用户名: 密码: 验证码:
U-2.5wt%Nb合金的氢蚀及其对力学性能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属铀及其合金作为核工程中重要组成材料而备受关注。铀及其合金非常活泼且存在多种相结构,在其贮存和使用过程中存在两个方面的老化问题:与环境气氛作用引起的表面腐蚀和不稳定相分解引起的结构性能变化。因此这两方面就成为铀及其合金研究的热点和难点。本论文以U-2.5wt%Nb合金表面氢腐蚀可能引起合金力学性能老化的问题为研究背景而展开。
     (1)系统地利用在线显微镜研究了U-2.5wt%Nb合金氢蚀初期氢化物的生长与成核动力学。研究结果表明,在一定温度范围内,氢化物的生长速度与反应温度符合Arrhenius关系,U-2.5wt%Nb合金氢化物生长激活能为24.34kJ/mol。在远离平衡态的实验条件下,压力对氢化物生长速度影响显得非常弱。样品表明氢化物成核数目的试验结果表明氢化物成核速度与温度遵从Arrhenius关系,与压力成正比。对氢蚀成核位置的初步研究发现,对于U-2.5wt%Nb合金,晶界并不是成核的优先选择,样品表面某些尖角处和粗糙处容易发生氢蚀,材料表面越粗糙,氢蚀越易发生。
     (2)系统地研究了U-2.5wt%Nb合金氢蚀初期孕育期影响因素,并探讨了其内在机制。研究结果表明:U-2.5wt%Nb合金氢蚀存在孕育期,相对于未合金化铀,U-2.5wt%Nb合金更易发生氢蚀。U-2.5wt%Nb与U合金氢蚀成核形貌也有所不同。温度和压力对孕育期实验揭示了孕育期存在机理,即“扩散屏蔽”机制。较低温下(<125℃)孕育期随反应温度的升高而减小,表现为Arrhenius关系,其表观活化能为22.92kJ/mol。孕育期随反应压力升高而减小,孕育期与反应氢压力成反比关系。孕育期随氧化膜增加而显著增加。超过125℃,孕育期随反应温度的升高而增加,表明孕育期的“扩散屏蔽”机制已经失效。利用现有处理手段,对氢蚀动力学不同影响因素进行了研究,结果表明,预热处理显著影响U-2.5wt%Nb合金氢蚀孕育期;表面等离子注氮能显著提高U-2.5wt%Nb合金的抗氢蚀性能。添加不同浓度CO的氢气非常明显的延长了孕育期。
     (3)利用加速腐蚀方法,采用标准拉伸力学试样,研究了氢腐蚀对材料力学性能的影响。结果显示,U-2.5wt%Nb合金断后伸长率和断面收缩率下降非常明显,抗拉强度略有下降,屈服强度和弹性模量变化不明显。拉伸样表面腐蚀形貌、断口形貌、剖面形貌试验结果显示,氢蚀引起的表面缺陷如蚀坑、微裂纹、氢扩散区导致了材料力学性能的下降,生成氢化物相是导致材料变脆的主要原因。获得了U-2.5wt%Nb合金准静态下拉伸本构方程,氢蚀后材料的应变硬化能力发生变化。
     采用应变能密度理论,以表面存在微裂纹的拉伸样来模拟氢腐蚀的影响,计算了表面存在不同长度微裂纹时应变能密度的变化。模拟结果显示,表面腐蚀形成的缺陷如微裂纹确实降低了氢化腐蚀后铀铌合金抗拉强度和延伸率,特别是延伸率下降较多。随着裂纹尺度的增加,力学性能参数下降更多。有限元计算结果与实验结果吻合较好。
     计算了含有一定环境气氛的铀材料在密闭体系经过长期充分作用后,体系内各组分的含量,尤其是氢分压和氢量。结果表明湿度引起的水含量生成的氢气量,足以使材料发生氢腐蚀,当湿度为80%时最大单位面积腐蚀量可达0.096mol/mm~2,但这个腐蚀量不足以引起材料整体力学性能发生较大变化。但是如果这么大的氢气量在某个薄弱点发生腐蚀,不能以平均值计算。
     (4)利用Hopkinson杆实验研究了U-2.5wt%Nb合金动态力学行为和微结构变化,并研究表面氢蚀对其动态力学行为的影响。获得了材料在10~(-3)-10~3/s应变速率范围内材料的应力应变曲线,利用Johnson-Cook本构模型获得了U-2.5wt%Nb合金高应变速率下的本构方程。高应变速率下材料的屈服强度明显增加说明U-2.5wt%Nb合金是应变率敏感材料。氢蚀样和原始样一样对应变速率敏感,敏感程度相近,氢蚀后在塑性变形阶段的应变强化效应略有不同,应变指数增大,抗应变能力增强,氢蚀样屈服强度提高,屈服应变增大,腐蚀缺陷加快了材料塑性变形。材料在高应变速率下的微结构演化结果显示,在应变率低于1500s~(-1)时,合金的变形机制仍以滑移为主,晶界结构未见明显变化,尚未观察到明显剪切带。
U-Nb alloys have been widely concerned in the field of nuclear engineering as an important material. However, because of its reactiveness to entironment atmosphere and the metastable structure, the aging behavior of U-Nb alloys has been investigated in recent years, and the study of surface corrosion and phase transformation in aging process is hot problem. As a structural material, the mechanical properties of U-Nb alloys are very important. In the present work, surface hydrogen corrosion and its effect on the mechanical properties has been systemically studied.
     The hydrogenation kinetic of U-2.5wt%Nb has been studied systemically by a in-situ hot-stage microscope(HSM) and a P-V-T method. The nucleation and growth processes of hydride were continuously monitored and recorded on a computer. The results showed that the temperature dependence of the hydride front velocity at sufficently low temperature obeys the Arrhenius law and activation energy is 24.34kJ/mol. At hige temperatures, a maximum velocity is reached beyond which the velocity decreases sharply. At pressure much higher than the equilibrium pressure, the this velocity becomes practically independent of hydrogen pressure . The density of nucleation hydride spots increases with reaction temperature up to a certain value, and then decreases with temperature increase. The density of nucleation hydride spots increases with hydrogen pressure increase. For the bigining of hydriding of U-2.5Nb alloy, grain boundary is not the preferential spot and the nucleation of hydide is apt to happening on harsh surface. Hydiding induction time decreases with the temperature increases, which follow the arrhenius law under a temperature of about 125℃, but beyond 125℃, induction time increases sharply with temperature increasing. Induction time varies as the inverse of the hydrogen pressure, which follow the reciprocal relation. The oxide thickness on U-2.5Nb surface affect the induction time clealy, and induction time increases with the increasing of oxide thickness. U-2.5Nb alloy is susceptible to hydrogen corrosion, the hydriding rate of U-2.5Nb alloy is higher than that of U. The effect of Pre-heat treatment, the presence of CO impurities and Plasma based nitrogen ion implantation on induction time were also studied.
     To evaluate the effect of hydrogen corrosion on tensile properties of U-2.5Nb, tensile specimens were hydrided quantificationally, and then tested on tensile test machine to measure the tensile properties. The morphologies of hydrogen corrosion and fracture surface were observed by SEM and OM. The results show that, ductility parameter such as elongation and reduction in area decrease distinctly due to hydrogen attack, and ultimate tensile strength decreases slightly with the increasing of hydrogenation corrosion. According to morphologies of hydrogen corrosion and fracture surface, it is concluded that the pits, micro-cracks and diffuse hydrogen in solid induced by hydrogen attack result in the loss of ductility of U-2.5% Nb. According to strain energy density theory, base on the model of a crack on surface, the effect of corrosion crack on mechnical properties was calculated by finite element method. The calculated value accords with the experiment result.
     Dynamic mechanical properties and microstructure evolvement of U-2.5Nb under different strain rates(10~(-3)-10~3/s) were studied by Split Hopkinson Pressure Bar (SHPB) apparatus, and effect of hydrogen corrosion on dynamic mechanical properties was also studied. The stress-strain curves show a usual strain hardening behavior, flow stress increased with the increasing strain rate. A constitutive relations based on Johnson-Cook model was constructed to describe the stress-strain relationship of U-2.5Nb at the investigated strain rates. The correlations between the simulated curves and the experimental results are in good agreement. Hydrogen corrosion resulted in difference in strain hardening behavior and increase of flow stress. There is no obvious grain microstructure change, and slippage is the main deformation method at the investigated strain rates.
引文
1 Jackson R J.Mechanical properties of continuously cooled uranium-2.4 weight percent niobium alloy[R].RFP-3040,1981.
    2 武胜.铀及铀合金[M].中国工程物理研究院,2006:186-194.
    3 John A,Robert J,Marilyn E A.Model for the initiation and growth of metal hydride corrosion[R]).LA-UR-00-5496,2000.
    4 Moreno D,Arkush R,Zalkind S.Physical discontinuities in the surface microstructure of uramium alloys as preferred sites for hydrogen attack[J].Journal of nuclear materials,1996;230:181-186
    5 Glascott J.Hydrogen and uranium interaction between the first and last naturally occurring elements[J].The science and technology journal of AWE,2003(6):16-27
    6 Wallwork A,Burnell G,Morris S.Growth of surface flaws induced by the environment and machining stress in unalloyed uranium[J].Journal of Strain analysis for engineering design,2005,40:139-145
    7 Vandermeer R A.An overview-constitution,structure,and transformation in uranium and uranium alloys[R].U.S.Atomic Energy Commission.Y/DV-206.1982.
    8 伯克 J J.等编.铀合金物理冶金[M].北京,原子能出版社,1983
    9 Anagnostidis M,Colombie M,Monti H.Metastable phases in the alloys uranium-niobium[J].J.Nuci.Mater.1964;11:67-76.
    10 Jackson R J,Boland J F.Transformation kinetics and mechanical properties of the uranium-7.5nioium-2.5zirconium ternary alloy[J].U.S.Atomic Energy Commission.RFP-1652.1971.
    11 Hemperly V C.Characterization of the uranium-2.25 weight percent niobium alloy[R].U.S.Atomic Energy Commission.Y-1998.1975.
    12 Pfeil P C L,Browne J D,Williamson GK.Uranium-Niobium alloy system in the solid state[J].J.Inst.Metals 1959;87:204-208.
    13 Jackson R J.Reversible martensitic transformations between transition phases of uranium-base niobium alloys[R].U.S.Atomic Energy Commission.RFP-1535.1970.
    14 DAmato C,Saraceno F S,Wilson T B.Phase transformations and equilibrium structures in uranium -rich niobium alloys[J].J.Nucl.Mater.1964;12:192-204.
    15 Anagnostidis M,Colombie M,Monti H.Phases metastables dans les alliages uranium-niobium[J].J.Nucl.Mater.,1964;11:67-76.
    16 Vandermeer R A,Ogle J C,Northcutt WGJ.A Phenomenological study of the shape memory effect in polycrystalline uranium-niobium alloys[J].Metallurgical transaction A 1981;12A:733-741.
    17 Jackson R J.Isothermal transformations of uranium-13 atomidc percent miobium[R].U.S.Atomic Energy Commission.RFP-1609.1971.
    18 Jackson R J,Boland J R.Mechanical properties of uranium-base niobium alloys[R].U.S.Atomic Energy Commission.RFP-1703.1971.
    19 Jackson R J,Brugger R P,Miley D V.Tensile properties of gamma quenched and aged uranium-rich niobium alloys[R].U.S.Atomic Energy Commission.RFP-933.1967.
    20 Jackson R J.Elastic,plastic,and strength properties of U-Nb and U-Nb-Zr alloys[M].In:Burke,J J,Colling,D A,Gorum,A E,Greenholt,C J(etc.),Physical metallurgy of uranium alloys.Brook Hill Publishing Company,Chestnut Hill,Massachusetts,1976;611-656.
    21 Kollie T G,Anderson R C,Carpenter D A,Smith D D.The effect of extrusion texture on the linear thermal contraction and mechanical properties of the uranium-2.4wt%niobiu alloy[J].J.Nucl.Mater.,1984;160-169.
    22 Jackson R J.Mechnical properties of continuously cooled uranium-2.4 weight percent niobium alloy[R].U.S.Atomic Energy Commission.RFP-3040.1981.
    23 Sunwoo A J,Hiromoto D S.Effects of natureal aging on the tensile properties of water-quenched U-6%Nb alloy.J.Nucl.Mater.,2004;327:37-45.
    24 Snyder WBJr.Homogenization of arc-melted uranium-6 weight percent niobium alloy ingots[R].U.S Department of Energy.Y-2102.1978.
    25 Chancellor W,Wolfenden A.Temperature dependence of young's modulus and shear modulus in uranium-2.4wt%niobium alloy[J].J.Nucl.Mater.,1990;171:389-394.
    26 Wood D H,Dini J W.Tensile testing of U/5.3wt%Nb and U/6.8wt%Nb alloys.J.Nucl.Mater.,1983;114:199-207.
    27 Jackson R J.Uranium-niobium alloys:annotated bibliggraphy[R].U.S.Atomic Energy Commission.RFP-2106.1974.
    28 杨建雄.铀铌合金的时效研究[R].中国工程物理研究院,内部报告,2002
    29 任大鹏.铀铌合金的TEM研究[R].中国工程物理研究院,内部报告,1991.
    30 张鹏程.铀铌合金组织、结构及力学性能[R].中国工程物理研究院,内部报告,1998.
    31 王小英.U-Nb合金显微组织分析[R].中国工程物理研究院,内部报告,2001.
    32 柏艳辉.铀铌合金塑性成形工艺对力学性能的影响研究[R].中国工程物理研究院,内部报告,2001.
    33 Mackiewicz LG.A TEM study of the influence of microstructure on the superplastic behavior of U-5.8wt%Nb alloy[R].U.S.Atomic Energy Commission.Y/DW-641.1986.
    34 Vandermeer RA.Martensitic transformation,shape memory effects,and other curious mechanical effects[R].U.S Department of Energy.Y/DV-207.1982.
    35 Zubelewicz A,Addessio FL,Cady CM.A constitutive model for a uranium-niobium alloy[J].J.Appl.Phys.2006;100:013523-013530.
    36 Valot C,Conradson S,Teter D,Thoma D,Peterson E.Local Atomic Structure in Uranium-Niobium Shape Memory Alloys.PLUTONIUM FUTURES-THE SCIENCE:Third Topical Conference on Plutonium and Actinides.AIP Conference Proceedings 673,2003:219-220
    37 Hayes DB,Gray Ⅲ GT,Hall CA,Hixson RS.Elastic-Plastic Behavior of U6Nb under Ramp Wave Loading.SHOCK COMPRESSION OF CONDENSED MATTER-2005.Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter 845,2006:729-732
    38 Brown DW,Bourke MAM,Field RD et al.Neutron diffraction study of the deformation mechanisms of the uranium-7 wt.%niobium shape memory alloy[J].Materials Science and Engineering:A 2006;421:15-21.
    39 Addessio FL,Zuo QH,Mason TA,Brinson LC.Model for high-strain-rate deformation of uranium-niobium alloys.J.Appl.Phys.2003;93:9644-9654.
    40 Rogers BA,Atkins DF,Manthos EJ,Kirkpatrick ME.Uranium-columbium alloys diagram[J].Trans.AIMEK 1957;212:387-393.
    41 Ritchie A G.The kinetics of the uranium-oxygen-water vapour reaction between 40 and 100℃[J].Journal of Nuclear Materials,1986,139:121-136
    42 Ritchie A G.The kinetic and mechanism of the uranium-water vapor reaction-an evaluation of some published work[J].Journal of Nuclear Materials,1984,120:143-153
    43 Ritchie A G.Measurements of the rate of the uranium-water vapour reaction[J].Journal of Nuclear Materials,1986,140:197-201
    44 Magnani M J.Reaction of uranium and its alloys with water vapor at low temperatures(R).SAND-74-0145.1974,Sandia Laboratory,USA
    45 Fonnesbeck J E.Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium(R).ANL-00/19,2000,Argonne National Laboratory,USA
    46 王士杰.铀、铀合金在潮湿气氛中长期贮存的腐蚀和氧的抑制作用[R].中国工程物理研究院.1985
    47 Delegard C H,Schmidt A J.Uranium metal reaction behavior in water,sludge,and grout matrices[R],PNNL-17815,2008.
    48 Mintz H M.Thermodynamics and statistical mechanics of some hydrides of the lanthanides and actinies.Ph.D.Thesis,Telaviv university,Telaviv,1975.
    49 蒙大桥.UD_3、UH_3平衡离解压的测定[R].中国工程物理研究院.2000.
    50 Thomas R P G J,James J M,Henry W.Metal-hydrogen systems,Ⅲ,uranium-hydrogen system[J].J.Am.Chem.Soc.,1952;71:6203-6207.
    51 Libowitz G G,Thomas R P G J.high pressure dissociation studies of the uranium hydrogen system[J].J.Phys.Chem.,1957;61:793-795.
    52 Powell G L. Solubility of hydrogen and deuterium in body-centered-cubic uranium alloys[J].The journal of physical chemistry. 1979; 83:605-613.
    
    53 Harold C M. Low pressure hydrogen solubility in uranium[J]. J.Phys. Chem.,1955;59: 93-94.
    
    54 Powell G L. Solubility of hydrogen and deuterium in a uranium-molybdenum alloys[J].The journal of physical chemistry. 1976; 80:375-381.
    
    55 Northrup C J M. The uranium-hydrogen system[J]. The journal of physical chemistry. 1975 ;79:726-731.
    
    56 Manchester F D, San-martin A. The H-U(hydrogen-uranium) system[J] Journal of thase equilibria. 1995; 16:263-275.
    
    57 Katz O M , Gulbransen E A. Some observations on the uranium-niobium-hydrogen system[J].Journal of nuclear materials, 1962,5: 269-279
    
    58 Owen L W, Scudamore R A.a microscope study of the initiation of hydrogen-uranium reation[J]. Corrosion Sci. 1966; 6: 461-465.
    
    59 Condon J B. Calculated vs. experimental hydrogen reaction rates with uranium[J].The journal of physical chemistry, 1975, 79 :392-397
    
    60 Bloch J, Mintz M H. Kinetics and mechanism of the U-H reaction[J].Journal of the less-common metals, 1981,81:301-320
    
    61 Bloch J and Mintz M H. Types of hydride phase devolopent in bulk uranium and holmium[J].J. Nucl. Matter. 1982, 110:251-255.
    
    62 Mintz M H . Time-of-flight analysis of direct recoils applied to the study of hydrogen-metal interations[J].J of the Less-common met ,1984,103: 349-452
    
    63 Bloch J. The initial kinetics of uranium hydride formation studied by a hot-stage microscope technique[J]. J. Less-common Met.. 1984,103:163-171.
    
    64 Bloch J, Brami D, Kremner A. Effects of gas phase impurities on the topochemical-kinetic behavior of uranium hydride development[J]. J.Less Common Met. 1988;139:371-383.
    
    65 Bloch J, Mintz M H, The effect of thermal annealing on the hydriding kinetics of uranium. J. Less Common Met. ,1990,166:241-251.
    
    66 Swissa E, Shamir N, Mintz M H. Heat-induced redistribution of surface oxide in uranium. J.Nucl. Matter., 1999, 173:87-92.
    
    67 Powell G L, Harper W L, Kirkpatrick J R.The kinetics of the hydriding of uranium metal [J] .Journal of the less-common metals, 1991 ;172-174:116-123.
    
    68 Kirkpatrick J R,Condon J B. The linear solution for hydriding of uranium[J]. Journal of the less-common metals, 1991, 172-174:124-135.
    
    69 Cohen D, Zeiri Y, Mintz M H. Model calculations for hydride nucleation on oxide-coated metallic surface: surface and diffusion-related parameters[J]. J.Alloys Compounds, 1992, 184:11-17
    
    70 Moreno D , Arkush R , Zalkind S . Physical discontinuities in the surface microstructure of uramium alloys as preferred sites for hydrogen attack[J]. Journal of nuclear materials, 1996,230:181-186.
    
    71 Balooch M and Hamza A V, Hydrogen and water vapor adsorption on and reaction with uranium. J. Nuclear Mater. ,1996;230:259 -270.
    
    72 Bloch J and Mintz M H,the hydriding kinetics of quenched uranium-0.1%chromium[J]. J. Alloys Comp. 1996;241:224-231.
    
    73 Bloch J, Mintz M H. Kinetics and mechanisms of metal hydrides formation - a review[J].J. Alloys Compounds. 1997;253/254:529-541.
    
    74 Powell G L, Kirkpatrick J R. Solubility of hydrogen and deuterium in bcc uranium-titanium alloys[J]. Journal of alloys and compounds, 1997, 253-254:167-170
    
    75 Brill M, Bloch J, Mintz M H. Experimental verification of the formal nucealtion and growth rate equations - initial UH_3 development on uranium surface[J].Journal of alloys and compounds, 1998, 266:180-185
    
    76 Hanrahan R J,Hawley M E,Brown G W. The infulence of surface morphology and oxide microstructure on the nucleation and growtn of uranium hydride on alpha uranium(R).LA-UR-98-2193.USA.1998
    
    77 Ben-Eliyahu Y, Brill M. Hydride nucleation and formation of hydride growth centers on oxidized metallic surfaces-kinetic theory[J]. J. Chem. Phys, 1999, 111:6053-6060
    
    78 Bloch J.The kinetics of a moving metal hydride layer[J]. Journal of alloys and compounds. 2000,312:135-153
    
    79 Teter D F, Hanrahan R J, Wetteland C J. Uranium Hydride Nucleation Kinetics: Effects of Oxide Thickness and Vacuum Outgassing(R). LA-13772-MS.2001
    
    80 Teter D F, Hanrahan R J, Wetteland C J. Uranium hydride initation kinetics: effect of oxide thickness(R). LA-UR-80-4514,2001
    
    81 Bloch J. Mintz M H. The Kinetics of HydrideFormation inUranium(R). IAEC - Annual Report, Israel.2001.
    
    82 Glascott J. Hydrogen and uranium interaction between the first and last naturally occurring elements (J). The science and technology journal of AWE, 2003 (6) :16-27.
    
    83 Bingert J F, Hanrahan R J, Field R D. Microtextural investigation of hydrided a-uranium[J].Journal of alloys and compounds. 2004,365:138-148.
    
    84 Harker R M. The influence of oxide thickness on the early stages of the massive uranium-hydrogen reaction[J]. Journal of alloys and compounds, 2006. 426: 106-117
    
    85 Greenbaum Y, Barlam D, Mintz M H. The strain energy and shape evolution of hydrides precipitated at free surfaces of metals[J]. Journal of Alloys and Compounds, 2008,452: 325-335
    86 Glascott J.Hydrogen and uranium interaction between the first and last naturally occurring elements(J).The science and technology journal of AWE,2003(6):16-27
    87 Bloch J.Mintz M H.The Kinetics of Hydride Formation in Uranium(R).IAEC-Annual Report,Israel.2001.
    88 Balooch M,Siekhaus W J.Reaction of hydrogen with uranium catalyzed by platinum clusters[J].Journal of nuclear materials,1998,255:263-268
    89 Shamir N.Catalysis,by amorphous carbon,of H_2 attack on oxidized U-0.1 wt%Cr surfaces[J].Applied Surface Science 2007,253:5957-5960
    90 Scott T B,Allen G C,Findlay I.UD_3 formation on uranium:evidence for grain boundary precipitation[J],philosophical magazine,2007;87:177-187.
    91 Balasubramanian K,Sikehaus W,Balazs B,Computational modeling of uranium corrosion and the role of impurities(Fe,Cr,Al,C and Si)(R).UCRL-CONF-216838,2005,USA
    92 倪然夫,铀的孕育期研究[R].中国工程物理研究院.2000.
    93 邹乐西,孙颖,齐连柱等.预热退火对铀和铀铌合金氢化动力学的影响[J].核化学与放射化学.2004,26:153-157.
    94 Danon a,koresh mintz m h.temperature programmed desorption characterization of oxidized uranium surface:relation to some gas-uranium reaction[J].Langmuir.1999;15:5913-5920.
    95 McGillivray G W,Knowles J P,Findlay I M.The plutonium/hydrogen reaction:The pressure dependence of reaction initiation time[J].J.Nucl.Mater.,2009;385:212-215.
    96 Arkush R,Zalkind S,Mintz M H,The role of the diffuse interface of implanted surface layers in preventing gas corrosion—implantation of N_2~+ and C~+ in uranium[J].Colloids and surfaces A:physicochemical and engineering aspects.2002,208:167-176.
    97 Arkush R,Venkert A,Aizenshtein M.Site related nucleation and growth of hydrides on uranium surfaces.Journal of Alloys and Compounds,1996;244:197-205
    98 Grunzweig-genossar J,Moshe K,Meerovicit B,Nuclear magnetic resonance in Uranium hydride and deuteride,Physical Review B,1970,1:1958-1977
    99 Wang Xiaolin,Fu Xiaoguo,Zhao Zhengping.Surface chemical behavior of uranium metal in hydrogen atmosphere studied by XPS,Surf.Rev.Lett.,2003,10(2/3):325-330
    100 Gouder T,Eloirdi R,Wastin F.Electronic structure of UH_3 thin films prepared by sputter deposition,PHYSICAL REVIEW B,2004,70:235108-1-6
    101 Glagolenko I Y,Carney K P,Kern S.Quantitative analysis of UH_3 in umetal and UO_2 matrices by neutron vibrational spectroscopy.Appl.Phys.A,2002,74,S1397-S1399
    102 周德惠,谭云.金属的环境氢脆及其试验技术[M].北京:国防工业出版社,1998:1-3.
    103 万晓景,陈业新,程晓英.金属间化合物环境氢脆的研究进展.自然科学进展,2001,11:458-464
    104 万晓景等.金属间化合物在氢气中的脆化.自然科学进展,2001,11:1233-240
    105 万晓景,朱家红,黄胜标.Fe_3Al与水汽及氧气的表面反应.金属学报.1995,31B:183-190
    106 朱家红,万晓景.Fe_3Al系合金环境氢脆研究.金属学报.1994,30A:139-141
    107 万晓景,朱家红,黄胜标.Fe_3Al与水汽及氢气的表面反应.金属学报,1995,31(4):181-185
    108 万晓景.Ni_3Al金属间化合物环境氢脆.自然,1995,17(1):58-59
    109 姚美意,万晓景,陈业新,倪建森.C_0基、Ni基、Fe基、Ti基金属间化合物在H_2中的脆化.上海大学学报(英文版),2000,4:169-172
    110 李慧改,程晓英.Ni_2Cr合金室温环境氢脆的研究.上海金属,2004(5):45-50
    111 李金许,李红旗,王燕斌,乔利杰,褚武扬.Ni_3Al+NiAl双相合金的氢致开裂.金属学报,2001(10):835-843
    112 李金许,王燕斌,乔利杰。纯Ni中氢致开裂的透射电镜原为观察。金属学报,2001,37:911-916.
    113 张跃,楮武扬,袁润章.Ti_3Al金属间化合物氢致解理断裂及其机理.金属学报,1995,31(9):B406-411
    114 谭晓华,程晓英,徐晖。拉伸速率对NiTiFe合金环境氢脆的影响[J]。金属材料研究,2004,30:33-38
    115 何建英,氢化物和氢致马氏体对TiNi合金断裂韧性的影响[J].金属学报,2004;40:291-295.
    116 冯吉利,何满潮,刘赵森。氢化物诱致金属稳态裂纹扩展数学模型理论研究[J].安全与环境学报.2006;6:78-84.
    117 冯吉利,何满潮,刘赵森。氢化物诱致金属稳态裂纹扩展数学模型的应用[J].安全与环境学报.2006;6:96-100.
    118 Magnani N J.Stress corrosion cracking of uranium-niobium alloys(R).SAND78-0439.1978.
    119 Wood D H,Dini J W.Tensile testing of U/5.3 wt%Nb and U/6.8 wt%Nb alloys[J].Journal of nuclear materials,1983,114:199-205.
    120 Brunet H.Stress corrosion cracking of an uraniμm-6 weight percent niobium in gaseous oxygen,nitrogen and hydrogen(R).CEA-R-5475,1989
    121 Lepoutre D,Nomine A M.Miannay D.Embrittlement of the Alloy U-7.5Nb-2.5Zr by Gaseous Oxygen (R),DE81-700255,1981
    122 Lepoutre D.Embrittlement of the U-7.5Nb-2.5Zr Uranium Alloy in Gaseous Environments (D).CEA-R-5239,1984
    123 Wallwork A,Burnell G,Morris S.Growth of surface flaws induced by the environment and machining stress in unalloyed uranium[J].Journal of Strain analysis for engineering design,2005,40:139-150.
    124 Muller J F.the effects of prcocessing variable on hydrogen content and mechanical properites of U/U-0.75Ti(R).LA-UR-80-3176.
    125 Beevers C J,Newman G T.hydrogen embrittlement in uranium.J.Nucl.Mater.,1967,23:10-18.
    126 Adamson A N.The effects of hydrogen on the tensile properties of uranium when tested in different environments[J],J.Nucl.Mater.,1969,33:215-224
    127 Prunier C.Optimisation by Plastic Deformation of Structural and Mechanical Uranium Alloys Properties(R).DE82701823/HDM,1981
    128 Armstorong P E.Effect of hydrogen on mechanical preperies of U-5.7Nb alloy.LA-9870,1983.
    129 Powell G L,Northcutt W G.Hydrogen embrittlement of U-5.7Nb alloys.J.Nucl.Mater.,1985,132:47-51
    130 Powell G L.Hydrogen in uranium alloys[A].Y-DA-5317,1973,In physical metallurgy of uranium alloys.
    131 Powell G L.Overview of hydrogen embrittlement of uranium and uranium alloys.Metallurgical technology of uranium and uranium alloys,1982,3:877-890
    132 Jackson R J.Effect of humidity on tensile ductility of uraium-titanium alloys[R].U.S.Atomic Energy Commission.RFP-2048.1973.
    133 张庆明等译.材料的动力学行为[M].北京:国防工业出版社,2006:326-327.
    134 肖大武.锆金属动态力学性能及其本构关系研究[D].博士论文.中国科技大学,2008
    135 胡昌明,镁铝合金的动态力学性能研究[D].硕士论文.中国科技大学,2003.
    136 胡时胜,郭勇,胡秀章等.铀合金动态力学性能的研究[J].爆炸与冲击,1993;13:18-22.
    137 Batra R C.Int.J.Impact Engng.1995,16:375-379
    138 Zurek A K.Metall.Mater.Trans.1995,26A:1483-1490
    139 Stelly N,Legrand J,Dormeval R.International conference on metallurgical effects of high-rate deformation and fabrication[R].In:Meyers MA,Murr LE(eds),U.S.Army Research Office Metallurgy and Materials Science Division,1981.
    140 Huddart H J.Mechanical properties at high rates of strain[R].U.S.Atomic Energy Committees,1980:49.
    141 Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[P].Proceedings of 7th International symposium on ballistics,Hague,Netherlands,1983:541.
    142 Serebrinsky S,Carter E A,Ortiz M A.Quantμm-mechanically informed continuμm model of hydrogen embrittlement[J].Journal of the mechanics and physics of solids,2004,52:2403-2415
    143 Jiang D E,Carter E A.First principles assessment of ideal fracture energies of materials with mobile impurities:implications for hydrogen embrittlement of metals[J].Acta materialia,2004,52:4801:4812
    144 Mao W,Xu X,Omura Y.Modeling of hydrogen embrittlement in single crystal Ni[J].Computational materials science,2004,30:202-210
    145 Mao J.Thermodynamics of hydrogen and vacancies in metals[D].Doctor paper.2002
    146 林斯勤、赖新春、吕学超等,U-2.5Nb表面氧化模型研究[R].中国工程物理研究院.2008.
    147 李赣等.铀和氢反应孕育期模型研究[R].中国工程物理研究院.2008.
    148 孙康.宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998:46-47
    149 宋世谟,王正烈,李文斌.物理化学[M].北京:高等教育出版社,1993:277-278.
    150 Kamoutsi H,Haidemenopoulos G N,Bontozoglou.Corrosion-induced hydrogen embrittlement in aluminum alloy 2024.Corrosion Science,2006,48:1209-1224
    151 Powell G L,Condon J B.Mass spectrographic determination of hydrogen thermally evolved from uranium and uranium alloys.Analytical Chemistry.1973,45:2349-2354
    152 Wheeler V J.The diffusion and solubility of hydrogen in uranium dioxide single crystal.J.Nucl.Mater.,1971,40:189-193
    153 束德林.金属力学性能[M].北京:机械工业出版社,2002:15-22.
    154 许彭栓.U-2.5%Nb合金在不同环境条件的拉伸性能[R].中国工程物理研究院.2000
    155 Petroyiannis P V,Kermanidis A T,Papanikos P.Corrosioni-induced hydrogen embittlement of 2024and 6013 aluminum alloys.Theoretical and applied fracture mechanics.2004,41:173-183
    156 Pantelakis S G,Daglaras P G,Apostolopoulos C A.Tensile and energy density properties of 2024,6013,8090 and 2091 aircraft aluminum alloy after corrosion exposure.Theoretical and applied fracture mechanics.2000,33:117-134.
    157 Kermanidis.A.T,Stamatelos D G,Labeas G N,etc,Tensile behaviour of corroded and hydrogen embrittled 2024 t351 aluminum alloy specimen.Theoretical and applied fracture mechanics.2006,45:148-158
    158 Labeas G,Kermanidis T H.Stress multiaxiality factor for crack growth prediction using the strain energy density theory.Theoretical and applied fracture mechanics.2006,45:100-107
    159 Zuo J Z,Kemanidis A T,Pantelakis S G.Strain energy density prediction of fatigue crack growth from hole of aging aircraft structures.Theoretical and applied fracture mechanics.2002,38:37-51
    160 Jeong D Y,Orringer O,Sih G C.Strain energy density approach to stable crack extension under net section yielding of aircraft fuselage(J).Theoretical and applied fracture mechanics.1995,22:127-137
    161 Zacharopoulos D A.Stability analysis of crack path using the strain energy density theory.Theoretical and applied fracture mechanics.2004,41:327-337
    162 王毛球,董瀚,惠卫军等。氢对高强度钢缺口拉伸强度的影响。材料热处理学报。2006,27:57-60
    163 洪起超.工程断裂力学基础[M].上海:上海交通大学出版社,1987:5-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700