidating Concrete.Pads:RILEM Publication SARL,2005:347-354.
    [1.61]Stephan Assie,Gilles Escadeillas,Vincent Waller.Estimates of self-compacting concrete 'potential' durability[J].Construction and Building Materials,2007(21):1909-1917.
    [1.62]POPPE Anne-Mieke,de SCHUTTER G.Creep and shrinkage of self-compacting concrete[C]// Proceedings of 1st International Symposium on Design,Performance and Use of Seff-Consoli -dating Concrete.Paris:RILEM Publication SARL,2005:329-336.
    [1.63]YU Zhiwu,LIU Xiaojie.Time-dependent analysis of self-compacting concrete beams [C]// Proceedings of 1st International Symposium on Design,Performance and Use of Self -Consolidating Concrete.Paris:RILEM Publication SARL,2005:375-381.
    [1.64]ZHU Wenzhong,BARTOS P J M.Microstructure and properties of interracial transition zone in SCC[C]// Proceedings of 1st International Symposium on Design,Performance and Use of Serf-Consolidating Concrete.Paris:RILEM Publication SARL,2005:319-327.
    [1.65]Andreas Leemann,Beat M(u|¨)nch,Philippe Gasser,et al.Influence of compaction on the interracial transition zone and the permeability of concrete[J].Cement and Concrete Research,2006(36):1425-1433.
    [1.66]牛荻涛,混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.2。
    [1.67]西安建筑科技大学,《混凝土结构耐久性评定标准》(CECS 220-2007)[S].北京:中国建筑工业出版社,2007。
    [1.68]刘秉京,混凝土结构耐久性设计[M].北京:人民交通出版社,2007.2。
    [1.69]SCHUEREMANS L,van GEME D,GIESSL ER S.Chloride penetration in RC-structures in marine environment:Long term assessment of a preventive hydrophobic treatment[J].Constrnetion and Building Materials,2007,21(9):1238-1249.
    [1.70]赵国藩,陈凤山,高潮,CFRP加固海工混凝土结构的抗Cl~-侵蚀试验研究[J],建筑科学与工程学报,2008,25(3):1-5.
    [1.71]陈好,刘荣桂,付凯,冻融循环下海工预应力混凝土结构的耐久性[J],建筑材料学报,2009,12(1):17-21.
    [1.72]周先齐,徐卫亚,钮新强等,离散单元法研究进展及应用综述[J].岩土力学,2007(28):408-416
    [1.73]Anna V.Saetta,Bernhard A.Schrefler,Renato V.Vitaliani,The carbonation of concrete and the mechanism of moisture,heat and carbon dioxide flow through porous materials[J].Cement and Concrete Research,1993.4(23):761-772.
    [1.74]Saetta,A.V.,Schrefler,B.A.,and Vitaliani,R.V.2-D model for carbonation and moisture heat flow in porous materials[J].Cement and Concrete Research,1995,25(8):1703-1712.
    [1.75]Anna V.Saetta,Renato V.Vitaliani,Experimental.investigation and numerical modeling of carbonation process in reinforced concrete structures Part Ⅰ:Theoretical formulation[J].Cement and Concrete Research 2004(34):571-579.
    [1.76]Anna V.Saetta,Renato V.Vitaliani,Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures Part Ⅱ.Practical applications[J].Cement and Concrete Research 2005(35):958-967.
    [1.77]Xi,Y.,and Bazant,Z.P.Modeling chloride penetration saturated concrete[J].Journal of materials in civil engineering,1999,11(1):58-65.
    [1.78]Ayman Ababnehl;Farid Benboudjema2;and Yunping Xi.Chloride Penetration in Nonsaturated Concrete[J].ASCE Journal of materials in civil engineering,2003:183-191.
    [1.79]Wiwat Puatatsananon.Deterioration of reinforced and massive concrete:a multiphysics approach[D].Colorado,Canada:University of Colorado(Dissertation for PhD),2002.
    [1.80]袁勇,柳献,自密实混凝土微孔结构参数的识别[J].同济大学学报,20036(31):709-713。
    [1.81]李冉,杨绿峰,陈正,混凝土中氯离子扩散的二维有限元法数值模拟[J].混凝土,2008(1):36-39。
    [1.82]金伟良,徐波,王海龙,混凝土材料的细观结构数值模拟与性能分析[J].建筑科学与工程学报,2008 4(25):19-22。
    [1.83]中国工程院土木水利与建筑学部与工程结构安全性与耐久性研究咨询项目组合编,混凝土结构耐久性设计与施工指南[M],北京:中国建筑工业出版社,2004。
    [1.84]郝文化等著,ANSYS土木工程应用实例[M],北京:中国水利水电出版社,2005.1。
    [2.1]王海娜,自密实混凝土的骨料比表面法配合比设计及其基本性能研究[D].浙江 杭州:浙江大学硕士学位论文,2007。
    [2.2]Nicolas Roussel,Mette R.Geiker,Frederic Dufour,et al.Computational modeling of concrete flow:General overview[J].Cement and Concrete Research 2007(37):1298-1307.
    [2.3]Zhuguo Li.State of workability design technology for flesh concrete in Japan[J].Cement and Concrete Research 2007(37) 1308-1320.
    [2.4]R.Komura,Y.Tanigawa,H.Moil,Y.Kurokawa,Rheological study on slumping behaviors of flesh concrete[J].Journal of Structural and Construction Engineering,1994(462):1-10.
    [2.5]T.Okado,et al.Study on estimating method of yield value of flesh concrete using slump flow test[J].Journal of the Japan Society of Civil Engineers,1997(578):19-29.
    [2.6]N.Murata,Y.Shitayama.The deformation of fresh concrete under static load[J].Annual Report of Cement Technology,1976(30):270-273.
    [2.7]L.D'Aloia Schwartzentruber,R.Le Roy,J.Cordin.Rheological behaviour of fresh cement pastes formulated from a Self Compacting Concrete(SCC)[J].Cement and Concrete Research,2006(36) 1203-1213.
    [2.8]H.J.H.Brouwers,H.J.Radix.Self-Compacting Concrete:Theoretical and experimental study[J].Cement and Concrete Research,2005(35):2116-2136.
    [2.9]隋同波,朱晓玲,倪竹君等.国际水泥与混凝土研究及应用最新进展:第五界水泥与混凝土国际会议论文综述[J],水泥,2003(2):66-69。
    [2.10]EFNARC.Specification and Guidelines for Self-Compacting Concrete[C].Nov.2001.
    [2.11]Burak Felekoglu.A comparative study on the performance of sands rich and poor in fines in self-compacting concrete[J].Construction and Building Materials,2008(22):646-654.
    [2.12]Berke,N.S.,Cornman,C.R.,Jeknavorian,A.A.,Knight,G.F.,Wallevik,O..The effective use of superplasticizers and viscosity-modifying agents in self-consolidating concrete[C]//First North American Conference on the Design and Use of Self-Consolidating Concrete.Chicago:IL:ACBM,2002:173-178.
    [2.13]中国建筑科学研究院,《混凝土拌合用水标准》(JGJ63-89)[S],北京:中国建筑工业出版社,1989.10。
    [2.14]中国建筑科学研究院,《普通混凝土配合比设计规程》(JGJ55-2000)[s],北京:中国建筑工业出版社,2001.2。
    [2.15]中国建筑科学研究院,《普通混凝土用砂、石质量及检测方法标准》(JGJ 52-2006)[S].北京:中国建筑工业出版社,2006.12。
    [2.16]Beddow,J.K.Particulate of fresh concrete[M].New York:Chemical Publ.Co.,1980.
    [2.17]S.G.Oh,T.Noguchi and F.Tomosawa,Toward mix design for rheology of self-compacting concrete[C]//1st International RILEM Symposium on Self-Compacting Concrete.Paris:RILEM Publications,1999:361-372
    [2.18]中国建筑科学研究院,《高强高性能混凝土矿物外加剂》(GB/T 18736-2002)[S],北京:中国建筑工业出版社,2002.5。
    [2.19]Hudson B.Discovering the Lost Aggregate Opportunity:Part 1[J].Pit and Quarry,2002,95(6),42-46.
    [2.20]冯乃谦著,高性能混凝土[M].北京:中国建筑工业出版社,1996:362。
    [2.21]泰伦斯·C·赫兰,关于硅灰和高性能混凝土的一些思考[J],混凝土,2004(9):10-13。
    [2.22]Japanese Society of Civil Engineering.Guide to Construction of High Flowing Concrete[S].Tokyo:Gihoudou Pub.,1998.
    [2.23]田野,复掺矿物掺合料混凝土性能及抗裂机理、微观特性研究[D]。浙江杭州:浙江大学博士学位论文,2007。
    [2.24]Ling-li Gong,Nan-guo Jin,Xiang-lin Gu,et al.Effect of Curing Conditions on Property of High Performance Concrete with Composite Mineral Admixture[J].Key Engineering Materials,2009,(400-402):409-414.
    [2.25]David Chopin,Francois de Larrard,Bogdan Cazacliu,Why do HPC and SCC require a longer mixing time[J].Cement and Concrete Research 2004(34):2237-2243.
    [3.1]ELVERY R J,HAROUN W.A direct tensile test for concrete under long- or short-term loading[J].Magazine of Concrete Research,1968,20(63):111-116.
    [3.2]尹健,周士琼.高性能混凝土轴心抗拉强度与劈裂抗拉强度试验研究[J].长沙铁道学院学报,2001,19(2):25-29.
    [3.3]富文权,韩素芳.混凝土工程裂缝分析与控制[M].北京:中国铁道出版社,2002.
    [3.4]中国建筑科学研究院.《普通振捣混凝土力学性能试验方法标准》(GB/T 50081-2002)[S].北京:中国建筑工业出版社,2003.4。
    [3.5]中国水利水电科学研究院.《水工混凝土试验规程》(DL/T 5150-2001)[S].北京:中国电力出版社,2003.1。
    [3.6]Bernhardt C.J.Hardening of concrete at different temperatures[C]//Proc.RILEM Symp.on Winter Concreting,Session BⅡ.Conpenhagen:Danish Institute for Building Research,1956.
    [3.7]ACI Committee 318,Building code requirements for reinforced concrete(ACI 318-83)[S].Detroit:American Concrete Institute,1983:111.
    [3.8]Committee Euro-International du Beton,CEB-FIP Model Code 1990 design code[S].London:Thomas Telford Services Ltd,1993.
    [3.9]蒲心诚等,超高强高性能混凝土的力学性能研究[J],建筑结构学报,2002 6(45):49-55。
    [3.10]Jin-Keun Kim et al,Effect of temperature and aging on the mechanical properties of concrete Part Ⅰ:Experimental results[J].Cement and Concrete Research 2002(32):1087-1094。
    [3.11]Francis A.O.,Edwin G.B.and J.Harold Deatherage,Splitting tensile strength and compressive strength relationship at early ages[J].ACI Materials Journal,1991,88(2):115-121.
    [3.12]Francis A.O.,Prediction of concrete tensile strength from its compressive strength:evaluation of existing relations for normal weight concrete[J].ACI Materials Journal,1991,88(3):302-309.
    [3.13]过镇海著,钢筋混凝土原理[M].北京:清华大学出版社,1999。
    [3.14]J.Byfors.Plain concrete at early ages[R].CBI Report Fo 3:80,Stockholm Sweden:The Swedish Cement and Concrete Research Institute,1980:80.
    [3.15]王铁梦著,工程结构裂缝控制-“抗与放”的设计原则及其在“跳仓法”施工中的应用[M].北京:中国建筑工业出版社,2007。
    [3.16]ACI Committee 318,Building Code Requirements for Structural Concrete,ACI 318-2002[S].American Concrete Institute,Farmington Hills,Michigan,2002.
    [3.17]ACI Committee 363,State-of-the-Art Report on High Strength Concrete,ACI 363[S].American Concrete Institute,Farmington Hills,Michigan,1992.
    [3.18]王元丰,梁亚平.高性能混凝土的弹性模量与泊松比,北方交通大学学报[J].2004, 28(1):5-8.
    [3.19]ACI Committee 209.Prediction of creep,shrinkage and temperature effects in concrete structure[S].Manual of concrete practice,Part 1.American Concrete Institute,209R 1-92,1992.
    [3.20]Hani H.Nassif,Husam Najm,Nakin Suksawang,Effect of pozzolanic materials and curing methods on the elastic modulus of HPC[J].Cement & Concrete Composites 2005(27):661-670.
    [3.21]成厚昌,高性能混凝土的力学性能研究[J].重庆建筑大学学报,1999 21(3):74-77。
    [3.22]O.Petersson,P.Billberg,T.Osterberg.Application of self-compacting concrete for bridge castings[C]//Proc.Int.Workshop on Self-Compacting Concrete,Kochi,Japan,Japan Society of Civil Engineers,1998:318-327.
    [3.23]W.Zhu,P.J.M.Bartos,Micromechanical properties of interfacial zone in self-compacting concrete[C]//Proc.6th Int.Symp.Brittle Matrix Composites.Poland:Woodhead Publ.Ltd.,Cambridge and Warsaw,2000:202-209.
    [3.24]BLAKEY F A,BERESFORD F D.Tensile strains in concrete[R].Melbourne,Australian:Australian Division of Building Research,1955.
    [3.25]BLADEY F A,BERESFORD F D.Note on strain distribution in concrete beams[J].Civil Engineering and Public works Review(London),1955,50(586):415-416.
    [3.26]NICHOLAS J C,FLOYD O S.Limiting tensile strain criterion for failure of concrete [J].Journal of the American Concrete Institute Proceedings,1976,73(3):160-165.
    [3.27]田野,金南国,金贤玉.混凝土特征拉应变随龄期的发展规律研究[J].浙江大学学报:工学版,2008,42(6):1076-1100.
    [3.28]Houghton D L.Determining tensile strain capacity of mass concrete[J].Journal Proceedings,1976,73(12):691-700.
    [4.1]城乡建设环境保护部.《普通混凝土长期性能和耐久性能试验方法》(GBJ82-85)[S].北京:中国建筑工业出版社,1988。
    [4.2]洪定海,混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [4.3]洪乃丰,混凝土中钢筋锈蚀与防护技术(1):钢筋腐蚀危害与对混凝土的破坏作 用[J].工业建筑,1999(8):66-68。
    [4.4]洪乃丰,混凝土中钢筋锈蚀与防护技术(3):氯盐与钢筋锈蚀破坏[J],工业建筑,1999(10):60-63。
    [4.5]北京金比林高新技术有限责任公司,NEL-PE型ASTM C1202电量法使用手册,2002。
    [4.6]张海燕,把多铎,王正中,混凝土碳化深度的预测模型[J],武汉大学学报(工学版),2006.10,39(5):42-45。
    [4.7]混凝土质量专业委员会等编,钢筋混凝土结构裂缝控制指南[M],北京:化学工业出版社,2004。
    [4.8]彭立海,阎土勤,张春生等,大体积混凝土温控与防裂[M],河南郑州:黄河水利出版社,2005。
    [4.9]廉慧珍,张青等.国内外自密实高性能混凝土研究及应用现状[J].施工技术,1999。
    [4.10]吴瑞,蔡灿柳.SCC收缩变形及改善措施研究[J].混凝土与水泥制品,2005。
    [4.11]M.N.Haque,Strength development and drying shrinkage of high-strength concrete[J].Cement and Concrete Research,1996(18):333-342.
    [4.12]Z.P.Bazant and F.H.Wittmann.Creep and shrinkage in concrete structures [M].Chichester,UK:John Wiley and sons Ltd,1982.
    [4.13]Wiegrink,K.Marikunte,S.,and Shah,S.P.,Shrinkage Cracking of High-Strength Concrete[J].ACI Materials Journal,1996,93(5):409-415.
    [4.14]Subramanian,K.V.,Gromotka,R.,shah,S.P.Influence of Ultrafine fly Ash on the Early Age Response and the Shrinkage Cracking Potential of Concrete[J].Journal of Materials in Civil Engineering,2005,17(1):45-53.
    [4.15]Gryzbowski,M.,Shah,S.P.Shrinkage Cracking of fiber Reinforced Concrete[J].ACI Materials Journal,1990,2(87):.138-148.
    [4.16]H.T.See,E.K.Attiogbe,M.A.miltenberger.Shrinkage,Cracking Characteristics of Concrete Using Ring Specimens[J].ACI Materials Journal,2003,100(3):.239-245.
    [4.17]Akhter B.Hossain,Jason Weiss.Assessing residual stress development and stress relaxation in restrained concrete ring specimens[J].Cement & Concrete Composites,2004(26):531-540.
    [4.18]P.H.Emmons,A.M.Vaysbud,J.E.Mcdonald,et al.Selecting Durable Repair Materials:Performance Criteria[J].Concrete International,2000 3:38-45.
    [4.19]Soroushian P.and Ravanbakhsh S.Control of Plastic Shrinkage Cracking with Speciality Cellulose Fibers[J].ACI Materials Journal,1998(89):429-435.
    [4.20]Karri P.P.Proposed Test to Determine the Cracking Potential due to Drying Shrinkage of Concrete[J].Concrete Construction,1985,9(30):775-778.
    [4.21]侯景鹏.钢筋混凝土早龄期约束收缩性能研究[D].上海:同济大学工学博士学位论文,2006.3。
    [6.1]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1998。
    [6.2]RILEM Committee.Properties of Set Concrete at Early Age(State-of-the-Art -Report)[R].Materials & Structures,1981,14(84):399-450.
    [6.3]Neville A.M.Properties of concrete[M].4~(th) Edition.Essex,England:Longman Group Ltd,1995:844.
    [6.4]P.Kumar Mehta,Paulo J.M.Monteiro.混凝土:微观结构性能和材料[M].覃维祖等译.北京:中国电力出版社,2008。
    [6.5]Kehlbeck F.太阳辐射对桥梁结构的影响[M].刘兴法译.北京:中国铁道出版社,1981.
    [6.6]Wang C.and Dilger W.H.Modeling of the development of heat of hydration in high performance concrete[C]//Proceeding of the Second CANMET Symposium on Advances in Concrete Technology.ACI SP-154,1995:473-488.
    [6.7]李黎明编著,ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005。
    [6.8]中华人民共和国建设部.《混凝土结构设计规范》(GB50010-2002)[S].北京:中国建筑工业出版社,2002.
    [6.9]RILEM TC119-TCE,Avoidance of thermal cracking in concrete at early ages[J].Mater Struct,1997(30):451-64.
    [6.10]ASTM C 1074.Standard practice for estimating concrete strength by the maturity method[S].Annual book of ASTM Standards,Concrete and Aggregates,vol.04.02,2001.
    [6.11]M.Broda,E.Wirquin and B.Duhoit.Conception of an isothermal calorimeter for concrete:Determination of the apparent activation energy[J].Materials and structures, 2002.8, (35): 389-394.
    [6.12] WANG Jiachunl, YAN Peiyu, YU Hongfa. Apparent Activation Energy of Concrete in Early Age Determined by Adiabatic Test[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2007.9, 3(22): 537-541.
    [6.13] M. Lachemi a, K.M.A. Hossain a, C. Anagnostopoulos et al. Application of maturity method to slipforming operations: Performance vaIidation[J]. Cement & Concrete Composites, 2007 (29): 290-299.
    [6.14] Carino N.J. The maturity method:theory and application[J]. ASTM J. Cem. Concr. Aggregates, 1984, 6(2):61.
    [6.15] Carino N.J. Temperature effects on strength-maturity relation of mortar[S]. NBSIR 81-2244, U.S. National Bureau of Standards, 1981.
    [6.16] Gauthier E. and Regourd M. The hardening of cement in function of temperature[C]// Proc. RILEM Int. Conf. on Concrete at Early Ages. Vol. [ , Paris: Ecole Nationale des Ponts et Chausees, 1982:145.
    [6.17] Regourd M., Mortureux, B., Gauthier, E., et al. Characterization and thermal activation of slag cements[C]// 7~(th) Int. Cong. On the Chemistry of Cement. Vol. III, Paris: Editions Septima, 1980.
    [6.18] Roy D.M. and Idorn GM. Hydration structure and properties of blast furnace slag cements mortars and concrete[J]. J. Am. Conc. Inst. 1982, 79(6): 444.
    [6.19] Carino, N.J. and Tank R.C. Maturity function for concrete made with warious cement and admixture[J]. ACI Mater. J. 1992, 89(2):188.
    [6.20] J.E. Jonasson. Early Strength Growth in Concrete-Preliminary Test Results Concerning Hardening at Elevated Temperatures[C]// The 3~(rd) RILEM Symposium on Winter Concreting, Espoo Finland: RILEM. 1985: 249-254.
    [6.21] Ekerfors K. Jonasson, J, E,. Emborg M. Behavior of young high strength concrete[C]// Proceedings of High-Strength Concrete. Lillehammer. Norway: [s. n.], 1993:691-697.
    [6.22] Jin Keun Kim, Sang Hun Han, Kwang Myong Lee. Estimation of compressive strength by a new apparent activation energy function[J]. Cement and Concrete Research, 2001 (31): 217-225
    [6.23] G. Chanvillard and D' Aloia. Concrete strength estimation at early ages: modification of the method of equivalent age[J]. ACI Mater. J., 1997, 94 (6): 520-530.
    [6.24] H. Kada-Benameur, E. Wirquin, B. Duthoit. Determination of apparent activation energy of concrete by isothermal calorimetry[J]. Cement and Concrete Research, 2000, 30 (2): 301-305.
    [6.25] Jin-Keun Kima, Sang Hun Hanb, Seok Kyun Park. Effect of temperature and aging on the mechanical properties of concrete Part II. Prediction model[J]. Cement and Concrete Research 2002 (32): 1095-1100.
    [6.26] P. Freiesleben Hansen, E.J. Pedersen. Maturity computer for controlled curing and hardening of concrete [J]. Nordisk. Betong, 1977 (1): 19-34.
    [6.27] Hani H. Nassif, Husam Najm, Nakin Suksawang. Effect of pozzolanic materials and curing methods on the elastic modulus of HPC[J]. Cement & Concrete Composites, 2005 (27): 661-670.
    [6.28] Walton, J.C., Plansky, L.E. and Smith, R. W. Models for estimation of service life of concrete barriers in low-level radioactive waste disposal [R]. NUREG/CR-5542 EGG-2597, Report prepared for U.S. Nuclear Regulatory Commission, 1990.
    [6.29] Basha H. A. and Selvadurai P. S. Heat-induced moisture transport in the vivinity of a spherical heat source[J]. International Journal for Numerical and Analytical Methods in Geomechanics. 1998(22): 969-981.
    [6.30] Philajavaara S. E. and Vaisanen J. Numerical solution of diffusion equation with diffusivity concentration dependent [R]. The state institute for technical research, Helsinki, Publication No. 87, 1965.
    [6.31] Bazant Z. P., Najjar L. J. Drying of concrete as a non-linear diffusion problem[J]. Cement and concrete research, 1971 (1): 461-473.
    [6.32] Mensi R., Acker P. and Attolu A. A seepage in concrete: analysis and modeling[J]. Materials and structure, 1988 (21): 3-12.
    [6.33] Penev D. and Kawamura M., Moisture diffusion in soil-cement mixtures and compacted lean concrete[J]. Cement and concrete research, 1991 21(1): 137-146.
    [6.34] Xi Y., Bazant Z. P. and Jennings H. M. Moisture diffusion in cementitious materials: adsorption isotherms[J]. Advanced cement based materials, 1994 6(1): 248-257.
    [6.35] Pleinert H., Sadouki H. and Wittmann F. H., Determination of moisture distributions in porous building materials by neutron transmission analysis[J].Materials and Structures,1998(31):218-224.
    [6.36]Rahman M.K.,Baluch M.H.and Al-Gadhib A H..,Modeling of shrinkage and creep stresses in concrete repair[J].ACI Materials Journal,1999,96(5):542-559.
    [6.37]B.Persson.Experimental studies on shrinkage of high performance concrete[J].Cement and Concrete Research,1998,7(28):1023-1036,.
    [6.38]Laurent Barcelo,Micheline Moranville,Bernard Clavaud.Autogenous shrinkage of concrete:a balance between autogenous swelling and self-desiccation[J].Cement and Concrete Research,2005(35):177-183.
    [6.39]Zhengwu Jiang,Zhenping Sun,Peiming Wang.Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes[J].Cement and Concrete Research,2005(35):1539-1545.
    [6.40]Ei-ichi Tazawa and Shingo Miyazawa.Experimental study on mechanism of autogenous shrinkage of concrete[J].Cement and Concrete Research,1995,25(8):1633-1638.
    [6.41]Ole Mejlhede Jensen,Per Freiesleben Hansen.Autogenous deformation and RH-change in perspective[J].Cement and Concrete Research,2001(31):1859-1865.
    [6.42]Ababneh,A.Benboudjema F.and Xi Y.Chloride penetration in non-saturated concrete[J].ASCE Journal of Materials in Civil Engineering,2002(15):183-191.
    [6.43]Y.Xi.A model for moisture capacities of composite materials Part Ⅱ:application to concrete[J].Computational Materials Science,1995(4):78-92.
    [6.44]Bazant Z.P.Prediction of concrete creep and shrinkage:past,present and future[J].Nuclear Engineering and Design,2001(203):27-38.
    [6.45]Bazant,Z.P.,Baweja S.Justification and refinement of Model B3 for concrete creep and shrinkage:Statistics and sensitivity[J].Mater.Struet.1995(28):415-430.
    [6.46]王建,戴会超,顾冲时.混凝土湿度运移数值计算综述[J].水力发电学报,2005 2(24):85-89。
    [6.47]ASIF RAZA.Moisture transport and shrinkage in new generation concretes[D].Dhahran,Saudi Arabia:King Fahd University of Petroleum & Minerals(Dissertion for PhD),2006.
    [7.1]ANSYS.ANSYS 10.0 Help:Theory reference.ANSYS Inc.,Canonsburg,Pennsylvania,2005.
    [7.2]江见鲸.钢筋混凝土结构非线性有限元分析[M].陕西:陕西科学技术出版社,1994。
    [7.3]郝文化等著.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.1。
    [7.4]Gene Alan Paulsgrove,P.E.A practicing engineer's perspective on nonlinear finite element analysis techniques for reinforced concrete structures[D].Norman,Oklahoma:University of Oklahoma graduate college(Dissertation for PhD),2004.
    [7.5]汪冬生,吴铁君.ANSYS中的钢筋混凝土单元[J].武汉理工大学学报(交通科学与工程版),2004.8,28(4):526-529。
    [7.6]赖永标,胡仁喜,黄书珍.ANSYS土木工程有限元分析典型范例[M].北京:电子工业出版社,2007.
    [7.7]Bazant,Z.P.and Oh,B.H.Spacing of Cracks in Reinforced Concrete[J].ASCE Journal of Structural Engineering,1987,109(9):2066-2085.
    [7.8]Kejin Wang,Daniel C.Jahsen and Surendra P.Shah.Permeability Study of Cracked Concrete[J].Cement and Concrete Research,1997,27(3):381-393.
    [7.9]Gerard B.and Marchand J.Influence of Cracking on the Diffusion Properties of Cement-Based Materials,Part Ⅰ:Influence of Continuous Cracks on the Steady-State Regime[J].Cement and Concrete Research,2000,30(1):37-43.
    [7.10]Bangert,F.,Grasberger,S.,Kuhl,D.and Meschke,G.Environmentally Induced Deterioration of Concrete:Physical Motivation and Numerical Modeling[J].Engineering Fracture Mechanics,2003,70(7-8):891-910.
    [7.11]Konin A.,Francois R.,Arliguie G.Penetration of chloride in relation to the micro-cracking state into reinforced ordinary and high strength concrete[J].Materials and Structures,1998(31):310-316.
    [7.12]Meziani H.,Skoczylas F.An experimental study of the mechanical behavior of a mortar and of its permeability under deviatoric loading[J].Materials and Structures,1999(32):403-409.
    [7.13]Kamal Tawfiq,Jamshid Armaghani,Janaki Ramprasad Vysyarajul.Permeability of Concrete Subjected to Cyclic Loading[J].Journal of the Transportation Research Board,2007,(1532):51-59.
    [7.14]Cerny,R.,Drchalova,J.,and Rovnanikova P.The Effect of Thermal Load and Frost Cycles on the Water transport in Two High Performance Concretes[J].Cement and Concrete Research,2001,31(8):1129-1140.
    [7.15]Ababneh A.,Xi Y.and Willam K..Multiscale modeling of the coupled moisture diffiusion and drying shrinkage of concrete[C]//The Proceeding of Conereep-6,MIT,in creep,Shrinkage and Durability Mechanics of Concrete and Other Quasi-Brittle Materials.MIT,USA,F.H.Wittmann:Elsevier Science Ltd.2001:159-164.
    [7.16]Xi Y.and Nakhi A.Composite damage models for diffusivity of distressed materials[J].J.of Materials in civil engineering,ASCE.2005,17(3):286-295.
    [7.17]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2005。
    [7.18]B.Gerard,J.Marchand,Influence of cracking on the diffusion properties of cement-based materials-Part Ⅰ:Influence of continuous cracks on the steady-state regime[J].Cement and Concrete Research,2000(30):37-43.
    [7.19]Yokozeki K,Okada K,Tsutsumi T,etc.Prediction of the service life of RC with crack exposed to chloride attack[J].J.Symp Rehab Concr.Struct.1998(10):1-6.
    [7.20]Song HW,Park SS.Byun KJ.Analysis of chloride penetration in cracked concrete at early age[J].J.KSCE 2001,21-6A:915-924.
    [7.21]Song HW,Pack SW,Lee CH,etc.Service life prediction of concrete structures under marine environment considering coupled deterioration[J].J.Restor Build Monum,2006,(12):265-284.
    [7.22]Seung Jun Kwon,Ung Jin Na,Sang Soon Park,etc.Service life prediction of concrete wharves with early-aged crack:Probabilistic approach for chloride diffusion[J].Structural Safety.2009,(31):75-83.
    [7.23]Ha-Won Song a,Seung-Jun Kwon a,Keun-Joo Byun et al.Predicting carbonation in early-aged cracked concrete[J].Cement and Concrete Research 2006(36):979-989.
    [7.24]唐春安、朱万成著.混凝土损伤与断裂-数值试验[M].北京:科学出版社,2003.
    [7.25]Jungin Kima,Woo Il Leea,Khalid Lafdi.Numerical modeling of the carbonization process in the manufacture of carbon/carbon composites[J]. Carbon 2003 (41): 2625-2634.
    [7.26] O. Burkan Isgor a, A. Ghani Razaqpur. Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures[J]. Cement & Concrete Composites 2004 (26):57-73.
    [7.27] Osman Burkan Isgor. A durability model for chloride and carbonation induced steel corrosion in reinforced concrete members [D]. Carleton, Canada: Carleton University (Dissertation for PhD), 2001.
    [7.28] Ayman Nureddin Ababneh. The coupled effect of moisture diffusion chloride penetration and freezing-thawing on concrete durability [D]. Colorado, US: University of Colorado (Dissertation for PhD), 2002.
    [7.29] Suwito. Hygro-chemo-mechanical deterioration processes in concrete: Modeling and computation [D]. Colorado, US: University of Colorado (Dissertation for PhD), 2005.
    [7.30] Saeki T., Ohga H. and Nagataki S. Mechanism of carbonation and prediction of carbonation process of concrete [J]. Concrete Library of JSCE, 1991 (17): 23-26.
    [7.31] Koichi M., Tetsuya I. and Toshiharu K. Multi-scale modeling of concrete performance: Integrated material and structural mechanics[J]. Journal of Advanced Concrete Technology, 2003, 2(1):91-126.
    [7.32] Ha-Won Song, Seung-Jun Kwon. Permeability characteristics of carbonated concrete considering capillary pore structure [J]. Cement and Concrete Research 2007 (37): 909-915.
    [7.33] C.C. Yang, S.W. Chob, L.C. Wang. The relationship between pore structure and chloride diffusivity from ponding test in cement-based materials [J]. Materials Chemistry and Physics, 2006 (100): 203-210.
    [7.34] M.A. Peter, A. Muntean 1, S.A. Meier, M. Bohm. Competition of several carbonation reactions in concrete: A parametric study[J]. Cement and Concrete Research 2008 (38): 1385-1393.
    [7.35] Claus Pade, Maria Guimaraes. The CO2 uptake of concrete in a 100 year perspective[J]. Cement and Concrete Research 2007 (37): 1348-1356.
    [7.36] B. Bary, A. Sellier. Coupled moisture-carbon dioxide-calcium transfer model for carbonation of concrete[J]. Cement and Concrete Research 2004 (34): 1859-1872..
    [7.37]Steffens,A.,Dinkler,D.,Ahrens,H.Modeling carbonation for corrosion risk prediction of concrete structures[J].Cement and Concrete Research,2002,6(32):935-941.
    [7.38]Cheng-Feng Chang,Jing-Wen Chen.The experimental investigation of concrete carbonation depth[J].Cement and Concrete Research,2006,(36):1760-1767.
    [7.39]J.Kropp.Karbonatisierung und Transportvorgange in Zementstein,Karlsruhe[D].Karlsruhe,Germany:Karlsruhe University(Dissertation for PhD),1983.
    [7.40]Kim Anh T.Vu,Mark G.Stewart.Structural reliability of concrete bridges including improved chloride-induced corrosion models[J].Structural Safety,2000(22):313-333.
    [7.41]Michelle Nokken,Andrea Boddy,R.D.Hooton,et al.Time dependent diffusion in concrete-three laboratory studies[J].Cement and Concrete Research 2006(36):200-207.
    [7.42]余红发,孙伟,良慧等,混凝土使用寿命预测方法的研究Ⅰ-理论模型.硅酸盐学报,2002,6(30):686-690。
    [7.43]Xi,Y.and Bazant Z.P.Modeling chloride penetration in saturated concrete[J].ASCE Journal of Materials in Civil Engineering,1999,1(11):58-65.
    [7.44]Kong J.S.,Ababneh A.N.,Frangopol D.M.et al.Reliability analysis of chloride penetration in saturated concrete[J].Probabilistic Engineering Mechanics,2002,3(17):305-315.
    [7.45]金祖权,孙伟,李秋义.碳化对混凝土中氯离子扩散的影响[J].北京科技大学学报,2008,8(30):921-925。
    [7.46]Folker H.Wittmann,Tie-jun Zhao,Ping-gong Guo,etc.Penetration of chloride into cracked concrete[C]//Proceeding of International Conference on Durability of Concrete Structures.Hangzhou China:ZheJiang University Press,2008:172-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700