用户名: 密码: 验证码:
龙门山断裂脆塑性转化带内花岗岩的流体特征与裂缝愈合的实验模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汶川Mw7.9级大地震的发震断层具有高角度逆冲滑动特征。通过对高角度逆断层滑动的力学条件的分析表明,龙门山断裂深部可能存在高孔隙流体压力有利于断层的失稳滑动。利用现有的技术手段无法获得中地壳深度断层内的流体特征。龙门山断裂带是一条逆冲推覆的的构造带,这使得地质历史早期的龙门山断裂深部的彭灌杂岩体抬升到地表,并保留了当时的深部流体特征和变形特征。研究地表露头的变形花岗岩能够推断过去的龙门山地区的深部环境,从而了解过去该地区的深部强震孕育机理,这能够帮助理解现今龙门山地区类似汶川地震的强震的发生机理。
     通过对汶川地震地表破裂带地质调查,在映秀-北川断裂南段和中段出露的韧性剪切带内采集了变形花岗岩样品,开展了石英的变形组构研究,确定断层脆塑性转化带岩石的变形温度,估算塑性流动应力。利用傅里叶变换红外吸收光谱仪(FTIR),研究变形花岗岩中主要矿物的微量水的赋存类型、含量和分布;利用显微冷热台和激光拉曼探针,测试了石英中的流体包裹体的成分、冰点和均一温度,估算了深部流体的捕获深度和孔隙流体压力。在考虑存在流体压力的情况下,初步建立了龙门山地区地壳流变结构,并讨论了高孔隙流体压力对断层滑动的影响。采用Carrara大理岩,在熔融盐固体介质三轴高温高压实验系统中开展断层带微裂缝愈合的模拟实验,研究了动态重结晶作用、水和应变对方解石裂隙愈合的影响。结合野外样品研究结果和大理岩微裂隙愈合的模拟实验,讨论了脆塑性转化带内石英的动态重结晶作用对断层带内裂缝的愈合的影响。
     研究结果表明,映秀-北川断裂深部存在非均匀塑性流动,韧性剪切带中石英和长石以中温位错蠕变为主,变形的温度约400-500℃,流动应力约15-80MPa。断层核部的石英因动态重结晶而强烈细粒化,其变形机制转变为扩散蠕变。石英和长石内的微量水以晶体缺陷水、颗粒边界水和流体包裹体水的型式存在,其中石英的水含量约0.001wt%-0.031wt%,长石的水含量约0.004wt%-0.103wt%,水含量随岩石的应变增加而升高,表明断层带中心流体含量相对较高,流体对断层带内的岩石变形和断层滑动具有弱化作用。
     根据石英中的NaCl-H2O体系的流体包裹体研究,得到包裹体水的捕获温度约330-350℃,流体压力约110-420Mpa,这种流体可能形成于接近18-19km深度。由此估计的深部断层带内的流体压力系数约为0.15-0.9,局部存在接近静岩压力的高压流体。基于不同流体压力系数建立的龙门山地区地壳流变结构显示,高压流体能够显著弱化断层强度,增加脆塑性转化带深度,导致在静水压条件下处于脆塑性转化带顶部的断层,在高压流体作用下能够发生脆性滑动。
     Carrara大理岩微裂隙愈合实验表明,在室温和高应变速率下样品脆性破裂产生微裂隙,在高温和低应变速率条件下通过方解石的动态重结晶作用而愈合,水和大应变能够促进微裂缝愈合。动态重结晶作用引起裂隙愈合的机制,在映秀-北川断裂南段的韧性剪切带中也存在,表明这可能是脆塑性转化域内断层裂隙愈合的主要机制之一。这种愈合作用有利于断层带内高压流体的形成。
The seismogenic fault of the Mw7.9Wenchuan earthquake showed a high-anglereverse slip. Based on the analysis of the mechanics for high-angle reverse slip, thehigh pore fluid pressure mightly exist in the deep fault, which is favorable for thesliding of the fault. The current technologies can not provide us the fluid status ofthe fault in the middle crust. The Longmenshan fault zone shows an overthrustfeature, and this made the Pengguan Complex lifted up to the surface, withsignatures of the status of deep fluid and deformation conditions in the earlygeological history. The deep environment in the early geological history can beexplored by studying the deformed granites at the outcrop in the surface to know thedeep seismogenic mechanism in the past, and this helps to understand the currentmechanism of the large earthquakes occurrence in the Longmenshan region, such asthe Mw7.9Wenchuan earthquake.
     Geological surveys were carried out along the surface ruptures of the Wenchuanearthquake. Deformed granites were collected in two ductile shear zone found in thesouthern section and middle section of the Yingxiu-Beichuan fault respectively. Thedeformation temperature and the flow stress were estimated by the deformationfabrics of quartz. Using Fourier transform infrared spectroscopy (FTIR),the types ofwater, water contents and its distribution were measured. The fluid compositions, icemelting temperature and homogenization temperature in fluid inclusions weremeasured to calculate the depth of the fluid capture and the pore fluid pressure usingmicro-thermometer and Laser Raman microspectrometer. The rehological structuresof the Longmenshan region were constructed to discuss the role of the high porefluid pressure on the fault slip. The simulating experiments with the Carrara marblewere carried out using the3GPa molten salt medium triaxial apparatus. This studyfocused on the dynamic recrystallization and the effect of the water and strain on themicro-cracks healing. The experimental simulatation of micro-cracks healing usingCarrara marble with the similar mechanism to the samples in the deep crust could beused to discuss the fractures healing by the dynamic recrystallization of the quartz in the brittle-plastic transition zone.
     The studies showed that inhomogeneous ductile deformation occurred in thedeep of the Yingxiu-Beichuan fault. The quartz and feldspar in the ductile shearzone were deformed by the subgrain rotation recrystallization, indicating thedeformation temperature is from400to500oC and the flow stress range from15to80MPa. The grain size of the quartz in the center of the fault is reduced by thedynamic recrystallization, which leads the deformation mechanism of thefine-grained quartz in the fault core to be the diffusion creep. The trace amountwater in quartz and feldspar include the hydroxyl in crystals, grain boundaries waterand fluid inclusions water. Water content of quartz is from0.001wt%to0.031wt%,and that of feldspar is in range of0.004wt%to0.103wt%, and water contentsincrease with the strain of rocks. Based on the study of fluid inclusions with thecomposition of NaCl-H2O, the temperature of fluid capture is from330to350℃,corresponding to the depth from18to19km in the Longmengshan fault zone, whichindicate the fluid pressure coefficient from0.15to0.9, implying sublithostatic porefluid pressure existed locally. High pore fluid pressure could weaken the faultsignificantly and increase the depth of the brittle-plastic transition zone according tothe rheological structures of the Longmenshan region which considering the porefluid pressure. All of these could help to trigger the brittle fault slip on the top of thebrittle-plastic transition zone.
     The microcracks-healing simulating experiments with Carrara marble showedthat a lot of brittle micro-cracks were developed during the loading under roomtemperature and high strain rate. However, most of the micro-cracks were healed bythe dynamic recrystallization of the calcite under high temperature and low strainrate subsequently. Water and larger strain could enhance the mico-cracks healing.The micro-carcks healing by dynamic recrystallization of quartz was found in theductile shear zone in the southern section of the Yingxiu-Beichuan fault. Themechanism of cracks healing in field is similar with the simulation experiments,which indicates dynamic recrystallization is one of the major fault healingmechanisms in the brittle-plastic transition zone probably. The cracks healing process could help to form high pore fluid pressure in local fault zone.
引文
1.陈桂华,徐锡伟,郑荣章等.2008年汶川MS8.0地震地表破裂变形定量分析—北川-映秀断裂地表破裂带.地震地质,2008,30(3):723~738
    2.陈九辉,刘启元,李顺成等,汶川Ms8.0地震余震序列重新定位及其地震构造研究.地球物理学报,2009,52(2):390-397
    3.陈岳龙,罗照华,赵俊香等.从锆石SHRIM年龄及岩石地球化学特征论四川冕宁康定杂岩的成因.中国科学D辑:地球科学,2004,34(8):687-697
    4.陈云泰,许力生,张勇等.2008年5月12日汶川特大地震震源特性分析报告[R].2008,http://www.csi.ac.cn/sichuan/chenyuntai.pdf
    5.邓江红.龙门山中段映秀地区花岗岩单元特征.成都理工学院学报,1994,21(3):29~38
    6.董顺利,李勇,陈龙生.汶川Ms8.0地震的地表破裂过程,以都江堰八角庙村断层擦痕剖面为例.第四纪研究,2009,29(3):439~448
    7.杜方,闻学泽,张培震.鲜水河断裂炉霍段震后滑动和形变.地球物理学报,2010,53(10):2355-2366
    8.付碧宏,王萍,孔屏等.四川汶川5.12大地震同震滑动断层泥的发现及构造意义.岩石学报,2008,24(10):2237-2243
    9.付碧宏,时丕龙,张之武.四川汶川MS8.0大地震地表破裂带的遥感影像解析.地质学报,2008,82(12):1679~1687
    10.韩亮,周永胜,何昌荣等.3GPa熔融盐固体介质高温高压三轴压力容器的温度标定.高压物理学报,2009,23(6):407-415
    11.韩亮,周永胜,陈建业等.汶川地震基岩同震断层泥的结构特征.第四纪研究,2010,30(4):745-758
    12.韩亮,周永胜,何昌荣等.3GPa熔融盐固体介质高温高压三轴压力容器的压力标定.高压物理学报,2011,25(3),213-220
    13.何昌荣,周永胜,桑祖南.四川攀枝花辉长岩半脆性-塑性流变的实验研究.中国科学(D辑),2002,32(9):717~726
    14.何昌荣,Verberne B A, Spiers C J.龙门山断裂带沉积岩和天然断层泥的摩擦滑动性质与启示.岩石力学与工程学报,2011,30(1):113-131
    15.何宏林,孙昭民,王世元等.汶川MS8.0地震地表破裂带.地震地质,2008,30(2):359~363
    16.何宏林,孙昭民,魏占玉等.汶川MS8.0地震地表破裂带白沙河段破裂及其位移特征.地震地质,2008,30(3):658-673
    17.胡新伟,王道永.映秀断裂带构造岩,显微构造及组构特征和形成机制讨论.成都理工学院学报,1995,22(4):54-59
    18.黄媛,吴建平,张天中等,汶川8.0级大地震及其余震序列重定位研究.中国科学D辑:地球科学,2008(38),10:1242~1249
    19.嵇少丞,许志琴,王茜等.亚洲大陆逃逸构造与现今中国地震活动,地质学报,2008,82(12):1643~1667
    20.靖晨,周永胜,兰彩云.龙门山韧性剪切带主要矿物结构水含量与变形关系.岩石学报,2010,26(5):1604-1616
    21.李传友,魏占玉.2008年汶川MS8.0地震北川以北段地表破裂变形的主要样式.第四纪研究,2009,29(3):416~425
    22.李海兵,王宗秀,付小方等.2008年5月12日汶川地震(MS8.0)地表破裂带的分布特征.中国地质,2008,35(5):803~813
    23.李细光,于贵华,徐锡伟.汶川MS8.0地震基岩中的地表破裂.地震地质,2008,30(4):989~995
    24.刘静,张智慧,文力等.汶川8级大地震同震破裂的特殊性及构造意义—多条平行断裂同时活动的反序型逆冲地震事件.地质学报,2008,82(12):1707~1722
    25.刘顺,刘树根,宋春彦等.龙门山中央断裂运动学研究.成都理工大学学报(自然科学版),2008,35(4):463-470
    26.罗丽,何昌荣.热水条件下斜长石和辉石断层泥的摩擦滑动研究.地震地质,2009,31(1):84~96
    27.罗丽,何昌荣.热水条件下斜长石和辉石断层泥的摩擦滑动研究.地震地震,2009,31(1),出版中
    28.吕坚,苏金蓉,靳玉科等,汶川8.0级地震序列重新定位及其发震构造初探.地震地质,2008,30(4):917-925.
    29.马保起,张世民,田勤俭等.汶川8.0级地震地表破裂带.第四纪研究,2008,28(4):513~517
    30.四川省地矿局.四川区域地质志.1991,地质出版社
    31.谭文彬,何昌荣.高温高压及干燥条件下斜长石和辉石断层泥的摩擦滑动研究.地学前缘,2008,15(3):279~286
    32.滕吉文,白登海,杨辉等.2008汶川Ms8.0地震发生的深层过程和动力学响应.地球物理学报,2008,51(5):1385~1402
    33.王萍,付碧宏,张斌等.汶川8.0级地震地表破裂带与岩性关系.地球物理学报,2009,52(1):131~139
    34.王椿镛,吴建平,楼海等.川西—藏东地区的地壳P波速度结构.中国科学(D辑),2003,33(增刊):181~189
    35.王震亮,孙明亮,张立宽等.川西地区须家河组异常压力演化与天然气成藏模式.地球科学—中国地质大学学报,2004,29(4):433-439
    36.吴建平,黄媛,张天中.汶川Ms8.0级地震余震分布及周边区域P波三维速度结构结构.地球物理学报,2009,52(2):320-328
    37.夏群科,杨晓志,郝艳涛等.深部地球中水的分布和循环.地学前缘,2007,14:10-23
    38.熊绍柏,滕吉文,尹周勋等.1986.攀西构造带南部地壳与上地慢结构的爆炸地震研究.地球物理学报,29(3):235~244
    39.徐锡伟,闻学泽,叶建青等.汶川MS8.0地震地表破裂带及其发震构造.地震地质.2008,30(3):597~629
    40.徐锡伟,Tapponnier P, Woerd J V等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模型讨论.中国科学,2003,33(10):967-974
    41.许志琴,侯立玮,王宗秀.中国松潘-甘孜造山带的造山过程.1992,北京,地质出版社
    42.许志琴,李化启,侯立玮等.青藏高原东缘龙门山-锦屏造山带的崛起!!大型拆离断层和挤出机制.地质通报,2007,26(10):1262~1276
    43.张金川,刘丽芳,唐玄等.川西坳陷根缘气藏异常地层压力.地学前缘,2008,15(2):147~155
    44.张培震,徐锡伟,闻学泽等.2008年汶川8.0级地震发震断裂的滑动速率复发周期和构造成因.地球物理学报,2008,51(4):1066~1073
    45.张培震,青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程.中国科学D辑:地球科学,2008,38(9):1041~1056
    46.张沛,周祖翼,许长海等.川西龙门山彭灌杂岩地球化学特征:岩石成因与构造意义.大地构造与成矿学,2008,32(1):105~116
    47.张瑞青,吴庆举,李永华等,汶川中强余震震源深度的确定及其意义.中国科学D辑:地球科学,2008,38(10):1234~1241
    48.赵俊香,陈岳龙,李志红.康定杂岩锆石SHRIMP U-Pb定年及地质意义.现代地质,2006,20(3):378-385
    49.赵珠,张润生.四川地区地壳上地幔速度结构的初步研究.地震学报,1987,9(2):154~166
    50.周永胜,何昌荣,杨晓松.中地壳韧性剪切带中的水与岩石变形的关系.中国科学D辑:地球科学,2008,38(7):819-832
    51.周永胜,何昌荣.汶川地震区流变结构与发震高角度逆断层滑动的力学条件.地球物理学报,2009,52(2):474~484
    52.周永胜,何昌荣.地壳主要岩石流变参数及华北地壳流变性质研究,地震地质,2003,25(1):109~122
    53.周永胜,张流,蒋海昆等.不同温压条件下居庸关花岗岩变形破坏与失稳形式的实验研究.中国地震,2002,18(4):389~400
    54.周永胜等.2010年国家自然科学基金进展报告
    55.朱艾澜,徐锡伟,刁桂苓等,汶川Ms8.0地震部分余震重新定位及地震构造初步分析.地震地质,2008,30(3):759~767.
    56.朱艾澜,徐锡伟,周永胜.川西地区小震重新定位及其活动构造意义.地球物理学报,2005,48(3):629~636
    57. Aki K. A new view of earthquake and volcano precursors. Earth Planets Space,2004,56:689-713.
    58. Aines R D, Kirby S H, Rossman G R. Hydrogen speciation in syntheric quartz.Phys Chem Miner,1984,11:204-212
    59. Aines R D, Rossman G R. Water in minerals? A peak in the infrared. JGeophys Res,1984,89:4059-4071
    60. Bahattacharya AR, Weber K. Fabric development during shear deformation inthe Main Central Thrust Zone, NW Himalaya, India. Tectonophysics,2004,387:23-46
    61. Bai D H, Meju M A, Unsworth M J,et al.. Electromagnetic Evidence for crustflows beneath Tibetan Plateau and its Significance to theMs8.0earthquake inWenchuan,China.Science,2008
    62. Balderman M A. The effect of strain rate and temperature on the yield pointof hydrolytically weakened synthetic quartz. J Geophy Res,1974,79:1647-1652
    63. Bell D R, Ihinger P D, Rossman G R. Quantitative analysis of trace OH ingarnet and pyroxenes. Am Mineral,1995,80:465-474
    64. Bell D R, Rossman G R, Maldener A, et al.. Hydroxide in olivine: aquantitative determination of the absolute amount and calibration of the IRspectrum. J Geophys Res,2003,108, doi:10.129/2001JB000679
    65. Bell D R, Rossman G R, Moore R O. Abundance and partitioning of OH in ahigh-presssure magmatic system megacrysts from the Monastery Kimberlite,South Africa. J Petrol,2004,45:1539-1564
    66. Bell D R, Rossman G R. Water in earth’s mantle the role of nominallyanhydrous minerals. Science,1992,255:1391-1397
    67. Beran A. A model of water allocation in alkali feldspar, derived from infraredspectroscopic investigations. Phys Chem Miner,1986,13:306-310
    68. Beran, A. OH groups in nominally anhydrous framework structures: Aninfrared spectropic investigation of danburite and labradorite. Phys ChemMiner,1987,14:441-445
    69. Blanpied M L, Lockner D A, Byerlee J D. Fault stability inferred from granitesliding experiments at hyrothermal conditions. Geophys Res Lett,1991,18(4):609-612
    70. Blacic J D, Christle J M. Plasticity and hydrolytic weakening of quartz singlecrystals. J Geophy Res,1984,89(B6):4223-4239
    71. Blanpied M L, Lockner D A, Byerlee J D. Fault stability inferred from granitesliding experiments at hydrothennal conditions. Geophys Res Lett,199118:609~612
    72. Blanpied M L, Lockner D A, Byerlee J D. Frictional slip of granite athydrothennal conditions. J Geophys Res,1995,100:13045~13064
    73. Bos B, C J Spiers. Effect of phyllosilicates on fluid-assisted healing ofgouge-bearing faults. Earth and Planetary Science Letters,2000,184:199~210
    74. Bos B, C J Spiers. Frictional-viscous flow of phyllosilicate-bearing fault rock:Microphysical model and implications for crustal strength profiles. J GeophysRes,2002,107(B2), doi:10.1029/2001JB000301
    75. Bos C J, C J Spiers. Frictional-viscous fow of simulated fault gouge caused bythe combined effects of phyllosilicates and pressure solution. Tectonophysics,2000,327:173~194
    76. Brace W T, Kohlstedt D L. Limits on lithospheric stress imposed by laboratoryexperiments. J Geophys Res,1980,85:6248~6252
    77. Brantley S L, Evans B, Hickman S H, et al.. Healing of microcracks in quartz:Implications for fluid flow. Geology,1990,18:136~139
    78. Brown P E. Flincor: a microcomputer program for the reduction andinvestigation of fluid-inclusion data. American Mineralogist,1989,74:1390-1393
    79. Bokelmann G H R, Beroza G C. Depth-dependent earthquake focal mechanismorientation Evidence for a weak zone in the lower crust. J Geophys Res,2000,105(B9):21683-21695.
    80. Burchfiel B C, Royden L H, van der HilstR D, etal. A geological andgeophysical context for the Wenchuan earthquake of12May2008,Sichuan,People’s Republic of China.2008,18(7), doi:10.1130/GSATG18A.1
    81. Bucher K, Frey M. Petrogenisis of Metamorphic Rocks. Berlin, Heidelberg:Springer-Verlag,1994,200-203
    82. Cathelineau M, Nieva D. A chlorite solid solution geothermometer the LosAufres(Mexico)geothermal system. Contributions to Mineralogy and Petrology,1985,90(3),235-244,doi:10.1007/BF00413350
    83. Caine JS, Evans JP, Proster CB. Fault zone architecture and permeabilitystructure. Geology,1996,24:1025-1028
    84. Chen W P, Molnar P. Focal depths of intracontinental and intraplate earthquakeand their relation for thermal and mechanical properties of the lithosphere, JGeophys Res,1983,88:4183-4214
    85. Chen J H, Froment B, Liu Q Y, et al.. Distribution of seismic wave speedchanges associated with the12May2008Mw7.9Wenchuan earthquake.Geophys Res Lett,2010,37, L18302, doi:10.1029/2010GL044582
    86. Chester F M, Higgs N G. Multimechanism friction constitutive model forultrafine quartz gouge at hypocentral conditions. J Geophys Res,1992,97:1859-1870
    87. Chester F M. Effects of temperature on friction: Constitutive equations andexperiments with quartz gouge. J Geophys Res,1994,99:7247~7261
    88. De Meer S, Spiers C J, Nakashima S. Structure and diffusive properties offluid-filled grain boundaries: An in-situ study using infrared (micro)spectroscopy. Earth Planet Sci Lett,2005,232:403-414
    89. Dimanov A, Dresen G.. Rheolgy of synthetic anorthite-diopside aggregates:implications for ductile shear zones. J Geophys Res,2005,110(B7): B07203
    90. Dimanov A, G Dresen, Xiao X, et al.. Grain boundary diffusion creep ofsynthetic anorthite aggregates: The effect of water. J Geophy Res,1999,104(B5):10483-10497
    91. Dimanov A, Lavie M P, Dresen G, et al.. Creep of polycrystalline anorthiteand diopside. J Geophy Res,2003,108(B1):2061
    92. Dunlap W J, Hirth G, Teysser C. Thermomechanical evolution of a ductileduplex. Tectonics,1997,16:983-1000
    93. Ellis S, Stockhert B. Elevated stresses and creep rates beneath the brittle-ductiletransition caused by seismic faulting in the upper crust. J Geophys Res,2004,109, B05407, doi:10.1029/2003JB002744
    94. Ellis S, Stockhert B. Elevated stresses and creep rates beneath the brittle–ductiletransition caused by seismic faulting in the upper crust. J Geophys Res2004a,109, doi:10.1029/2003JB002733.
    95. Ellis S, Stockhert, B,. Imposed strain localization in the lower crust on seismictimescales. Earth Planets Space,2004b,56,1103–11029.
    96. Ewels C P, Leoni S, Jemmer P, et al.. Hydrogen interaction with dislocationsin Si. Phys Rev Lett,2000,84:690-693
    97. Farver J R, Yund R A. Grain boundary diffusion of oxygen and potassium andcalsium in natural and hot-pressed feldspar aggregates. Contrib Mineral Petrol,1995,118:340-355
    98. Farver J R, Yund R A. Interphase boundary diffusion of oxygen andpotassium in K-feldspar/quartz aggregates. Geochim Cosmochim Acta,1995,59:3697-3705
    99. Fusseis F, Regenauer-Lieb K, Liu J, et al.. Creep cavitation can establish adynamic granular fluid pump in ductile shear zones. Nature,2009,459(18):974-977
    100. Gleason, G C, DeSisto S. A natural example of crystal-plastic deformationenhancing the incorporation of water into quartz. Tectonophysics,2008,446:16-30
    101. Grant K, Gleeson S, Roberts S. The high-temperature behavior of defecthydrogen species in quartz: Implications for hydrogen isotope studies. AmMineral,2003,88:262-270
    102. Grater J P, Gueydan F. Deformation in the Presence of Fluids and MineralReactions: Effect of Fracturing and Fluid-Rocks Interaction On Seismic Cycle.In: Tectonic Fault: agent of change on a dynamic earth, Handy M R, Hirth G,HoviusN (eds), Cambridge,2007, The MIT Press:319-356
    103. Gratier J P, Favreau P, Renard F, et al.. Fluid pressure evolution during theearthquake cycle controlled by fluid flow and pressure solution crack sealing.Earth Planets Space,2002,54:1139-1146
    104. Gratier J P, Favreau P, Renard F. Modeling fluid transfer along Californianfaults When integrating pressure solution crack sealing and compactionprocesses. J Geophys Res,2003,108(B2),2104, doi:10.1029/2001JB000380
    105. Gratier J P, Favreau, P, Renardd F. Modeling fluid transfer along Calforniafaults when intergrating pressure solution crack sealing and compactionprocesses. J Geophys Res,2007,108(B2),2104, doi:10.1029/2001JB000380
    106. Griggs D T, Blacic D. Quartz: anomalous weakness of synthetic crystals.Science,1965,147:292-295
    107. Griggs D T. A model of hydrolytic weakening in quartz. J Geophy Res,1974,79:1653-1661
    108. Han L, Zhou Y S, He C R. The Fluid Character of Deformed Granite andSublithostatic Fluid Pressure in the Ductile Shear Zone Along WenchuanEarthquake Fault. AOGS2011conference in Taipei,2011, SE83-A016:
    109. Han R, Shimamto T, Hirose T et al..Ultra low friction of carbonate faults causedby thermal decomposition. Science,2007,316(5826):878
    110. Hashimoto Y, Ujiie K, Sakaguchi A et al.. Characteristics and implications ofclay minerals in the northern and souther parts of the Chelung-pu fault, Taiwan.Tectonophysics,2007,443:233-242
    111. He C, Wang Z, Yao W. Frictional sliding of gabbro gouge under hydrothennalconditions. Tectonophysics,2007,445:353-362
    112. He C, Yao W, Wang Z, et al.. Strength and stability of frictional sliding ofgabbrogouge at elevated temperatures. Tectonophysics,2006,427:217-229
    113. Heggie M I, Jenkins S, Ewels C P, et al.. Theory of dislocations in diamondand silicon and their interaction with hydrogen. J Phys-Condens Mat,2000,12(49):10263-10270
    114. Heggie M I, Jones R. Models of hydrolytic weakening in quartz. Phil Mag A,1986,53:65-70
    115. Hirono T, Sakaguchi M, Otsuki K et al.. S-R.Characterization of slip zoneassociated with the1999Taiwan Chi-Chi earthquake: X-ray CT image analysesand microstructural observations of the Taiwan Chelungpu fault. Tectonophysics,2008,449:1-4
    116. Hirono W, Lin E, Yeh W et al.. High magnetic susceptibility of fault gougewithin Taiwan Chelungpu fault: nondestructive continuous measurements ofphysical and chemical properties in fault rocks recovered from Hole B, TCDP.Geophys Res Lett,2006,33:, doi:10.1029/2006GL026133
    117. Hirth G, Tullis J. Dislocation creep regimes in quartz aggregates. J StructGeol,1992,14:145-159
    118. Hobbs B E. Point defect chemistry of minerals under a hydrothermalenvironment. J Geophy Res,1984,89:4026-4038
    119. Hobbs B E. The hydrolytic weakening effect in quartz, in Point Defects inMinerals, Geophys Monogr Ser31, In: Schock R N, ed. AGU. Washington DC,1985,151-170
    120. Huang S T, Wu J C, Huang J H et al.. Studies of sedimentary facies, stratigraphy,and deformation structures of the Chelungpu fault zone on cores from drilledwells in Fengyuan and Nantou, central Taiwan. Tao,2002,13(3):253-278
    121. Ito Y, Nakashima S. Water distribution in low-grade siliceous metamorphicrocks by micro-FTIR and its relation to grain size: A case from the KantoMountain region, Japan. Chemi Geol,2002,189:1-18
    122. Jaoul O, Tullis J, Kronenberg A. The effect of varying water contents on thecreep behavior of heavitree quartzite. J Geophy Res,1984,89:4297-4312
    123. Johnson E A, Rossman G R. A Survey of hydrous species and contents inigneous feldspars. Am Mineral,2004,89:586-600
    124. Johnson E A, Rossman G R. The concentration and speciation of hydrogen infeldspars using FTIR and H MAS NMR spectroscopy. Am Mineral,2003,88:901-911
    125. Kirby S H, McCormick J W. Creep of hydrolytically weakened syntheticquartz crystals oriented to promote {2110}<0001>slip: A brief summary ofwork to date. Bull Mineral,1979,102:124-137
    126. Kirby S H. The effects of the phase transformation on the creep properties ofhydrolytically-weakened synthetic quartz. Geophys Res Lett,1977,4:97-100
    127. Koch P S, Christie J M. Effect of water on rheology of experimentallydeformed quartzite. J Geophys Res,1989,94:13975-13996
    128. Kohlstedt D L,Evans B,Mackwell S J.Strength of the lithosphere: Constraintsimposed by laboratory experiments.J Geophys Res,1995,100:17587~17602
    129. Kronenberg A K, Segall P, Wolf G H. Hydrolytic weakening and penetrativedeformation within a natural shear zone. in The Brittle-Ductile Transition inRocks, Geophys Monogr. Ser, In: Duba A G, Durham W B, Handin J W, et al.,eds. AGU, Washington, D C,1990,(56):21-36
    130. Kronenberg A K, Tullis J. Flow strengths of aggregates: grain size andpressure effects due to hydrolytic weakening. J Geophy Res,1984,89(B6):4281-4297
    131. Kronenberg A K, Yund R A, Rossman G R. Stationry and mobile hydrogendefects in potassium feldspar. Geochim Cosmochim Acta,1996,60:4075-4094
    132. Kruhl J H. Reply: Prism-and basal-plane parallel subgrain boundaries in quartz:a microstructural geothemobarometer. J Meta Geol,1998,16:142-146
    133. Kurz W, Fritz H, Tenczer V, et al.. Tectonometamorphic evolution of the KoralmComplex(Eastern Alps):constrainsts from microstructures and textures of the“Plattengneis”shear zone. J. Struc Geol,2002,24:1957-1970
    134. Kuster M,Stockhert B. High differential stress and sublithostatic pore fluidpressure in the ductile regime-microstructural evidence for shot-termpost-seismic creep in the Sesia Zone, Western Alps. Tectonophysics,1999,303:263-277
    135. Kilian R, Heilbronnor R, Stunitz H. Quartz grain size reduction in a granitoidrock and the transition from dislocation creep to diffusion creep. J Struc Geol,2011,33:1265-1284
    136. Libowitzky E, Beran A. IR spectroscopic characterization of hydrous speciesin minerals[M]. In Beran A,Libowitzky E.Spectroscopic methods inmineralogy. EMU Notes in Mineralogy,2004,6:227-279
    137. Linker M F, Kirby S H, Ord A, et al.. Effects of compression direction on theplasticity and rheology of hydrolytically weakened synthetic quartz crystals atatmospheric pressure. J Geophy Res,1984,89(B6):4241-4255
    138. Lockner D A, Summers R, Byerlee J D. Effects of temperature and sliding rateon frictional strength of granite. Pure Appl Geophys,1986,124:445~469
    139. Ma K F, Tanaka H, Song S et al.. Slip zone and energetics of a large earthquakefrom the Taiwan Chelungpu-fault Drilling Project. Nature,2006,444:473~476
    140. Ma Kuo-Fong, Teh-Ru, Alex Song. Thermo-mechanical structure beneath theyoung orogenic belt of Taiwan. Tectonophysics,2004,388:21~31
    141. Mainprice D H, Paterson M S. Experimental studies of the role of water in theplasticity of quartzites. J Geophy Res,1984,89(B6):4257-4269
    142. Mainprice D, Bouches J,Blumenfeld P.Dominant c slip in natural deformedquartz:implications ofr dramatic plastic softening at high temperature. Geology,1986,14:819-822
    143. Mariani E, K H Brodie, E H Rutter. Experimental deformation of muscoviteshear zones at high temperatures under hydrothermal conditions and the strengthof phyllosilicate-bearing faults in nature. J Struc Geol,2006,28:1569-1587
    144. Moore D E, Lockner D A, Ma S L, et al.. Strengths of serpentinte gouges atelevated temperatures. J Geophys Res,1997,102(B7):14787-14801
    145. Moore D E, Summers R, Byerlee J D. Sliding behavior and deformation texturesof heated illite gouge. J Stru Geol,1989,11(3):329-342
    146. Moore J C, Saffer D. The up dip limit of the seismogenic zone in theaccretionaryprism of SW Japan: An effect of diagenetic/low grade metamorphicprocesses and declining fluid pressure. Geology,2001,29:183-186
    147. Nakashima S, Matayoshi H, Yuko T, et al.. Infrared microspectroscopyanalysis of water distribution in deformed and metamorphosed rocks.Tectonophysics,1995,245:263-276
    148. Nugent M A, Brantley S L, Pantano C G, et al.. The influence of natural mineralcoatings on feldspar weathering. Nature,1996,396:527~622
    149. Okudaira T, Takeshita T, Hara I, et al.. A new estimate of the conditons fortranstions from basal to prism[c] slip in naturally deformed quartz.Tectonophysics,1995,250(1/3):31-46
    150. Onasch C M, Farver J R, Dunne W M. The role of dilation and cementation inthe formation of cataclasite in low temperature deformation of well cementedquartz-rich rocks. J Struc Geol,2010,32(12):1912-1922
    151. Otsuki K and Monzawa N. Constrasting fault rocks from two boreholespenetrating Chelung-pu Fault, Taiwan, ICDP Workshop on Drilling theChelungpu Fault, Taiwan,2001,90~92
    152. Otsuki K, Uduki T, Monzawa N et al.. Clayey injection veins andpseudotachylyte from two boreholes penetrating the Chelungpu Fault, Taiwan:their implications for the contrastive seismic slip behaviors during the1999Chi-Chi earthquake. Island Arc,2005,14:22~36
    153. Okudaira T, Ogawa D, Michibayashi K. Grain-size-sensitive deformation ofupper greenschist to-lower amphibolite-facies metacherts from a low-P/high-Tmetamorphic belt. Tectonophysics,2010,492:141-149
    154. Paterson M. The determination of hydroxyl by infrared absorbance in quartz,silicate glasses and similar materials. Bull Mineral,1982,105:20-29
    155. Paterson M. The thermodynamics of water in quartz. Phys Chem Minerals,1986,13:245-255
    156. Post A, Tullis J, Yund R. Effects of chemical environment on dislocationcreep of quartzite. J Geophy Res,1996,101(B10):22143-2155
    157. Post A, Tullis J. The of water penetration in experimentally deformedquartzite: implications for hydrolytic weakening. Tectonophysics,1998,295:117-137
    158. Ran Y K, Chen L C, Chen J, et al.. Paleoseismic evidence and repeat time oflarge earthquakes at three sites along the Longmenshan faultzone. Tectonophyiscs,2010,491:141-153
    159. Robert E C. Relationship of fault displacement in gouge and breccia thickness.Transaction of American Institute of Mining, Metallurgical, and PetroleumEngineers,1983,35:1426~1432
    160. Rossman G R. Studies of OH in nominally anhydrous minerals. Phys ChemMinerals,1996,23:299-304
    161. Rutter E H, Brodie K H, Iriving D H. Flow of synthetic,wet,partially molten“granite”under undrained conditions:An experimental study. J Struct Geol,2006,111: B06407, doi:10.1029/2005JB004257
    162. Rutter E H, Brodie K H. Experimental grain-size sensitive flow of hot-pressedBrazilian quartz aggregates. J Struc Geol,2004a,26:2011-2023
    163. Rutter E H, Brodie K H. Experimental intracrystalline plastic flow inhot-pressed synthetic quartzite prepared from Brazilan quartz crystals. J StrucGeol,2004b,26:259-270
    164. Burgmann R, Dresen G. Rheology of Lower Crust and Upper Mantle: Evidencefrom Rock Mechanics, Geodesy, and Field Observations. Annu. Rev. EarthPlanet. Sci.,2008,36:531-567
    165. Rybacki E, Dresen G. Deformation mechanism maps for feldspar rocks.Tectonophysics,2004,382(3-4):173-187
    166. Rybacki E, Dresen G. Dislocation and diffusion creep of synthetic anorthiteaggregates. J Geophy Res,2000,105(B11):26017-26036
    167. Rybacki E, Gottschalk M, Wirth R,et al.. Influence of water fugacity andactivation volume on the flow properties of fine-grained anorthite aggregates.J Geophy Res,2006,111: B03203, doi:10.1029/2005JB003663
    168. Schaff D P, Bokelmann G H R, Beroza G C. High-resolution image ofCalaveras Fault seismicity. J Geophys Res,2002,107(B9):2186, doi:10.1029/2001JB000633
    169. Schimd S M, Casey M. Complete fabric analysis of some commonly observedquartz c-axis patterns.//Hobbs BE,Heard HC. Mineral and Rock Deformation:Laboratory Studies-The Paterson Volume, American Geophysical Union,1986:246-261
    170. Scholz C H. The brittle-plastic transition and depth of seismic faulting. GeolRund,1988,(77):319-328
    171. Smith R B, Bruhn R L. Intraplate extensional tectonics of the eastern BasinRange: Inferences on structural style from seismic reflection data, regionaltectonics, and thermal mechanical models of brittle-ductile deformation. JGeophys Res,1984,89(B7):5733-5762.
    172. Schaff D F, et al. High-resolution image of Calaveras Fault seismicity. JGeophys Res,2002,107(B9)
    173. Shin T and Teng T. An overview of the1999Chi-Chi, Taiwan, earthquake.Bulletin seismological Society of America,2001,91:895~2001
    174. Sibon R H. Fault rocks and rock deformation in crustal fault zones. Annu RevEarth Planet Sci,1973,14:149~175
    175. Sibson R H. Thickness of the seismics slip zone. B Seismol Soc Am,2003,93(3):1169-1178
    176. Sibson, R H, Robert F, Poulsen, H. High-angle reverse faults, fluid-pressurecycling and mesothermal gold-quartz deposits. Geology,1988,16:551-555
    177. Sibson, R.H. Implications of fault-valve behavior for rapture nucleation andrecurrence. Tectonophysics,1992,211:283-293
    178. Skogby H, Bell D R, Rossman G R. Hydroxide in pyroxene:variations in thenatural environment. Am Mineral,1990,75:764-774
    179. Skogby H, Rossman G R. OH in pyroxene: an experimental study ofincorporation mechanisms and stability. Am Mineral,1989,74:1059-1069.
    180. Sone E, Yeh T, Nakaya J et al.. Mesoscopic structural observations of coresfrom the Chelungpu fault system, Taiwan Chelungpu-fault Drilling ProjectHole-A, Taiwan. Terr Atmos Ocean Sci,2007,18:359-377
    181. Stesky R M, Brace W F, Riley D K, et al.. Friction in faulted rock at hightemperature and pressure. Tectonophysics,1974,23:177-203
    182. Stipp M, Stunitz H, Heilbronner R, et al.. Dynamic recrystallization ofquartz:Correlation between natural and experimental conditions, in DeformatonMechanisms, Rheology and Tectonics: Current Status and Future Perspectives,edited by S. De Meer et al.. Geol Soc Spec Publ,2002a,200:171-190,
    183. Stipp M, Stunitz H. The eastern Tonale fault zone: a “natural laboratory” forcrystal plastic deformation of quartz over a temperature range from250to700’C. J Struct Geol,2002,24:1861-1884
    184. Stipp M, Tullis J, Behrens H. Effect of water on the dislocation creepmicrostructure and flow stress of quartz and implications for recrystallized grainsize piezometer. J Geophys Res,2006,111: B04201, doi:10.1029/2005JB003852
    185. Stipp M, Tullis J, Scherwath M et al.. A new perspective on paleopiezometry:Dynamically recrystallized grain size distributions indicate mechanism changes.Geology,2010,38:759-762
    186. Stipp M, Tullis J, Scherwath M, et al.. A new perspective on paleopiezometry:Dynamically recrystallized grain size distributions indicate mechanism changes.Geology,2010,38:759-762
    187. Stipp M, Tullis J. The recrystallized grain size piezometer for quartz. GeophysRes Lett,2003,30(21):2088, doi:10.1029/2003GL018444
    188. Stockhert B, Brix M R, Kleinschrodt R, et al.. Thermochronometry andmicrostructures of quartz-a comparison with experimental flow laws andpredictions on the temperature of the brittle-plastic transtion. J Struct Geol,1999,21:351-369
    189. Stockhert B, Brix M R, Kleinschrodt R, et al.. Thermochronometry andmicrostructures of quartz-acomparison with experimental flow laws andpredictions on the temperature of the brittle-plastic-transition. J Struct Geol,1999,21:351–369
    190. Suzuki S, Nakashima S. In-situ IR measurement of OH species in quartz athigh temperatures. Phys Chem Minerals,1999,26:217-225
    191. Takeshita T. Estimate of physical conditions for deformation c-axis transitionsin naturally deformed quartzite.J Geol Soc Jap,1996,102(3):211-222
    192. Trepmann C A, Stockhert B, Kuster M, et al.. Simulating coseismic deformationof quartz in the middle crust and fabric evolution during postseismic stressrelaxation–an experimental study. Tectonophysics,2007,442:83-104
    193. Trepmann C A, Stockhert B. Cataclastic deformation of garnet: A record ofsynseismic loading and postseismic creep. Journal of Structural Geology,2002,24:1845-1856
    194. Trepmann C A, Stockhert B. Mechanical twinning of jadeite-an indication ofsynseismic loading beneath the brittle-ductile transition. International of EarthSciences,2001,90:4-13
    195. Trepmann C A, Stockhert B. Quartz microstructures developed duringnon-steady state plastic flow at rapidly decaying stress and strain rate. J StrucGeol,2003,25:2035-2051
    196. Tullis J, Yund R A, Farver J. Deformation-enhanced fluid distribution infeldspar aggregates and implications for ductile shear zones. Geology,1996,24:63-66
    197. Tullis J, Yund R A. Hydrolytic weakening of experimentally deformedWesterly granite and Hale albite rock. J Struct Geol,1980,2(4):439-451
    198. Wang C Y,Han W B, Wu J P,et al.. Crustal structure beneath the Eastern marginof the Tibetan plateau and its Tectonic implication. J Geophys Res,2007,112,B07307:1-21
    199. Wang H, Ran Y K, Chen L C, et al.. Determination of horizontal shortening andamount of reverse-faulting from trenching across the surface rupture of the2008MW7.9Wenchuan earthquake, China. Tectonophysics,2010,491:10-20
    200. Whitmeyer S J, Wintsch R P. Reaction localization and softening of texturallyhardened mylonites in a reactivated fault zone, central Argentina. J MetaGeology,2005,23(6):411-424
    201. Williams Q, Hemley R J. Hydrogen in the deep earth. Annu Rev Earth PlanetSci,2001,29:365-418
    202. Wintsch R P, Christoffersen R, Kronenberg A K. Fluid-rock reaction weakeningin fault zones. J Geophys Res,1995,100:13021-13032
    203. Wintsch R P, Keewook Yi. Dissolution and replacement creep: a significantdeformation mechanism in mid-crustal rocks. J Struc Geol,2002,24:1179-1193
    204. Wintsch R P, Kvale C M, Kisch H J. Open system, constant volumedevelopment of slaty cleavage, and strain induced replacement reactions in theMartinsburg Formation, Lehigh Gap, PA. Geol Soc Am Bull,1991,103:916-927
    205. Wintsch R P. Blastocataclasite. A possible rock type from the bottom of theseismic zone: in: Snoke A W, Tullis J, V R Todd, eds. Fault Related Rocks: APhotographic Atlas,1998a,454-455
    206. Wintsch R P. Strengthening of fault breccia by K-feldspar cementation: in:Snoke A W, Tullis J, Todd V R, eds. Fault Related Rocks: A Photographic Atlas,1998b,42-46.
    207. Xu X W, Wen X Z, Yu G H. Coseismic reverse-and oblique-slip surfacefaulting generated by the2008Mw7.9Wenchuan earthquake, China. Geology,2009,37:515-518
    208. Xu Z Q, Ji S C, Li H B, et al.. Uplift of the Longmen Shan range and theWenchuan earthquake. Episodes,2008,31(3):291-301
    209. Yamagishi H, Nakashima S, Ito Y. High temperature infrared absorbancespectra of hydrous microcrystalline quartz. Phys Chem Minerals,1997,24:66-74
    210. Yanagisawa N, Fujimoto K, Nakashima S, et al.. Micro FT-IR study ofhydration-layer during dissolution of silica glass. Geochim Cosmochim Acta,1997,61:1165-1170
    211. Yardley B W D, J W Valley. How wet is the Earth’s crust? Nature,1994,371(15):205-206
    212. Yardley B W D, J W Valley. The petrologic case for a dry lower crust. JGeophys Res,1997,102(B6):12173-12185
    213. Yonkee W A, Parry W T, Bruhn R L. Relations between progressivedeformation and fluid-rock interaction during shear-zone growth in abasement-cored thrust sheet, Sevier orogenic belt, Utah. Am J Sci,2003,303:1-59
    214. Zhang X, Salemans J, Peach CJ et al.. Compaction experiments on wet calcitepowder at room temperature:Evidence for operation of intergranular pressuresolution,. in Deformaton Mechanisms, Rheology and Tectonics: Current Statusand Future Perspectives, edited by S. De Meer et al.., Geol Soc Spec Publ,2002,200:29-39
    215. Zhang X., Spiers CJ, Peach CJ. Compaction creep of wet granular calcite bypressure solution at28℃to150℃. J Geophys Res,2010,115, doi:
    10.1029/2008JB005835
    216. Zhang X, Spiers C J. Compaction of granular calcite by pressure solution atroom temperature and effects of pore fluid chemistry. Int. J. Rock Mech. Min.Sci.,2005a,42(7-8),950-960, doi:10.1016/j.ijrmms.2005.05.017
    217. Zhang X., Spiers CJ. Effects of phosphate ions on intergranular pressuresolution in calcite-An experimental study. Geochim. Cosmochim. Acta,2005b,69(24):5681-5691, doi:10.1016/j. gca.205.08.006
    218. Zhou Y. et al.. Reaction accommodated creep of wet gabbro. AOGS2011conference in Taipei, SE83-A001
    219. Zulauf G. Structural style, deformation mechanisms and paleodifferentialstress along an exposed crustal section: constraints on the rheology ofquartzofeldspathic rocks at supra-and infrastructural levels (BohemianMassif). Tectonophysics,2001,332:211-237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700