用户名: 密码: 验证码:
基于智能对象的混流装配线敏捷生产管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为应对日益激烈、瞬息万变的全球化市场竞争,企业纷纷应用敏捷制造(Agile Manufacturing,AM)的理念和技术不断强化制造过程的敏捷性,以准确、快速地响应动态多变的市场需求。因此,制造过程敏捷性成为制造企业和先进制造研究领域不断追求的目标。生产资源(如人、设备、物料)的优化组织与管理、以及状态信息及时准确获取是达成此目标的关键。论文针对离散制造业生产管理对敏捷性的需求,引入射频识别(Radio frequency identification,RFID)技术与物联网思想和技术,旨在通过创新新的生产组织与管理模式,来突破现行生产管理发展的瓶颈。
     论文以离散制造业广泛采用的混流装配线为研究背景、混流装配线生产管理为研究对象,将RFID技术与物联网思想引入制造车间,提出和建立了制造系统的智能对象,进而研究基于智能对象的敏捷生产管理模型;并基于此模型,围绕敏捷生产管理的实时制造数据采集与处理、生产过程控制和物料配送优化等关键核心技术问题,开展深入研究,形成基于智能对象的敏捷生产管理系列成果。主要研究成果包括:
     ①研究了基于智能对象的混流装配线敏捷生产管理模型。丰富的实时制造信息是实现敏捷生产管理的核心,物流与信息流不同步是自动获取实时制造信息的瓶颈。为此,本文将RFID技术应用于制造车间,赋予传统的车间生产对象以实时信息载体,使其转变为具有实时信息自动反馈与交互能力的智能对象,达成物流与信息流同步;通过引入物联网思想,研究了基于智能对象的泛在制造信息反馈与共享体系,支持丰富的实时泛在制造信息环境下的车间管理。在此基础上,针对改善生产组织敏捷性的需求,研究一种基于智能对象的混流装配线敏捷生产管理模型,建立了模型的框架结构、网络支撑体系和集成运行模式。该模型的特点表现为一方面通过智能对象技术支持信息系统、制造物理环境和人的无缝集成,另一方面通过集成接口支持联盟企业制造车间之间、客户与企业之间的透明化协同制造,从而提升对制造事件响应的敏捷性。
     ②可靠数据是实现敏捷生产管理的关键,由于无线通信特点和制造车间复杂应用环境影响,导致智能对象的RFID原始数据存在不可靠问题,因此,本文深入研究了制造环境下的RFID实时数据处理技术。首先,为便于数据处理,将RFID数据流用事件表示,建立了包含基本事件和复杂事件的RFID事件模型;其次,分析并总结了复杂制造环境下RFID应用可靠性,给出了一种RFID系统应用可靠性的评价指标,提出了从改进设备、部署方案优化、数据处理与优化三个层面改善RFID应用可靠性的技术框架;在此基础上,从数据处理与优化层面,建立了一种改善RFID系统应用可靠性的分层数据处理模型,该模型通过清洗与纠正RFID原始数据流中的不可靠数据,从而为后端敏捷生产管理应用提供可靠的实时应用数据,该模型已在企业车间制造系统成功应用并得到验证。
     ③低效的混流装配线生产过程控制是敏捷生产管理的瓶颈,为此,以智能对象技术构建的透明化制造车间为基础,研究了新的混流装配线生产过程控制方法。在对混流装配过程形式化描述的基础上,面向生产管理,给出一种基于智能对象的生产过程可视化方法,以实现管理层对生产过程的透明化监控,从而提升对生产过程事件响应的敏捷性;此外,针对手工装配随意性大带来的质量控制问题,通过对工序级生产任务的数字化,并结合智能对象技术,提出一种面向车间装配作业的混流装配过程质量控制方法,以加强装配过程精细化控制,提升产品的装配质量。
     ④混流装配线高效的物料配送是实现敏捷生产管理的核心。针对现有物料配送方法因缺乏实时制造信息支撑,难以敏捷响应混流装配频繁的状态调整与作业计划变更的问题,在应用智能对象技术实现物流与信息流同步的基础上,研究了一种新的集成实时生产进程的混流装配线敏捷物料推拉配送模型。该模型引入主动服务思想,由智能对象主动驱动物料配送中心按需供给线旁物料,解决混流装配物料错送、漏送、缺料和堆积等问题。此外,针对该模型对工位级配送BOM的需求,提出了以工位为中心的基于装配工艺的物料配送BOM构建方法。
     上述研究成果和所设计的一套相应的敏捷生产管理系统已成功应用于某企业摩托车混流装配线,在提升制造过程敏捷性、改善制造过程稳定性和提高企业应变能力等方面发挥了关键作用,验证了本文的研究结论。
Confronted with fierce competition and constantly changing of globalizing market, more and more enterprises have been employing agile manufacturing (AM) technology to continually strengthen manufacturing process’s agility and improve thus accurate and immediate responding ability to dynamic market requirement. Therefore, manufacturing process’s agility is the pursuing goal of manufacturing enterprise and advanced manufacturing (AM) research. Optimizing organization and automatically acquiring real-time state information of production resources (such as people, equipments, materials) are the key to achieve this goal. To meet the agility requirements of production management in discrete manufacturing, RFID (Radio frequency identification) and the thoughts of IOT (the Internet of Things) are employed in the dissertation. The aim is to establish innovative production management and organization mode, in order to break through the development bottleneck of current production management.
     The dissertation takes mixed-model assembly line (MMAL), which is widely adopted in discrete manufacturing, as research background, production management of MMAL as research object, RFID and the thoughts of IOT are brought into workshop. Smart object of manufacturing system is presented and created. Then smart object-based agile production management model is studied. On this basis, the key technical problems of the model is further studied, such as real-time manufacturing data acquiring and processing, production process control and material feeding optimizing. And a series of research results of smart object-based agile production management are formed. The main content is as follows:
     ①A smart object-based agile production management model for MMAL is studied. Abundant real-time manufacturing information is the key to realize agile production management. The asynchronous of material flow and information flow is the bottleneck of automatically acquiring real-time manufacturing information. Therefore, it is proposed to adopt RFID technology to identify and track workshop production objects, and those objects become smart objects with real-time information feedback and interactive function. Then, taking reference from the thoughts of IOT, a smart object-based ubiquitous manufacturing information feedback and sharing architecture is constructed, and it supports workshop production management with abundant real-time manufacturing information.
     Then, an agile production management model for MMAL which can satisfy the agility requirements for manufacturing process is presented, and its frame, network support system and integration operation mode are established. On one hand, the model can realize the seamless integration of information system, manufacturing environment and people with the support of smart object technology. On the other hand, it supports transparent cooperative manufacture of different workshops of enterprises in virtual enterprise, or between clients and enterprises. So, the agility of responding to manufacturing event can be improved.
     ②Reliable data is essential for realizing agile production management. To process RFID unreliable data that is caused by wireless communication or complex manufacturing environment, RFID real-time data processing technology in manufacturing environment is researched. Firstly, RFID data flow is transformed into event to process data conveniently, and a RFID event model is established, including RFID basic events and complex events. Then, RFID application reliability in complex manufacturing environment is analyzed and summarized, and a set of indexes for evaluating RFID application reliability are suggested. The technique system of improving RFID application reliability from improving equipment, optimizing RFID deployment scheme and processing data is put forward. Finally, from the aspect of RFID data process and optimization, a layered data processing model is set up to improve RFID application reliability. By cleaning and correcting unreliable data, the model can provide reliable real-time data for back-end agile production management application. The successful application of the model in a manufacturing system proves its feasibility.
     ③Ineffective production process control of MMAL is the bottleneck of agile production management. Therefore, on the basis of transparent workshop which is constructed by smart object technology, new production process controlling technology of MMAL is studied. Firstly, the product assembly process of MMAL is formally described. Then, a new assembly process visualized method, which is management layer-oriented and smart object-based, is presented to realize transparent monitoring to production process, and agility of responses to production event is improved. Moreover, to solve the problem of ineffective product quality control of manual assembly, with the support of smart object technology and procedure-level digital production task, a new workstation-oriented assembly process quality control method is proposed to strengthen accurate control of production process and improve product quality.
     ④Effective material feeding is the core of realizing agile production management. Traditionally material feeding method, which lacks of real-time production information, is hard to agilely respond to frequent state and plan change in MMAL. To solve the problem, on the basis of the synchronization of material flow and information flow which is realized by smart object technology, a new agile material push and pull feeding model (AMP2FM) is put forward, which integrates real-time production progress information. Following the principle of positive service, the smart object automatically orders material supply center to deliver necessary material to assembly line. The problems of wrong or miss feeding, lack of material and material accumulation, etc. are solved. Moreover, to satisfy the BOM digitalized requirement of workstation material delivery, a workstation-centered material feeding BOM construction method is proposed.
     The study mentioned above and the designed corresponding agile production management system has been successfully applied to a manufacturing enterprise’s motorcycle MMAL. It has contributed a lot to improve manufacturing process agility, enhance manufacturing process stability and improve enterprise’s response ability, and the dissertation’s research result is testified.
引文
[1]罗键.灵捷竞争时代下对制造企业敏捷性的研究[D].成都:西南财经大学博士论文, 2002.
    [2]杨叔子,吴波,李斌.再论先进制造技术及其发展趋势,机械工程学报, 2006, 42(1):1-5.
    [3]中国科学院先进制造领域战略研究组.中国至2050年先进制造科技发展路线图[M].北京:科学出版社, 2009.
    [4]阚树林著.生产计划与控制[M].北京:化学工业出版社, 2008.
    [5]路甬祥.走向绿色和智能制造—中国制造发展之路[J].中国机械工程, 2010, 21(4): 379-399.
    [6]曹乐.面向大规模定制的扩展制造执行系统及其关键技术研究[D].重庆:重庆大学博士论文, 2008.
    [7] Joseph Bukchin, Ezey M.Dar-Ei, Jacob Rubinovitz. Mixed model assembly line design in a make-to-order environment [J]. Computers & Industrial Engineering, 2002, 41(4):405-421.
    [8] Nils Boysen, Malte Fliedner, Armin Scholl. The product rate variation problem and its relevance in real world mixed-model assembly lines [J]. European Journal of Operational Research, 2009, 91(3): 201-214.
    [9]胡世军,芮执元,董建军.先进制造技术的特点及发展趋势[J].机床与液压, 2004, 12(10):12-14.
    [10]王旭,李文川.制造业的新理念—闭环产品生命周期管理[J].中国机械工程, 2010, 21(14):1687-1693.
    [11]杨浩.基于多Agent的敏捷化智能制造执行系统研究[D].南京:南京航空航天大学博士论文, 2004.
    [12] Debra A. Elkinsa, Ningjian Huanga, Jeffrey M Alden. Agile manufacturing systems in the automotive industry [J]. International Journal of Production Economics, 2004, 91(3): 201-214.
    [13] Yoram R, Suresh K, Eswaran S, et al. Building Agility for Developing Agile Design Information Systems [J]. Research in Engineering Design, 1999, 11(2): 67-83.
    [14]朱剑英.现代制造系统模式、建模方法及关键技术新发展[J].机械工程学报, 2000, 36(8): 1-5.
    [15] Cao Le, Liu Fei. Sharing and planning of distributed equipment for networked manufacturing [J]. Chinese Journal of Mechanical Engineering, 2007, 20(1):73-76.
    [16]孙林岩,汪建,曹德弼.先进制造模式的分类研究[J].中国机械工程, 2002, 13(1): 84-89.
    [17]蒋新松. 21世纪企业的主要模式——敏捷制造企业[J].计算机集成制造系统, 1996, 2(4):3-8.
    [18]姚振强,张雪萍著.敏捷制造[M].北京:机械工业出版社, 2004.
    [19]马鹏举,陈剑虹,卢秉恒,等.企业外部敏捷性及其基于Internet的使能技术研究[J].中国机械工程, 2002, 13(16):1416-1420.
    [20]张申生著.敏捷制造的理论.技术与实践[M].上海:上海交通大学出版社, 2000.
    [21]刘建国.混合流水线生产计划与调度问题研究[D].南京:南京航空航天大学博士论文, 2008.
    [22]黄刚.混流装配生产的计划排序及其执行过程管理[D].武汉:华中科技大学博士论文, 2007.
    [23]杨雷,张晓鹏.多阶段混流装配的看板控制系统设计及应用[J].系统工程理论与实践, 2009, 29(9) :64-72.
    [24]王川,周兵.多品种汽车变速箱装配线计算机管理系统设计[J].计算机工程, 2007, 33(14):247-263.
    [25] Dove, RICK. The Meaning of Life and the Meaning of Agile [J]. Production Magazine, 1994, 106(11):14-15.
    [26] DOVE, RICK.敏捷企业(上,下)(张申生译) [J].中国机械工程, 1996(3, 4):22—26; 21—27.
    [27]真彤,祁国宁,吴昭同,等.敏捷制造的总体技术研究[J].计算机集成制造系统, 1999, 7(3) :1-10.
    [28]乔立红,刘威.敏捷制造数据源及其实现技术[J].北京航空航天大学学报, 2009,35(2):119-222.
    [29] Wang L C, Lin S K. A multi-agent based agile manufacturing planning and control system [J]. Computers & Industrial Engineering, 2009, 57(2): 620-640.
    [30] M.K. Lim, D.Z. Zhang. An integrated agent-based approach for responsive control of manufacturing resources [J]. Computers & Industrial Engineering, 2004, 46(2): 221-232.
    [31]梁峰,江志斌,张志英,等.基于软构件的车间生产管理系统快速重组平台[J].上海交通大学学报, 2005, 39(1):101-104.
    [32]王军强,孙树栋,司书宾,等.组件化和集成化车间生产管理系统的研究与实现[J].计算机集成制造系统, 2006, 12(2):231-239.
    [33]薛冬娟,刘晓冰,邢英杰,等.复杂装备集成生产管理方案设计及关键技术研究[J].中国机械工程, 2006, 17(17):1798-1802.
    [34]刘飞,任凡,王东强.现代作业车间运行信息的系统模型及应用研究[J].中国机械工程, 2009,20(6):683-687.
    [35]童亮,鄢萍,刘飞.面向服务的车间制造过程信息集成运行系统[J].计算机集成制造系统, 2010,16(2):340-348.
    [36]尹超;马春斌;刘飞;等.车间生产异常事件实时管理系统研究[J].计算机集成制造系统, 2009,15(4):719-731.
    [37]尹超,尹胜,刘飞.车用空调装配车间集成化生产作业管理系统[J].计算机集成制造系统, 2009,13(3):544-552.
    [38]沈超.摩托车零部件制造企业集成化车间生产管理系统[D].重庆:重庆大学硕士论文, 2009.
    [39]张书亭,杨建军,邹学礼.面向敏捷制造车间的制造执行系统研究[J].新技术新工艺. 2000(12):2-4.
    [40]张书亭,杨建军,邬学礼.敏捷制造车间的生产管理模式及系统设计[J].航空制造技术, 2002(5):39-41.
    [41]王时龙,易力力,任亨斌.多品种小批量成批成套生产滚动计划的生成方法[J].重庆大学学报, 2009,32(9):1024-1027.
    [42]王时龙,程畅栋,任亨斌,等.多品种少批量制造环境下的改进型生产系统[J].计算机集成制造系统, 2009,15(9):1831-1835.
    [43]谭民,刘禹,曾隽芳,等. RFID技术系统工程及应用指南[M].北京:电子工业出版社, 2007, 15-18.
    [44]何伟,曾隽芳,魏书楷,等. RFID生产线监控及调度管理系统[J].自动化仪表, 2010,31(3):35-37.
    [45] E.W.T. Ngai, Karen K.L. Moon, Frederick J. Riggins, et al. RFID research: An academic literature review (1995-2005) and future research directions [J]. International Journal of Production Economics, 2008, 112(2):510-520.
    [46] Aysegul Sarac, Nabil Absi, Stephane Dauzere-Peres. A literature review on the impact of RFID technologies on supply chain management [J]. International Journal of Production Economics, 2010, doi:10.1016/j.ijpe.2010.07.039.
    [47] McFarlane D, Sarma S, Chirn J.L, Wong C.Y, and Ashton K. Auto ID systems and intelligent manufacturing control [J]. Engineering Applications of Artificial Intelligence, 2003, 16(4), 365-376.
    [48] Frederic Thiesse, Elgar Fleisch. On the value of location information to lot scheduling in complex manufacturing processes [J]. International Journal of Production Economics, 2008, 112(2), 532-547.
    [49] Qiu Robin. G. RFID-enabled automation in support of factory integration [J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(6), 677-683.
    [50] Zhou Shouqin. Ling Weiqing. Peng Zhongxiao. An RFID-based remote monitoring system for enterprise internal production management [J]. The International Journal of AdvancedManufacturing Technology, 2007, 33(7), 837-844.
    [51] Chen R.S, Tu M.A, Jwo J.S. An RFID-based enterprise application integration framework for real-time management of dynamic manufacturing processes [J] The International Journal of Advanced Manufacturing Technology, published online: 18, March, 2010.
    [52] Harrison, M., McFarlane, D., Parlikad, A.K., and Wong, C.Y. Information management in the product lifecycle–the role of networked RFID [C]. In 2nd IEEE International Conference on Industrial Informatics INDIN’04. June 2004, Berlin, Germany.
    [53] Vrba P, Macureka F, and Marik V. Using radio frequency identification in agent-based control systems for industrial applications [J]. Engineering Applications of Artificial Intelligence, 2008, 12(3), 331-342.
    [54] Guo Z.X, Wong W.K, Leung S.Y.S, and Fan J.T. Intelligent production control decision support system for flexible assembly lines [J]. Expert Systems with Applications, 2009, 36(3), 4268-4277.
    [55] Chen Ruey-Shun, Tu Mengru. Development of an agent-based system for manufacturing control and coordination with ontology and RFID technology [J]. Expert Systems with Applications, 2009, 36(4), 7581-7593.
    [56] Huang G.Q., Wright P.K., and Newman S.T. Wireless manufacturing: a literature review, recent developments, and case studies. International Journal of Computer Integrated Manufacturing, 2008, 22(7), 1-16.
    [57] Huang G.Q., Zhang Y.F., Jiang P.Y. RFID-based wireless manufacturing for real-time management of job shop WIP inventories. The International Journal of Advanced Manufacturing Technology, 2007, 36(7), 752-764.
    [58] Huang G.Q., Zhang Y.F., Jiang P.Y. RFID-based wireless manufacturing for walking-worker assembly islands with fixed-position layouts. Robotics and Computer-Integrated Manufacturing, 2007, 23(4), 469-477.
    [59] Huang G.Q., Zhang Y.F., Chen X., Newman S.T. RFID-enabled real-time wireless manufacturing for adaptive assembly planning and control. Journal of Intelligent Manufacturing, 2008, 19(6), 701-713.
    [60]刘卫宁,黄文雷,孙棣华,等.基于射频识别的离散制造业制造执行系统设计与实现[J].计算机集成制造系统, 2007, 13(10):1886-1890.
    [61]孙棣华,宋潇潇,郑林江. RFID与条码融合的离散制造过程自动标识技术研究[J].计算机工程与应用, 2010, 46(7):1-4.
    [62]孙惠斌,常智勇,莫蓉.基于Agent的装配执行过程监控方法[J].计算机集成制造系统, 2009, 15(10):2045-2049.
    [63]孙惠斌,常智勇.复杂产品装配执行过程建模与监控方法研究[J].中国机械工程, 2009, 20(16):1947-1951.
    [64]白翱,唐任仲,王志国,等.离散制造业射频识别技术导入的多层决策模型[J].浙江大学学报(工学版), 2009, 43(12):2196-2207.
    [65]臧传真,范玉顺.基于智能物件的制造企业信息系统研究[J].计算机集成制造系统, 2007, 13(1):49-56.
    [66]于锦华,霍春辉.国外组织敏捷性理论研究综述[J].经济管理, 2009, 31(5):170-174.
    [67]周和荣.敏捷企业理论研究综述[J].中国科技论坛, 2007, (9):64-68.
    [68]李艳红,田凤艳,韩兴亮.企业信息系统的敏捷性及其度量体系[J].系统工程, 2003, 21(6):27-31.
    [69]叶丹,战德臣,徐晓飞.企业的敏捷性及其度量体系[J].中国机械工程, 1998, 9(4):21-23.
    [70]赵捧未.基于敏捷制造模式的制造信息系统的研究[D].西安:西安电子科技大学博士论文, 2004.
    [71]凌兴宏.面向Agent的敏捷信息系统关键技术及应用研究[D].南京:南京航空航天大学博士论文, 2004.
    [72] Zhou Wei. RFID and item-level information visibility [J]. European Journal of Operational Research, 2009, 198(1):252-258.
    [73] Chen Jiannliang, Chen Chiaoming, Chen Chienwu, et al. Architecture design and performance evaluation of RFID object tracking systems [J]. Computer Communications, 2007, 30(9):2070-2086.
    [74]姜丽芬,卢桂章,辛运帏.基于RFID普适计算环境的形式化上下文模型.计算机工程, 2007, 33(11):173-175.
    [75] Sanchez Lopez, Tomas and Ranasinghe, D.C. Patkai, B. et al. Taxonomy, technology and applications of smart objects [J]. Information Systems Frontiers, 2009:1-20, doi: 10.1007/s10796-009-9218-4.
    [76] Christos Goumopoulos, Achilles Kameas. Smart Objects as Components of UbiComp Applications [J]. International Journal of Multimedia and Ubiquitous Engineering, 2009, 4(3):1-20.
    [77] Frank Siegemund. A Context-Aware Communication Platform for Smart Objects [J]. Lecture Notes in Computer Science, 2004, 3001, 69-86.
    [78] Kristian Birch Sorensen, Per Christiansson, Kjeld Svidt, et al. Towards Linking Virtual Models With Physical Objects in Construction Using RFID-Review of Ontologies [C]. 2008 International Conference on Information Technology in Construction, Santiago, Chile.
    [79] Eddy Bajic. A Service-Based Methodology for RFID-Smart Objects Interactions in SupplyChain [J]. International Journal of Multimedia and Ubiquitous Engineering, 2009, 4(3):37-55.
    [80] Michael Gruninger, Steven Shapiro, Mark S. Fox, et al. Combining RFID with Ontologies to Create Smart Objects [J]. International Journal of Production Research, 2010, 48(9):2633-2654.
    [81]臧传真,范玉顺.基于智能物件的实时企业复杂事件处理机制[J].机械工程学报, 2007, 43(2):22-32.
    [82] Wang F S, Liu S R, Liu P Y. Complex RFID event processing [J]. The International Journal on Very Large Data Bases, 2009, 18(4):913-931.
    [83] Wang F S, Liu S R, Liu P Y. A temporal RFID data model for querying physical objects [J]. Pervasive and Mobile Computing, 2010, 6(3):382-397.
    [84] Walzer K, Schill A, Loser A. Temporal constraints for rule-based event processing [C]. Proceedings of the ACM 1st Ph.D. Workshop in CIKM. New York: ACM Press, 2007.
    [85] Jae Yeol Lee, Dongwoo Seo, Byung Youn Song, et al. Visual and tangible interactions with physical and virtual objects using context-aware RFID [J]. Expert Systems with Applications, 2010, 37(5), 3835–3845.
    [86]叶蔚,黄雨,赵文,张世琨,王立福.基于Petri网的RFID中间件中复合事件检测研究[J].电子学报, 2008, 36(12A):1-8.
    [87]薛小平,张思东,王小平,等. RFID网络的数据清理技术[J].计算机工程, 2008, 34(7):92-95.
    [88] Wang Chonggang, Li Bo, Daneshmand. M, et al. On Object Identification Reliability Using RFID [J]. Mobile Networks and Applications, published online: 3, February, 2010.
    [89] Ahmad Rahmati, Lin Zhong, Matti Hiltunen, et al. Reliability Techniques for RFID-Based Object Tracking Applications[C]. Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, IEEE Computer Society, Washington, USA, 2007:113-118.
    [90]许嘉,于戈,谷峪,等. RFID不确定数据管理技术[J].计算机科学与探索, 2009, 3(6):561-576.
    [91]谷峪,李晓静,吕雁飞,等.基于RFID应用的综合性数据清洗策略[J].东北大学学报(自然科学版), 2009, 30(1):34-37.
    [92] Jeffery S R, Franklin M J, Garofalakis M. An adaptive RFID middleware for supporting metaphysical data independence [J]. The International Journal on Very Large Data Bases, 2008, 17(2):265-289.
    [93] Khoussainova N, Balazinska M, Suciu D. Towards Correcting Input Data Errors Probabilistically Using Integrity Constraints[C]. Proceedings of the 5th ACM InternationalWorkshop on Data Engineering for Wireless and Mobile Access, Chicago, USA: Association for Computing Machinery, 2006:43-50.
    [94] Huang HanPang, Chang YingTing. Optimal layout and deployment for RFID systems [J]. Advanced Engineering Informatics, 2010, doi:10.1016/j.aei.2010.05.002.
    [95]李睿,俞涛,方明伦.制造网格系统可靠性管理研究与实现[J].计算机集成制造系统, 2005, 11(5):358-363.
    [96] Zang C Z, Fan Y S, Liu R J. Architecture, implementation and application of complex event processing in enterprise information systems based on RFID [J]. Information Systems Frontiers, 2008, 10(5):543-553.
    [97]谷峪,于戈,胡小龙,等.基于监控对象动态聚簇的高效RFID数据清洗模型[J].软件学报, 2010, 21(4):632-643.
    [98]李敏波,陈晨,李华.面向物流跟踪的无线射频识别复杂事件处理方法[J].上海交通大学, 2010, 42(2):243-247.
    [99]闫新庆,尹周平,熊有伦.无线射频识别系统中的事件处理机制[J].华中科技大学学报(自然科学版), 2008, 36 (9):45-48.
    [100]赵新超,金蓓弘,余双,等.面向无线射频识别应用的复合订阅匹配[J].计算机集成制造系统, 2008, 14(9):5911-5918.
    [101]薛小平.基于Pub/Sub系统的RFID网络及其路由研究[D].北京:北京交通大学博士论文, 2008.
    [102] Jeffery S R,Garofalakis M,Franklin M J.Adaptive Cleaning for RFID Data Streams[C]. Proceedings of International Conference on VLDB, Seoul, Korea: ACM, 2006:163-174.
    [103] Jeffery S R, Alonso G, Franklin M J, et al. A Pipelined Framework for Online Cleaning of Sensor Data Streams[C]. Proceedings of the 22nd International Conference on Data Engineering, Washington, USA: IEEE Computer Society, 2006:140-143.
    [104] Jeffery S R. Declarative Support for Sensor Data Cleaning[C]. Proc. of PERVASIVE’06. Dublin, Ireland: [s. n.], 2006.
    [105] Gonzalez H. Warehousing and Analyzing Massive RFID DataSets[C]. Proc. of the 22nd International Conference on Data Engineering. Atlanta, USA: [s. n.], 2006: 83.
    [106] Yoneki E, Bacon J. Unified Semantics for Event Correlation over Time and Space in Hybrid Network Environments[C]. Proc. of IFIPInternational Conference on Cooperative Information Systems. [S. l.]: IEEE Press, 2005: 366-384.
    [107] Inoue S, Hagiwara D, Yasuura H. Systematic Error Detection for RFID Reliability[C]. Proceedings of The First International Conference on Availability, Reliability and Security. Orlando, USA:ARES, 2006:280-286.
    [108]蒋邵岗,谭杰. RFID中间件数据处理与过滤方法的研究[J].计算机应用, 2008, 28(10):2613-2615.
    [109]余式汪.基于RFID技术的装配过程可视化管理系统(AVMS)研究[D].杭州:浙江大学硕士论文, 2008.
    [110]刘志,蒋增强,葛茂根,等.面向装配的现场数据采集和过程监控研究[J].机械工程师,2009, (4):52-54.
    [111]刘检华,白书清,段华,等.面向手工装配的计算机辅助装配过程控制方法[J].计算机集成制造系统, 2009, 15(12):2391-2398.
    [112]刘检华,林晓青,刘金山,等.基于工作流的装配车间生产过程计划和控制技术[J].计算机集成制造系统, 2010, 16(4):755-771.
    [113]姜兴宇,王世杰,赵凯,等.面向网络化制造的智能工序质量控制系统[J].机械工程学报, 2010, 46(4):186-194.
    [114]余忠华,吴昭同.面向小批量制造过程的质量控制方法研究[J].机械工程学报, 2001, 37(8):60-64.
    [115]侯伟伟,刘检华,宁汝新,等.基于层次链的产品装配过程建模方法[J].计算机集成制造系统, 2009, 15(8):1522-1544.
    [116]张杰,李原,余剑峰,等.基于装配指令的飞机装配作业工作结构分解快速生成算法[J].计算机集成制造系统, 2009, 15(2):333-338.
    [117]曹振新,朱云龙.混流轿车总装配线上物料配送的研究与实践[J].计算机集成制造系统, 2006, 12(2):285-291.
    [118]曹振新.混流汽车总装过程的物料协同配送与管理信息系统研究[J].制造业自动化, 2008, 30(12):25-29.
    [119] Daria Battini, Maurizio Faccio, Alessandro Persona, Fabio Sgarbossa. Design of the optimal feeding policy in an assembly system [J]. International Journal of Production Economics, 2009, 121(1):233-254.
    [120]蒋丽,丁斌,藏晓宁.以工位为中心的生产物流配送优化[J].计算机集成制造系统, 2009, 15(11):2153-2159.
    [121] Wonjoon Choi, Yongil Lee. A dynamic part-feeding system for an automotive assembly line [J]. Computers & Industrial Engineering, 2002, 43(1):123-134.
    [122] Chiwoon Cho; Pius J. Egbelu. Design of a web-based integrated material handling system for manufacturing applications [J]. International Journal of Production Research, 2005, 43(2):375-403.
    [123]洪旭东,徐克林,夏天等.基于看板的生产线物料循环配送方式[J].工业工程, 2009, 12(4):116-120.
    [124]李瑞,雷汝海,王涛. Andon系统在现场物流中的分析与应用[J].工业工程, 2009, 12(2):119-121.
    [125]李晋航.模糊信息条件下混流装配线物料配送路径研究[D].武汉:华中科技大学硕士论文, 2008.
    [126]薛冬娟,黄学文,高天一,等.面向计划变更的物料多跟踪监控模式及协调方法[J].中国机械工程, 2009, 20(3):311-314.
    [127] F. Weichert, D. Fiedler, J. Hegenberg, et al. Marker-based tracking in support of RFID controlled material flow systems [J]. Logistics Research, 2010, 2(1):13-21.
    [128]徐建萍,郭钢.基于工艺流程的物料配送BOM模型[J].重庆大学学报(自然科学版), 2005, 28(6):19-21.
    [129]王琦峰,刘飞,黄海龙.面向服务的离散车间可重构制造执行系统研究[ J] .计算机集成制造系统, 2008, 14( 4): 737-743.
    [130] Ma Lianbo, Zhang Lei, Ma Lianyang, et al. Design of the Process Monitoring Management System Based on RFID [C]. Proceedings of the 21st annual international conference on Chinese control and decision conference, Guilin, China, 2009, pp: 5474-5476.
    [131]张楠,闫雅馨,刘新华.基于工作流的多型号产品生产计划与调度系统[J].哈尔滨工业大学学报, 2008, 40(12):2094-2098.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700