用户名: 密码: 验证码:
LHCD微波反馈控制的相位计算与读出系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低杂波电流驱动(Lower Hybrid Current Drive,LHCD)是托卡马克等离子休非感应电流驱动和改善等离子体约束的一种重要技术。低杂波通过天线辐射不对称谱的微波能量,通过朗道阻尼与等离子体中的共振电子发生有效作用,对电子在乎行于磁场的方向上加速而形成电流,这就是低杂波电流驱动的原理。低杂波驱动效果与天线波导间的相位差密切相关,相位角太小,则波不易进入等离子体芯部;若相位角太大,由于波的相速度较小,则大部分波的能量在外围就被电子吸收。通过调节波导阵列或者天线阵列的相位,可以获得所要求的波谱形状,以达到提高驱动效率、改善约束的目的。这是低杂波系统能够实现各种物理实验的先决条件。
     EAST(Experiment Advanced Super-conducting Tokamak)托卡马克上的2.45GHz低杂波系统采用俄制KU-2.45型微波束调管放大器作为微波源,其输出相位对束调管阴极负高压的变化比较敏感,1%的阴极负高压波动将引起输山相位10°的变化。为了保证调相精度,要求相位反馈控制的周期远小于束调管阴极负高压的波动周期(大约2ms),所以低杂波的相位反馈控制应该是一套高速的系统。
     考虑到软件反馈控制在整个相位反馈控制过程中相对耗时较多,本论文设计了一套高速的相位计算和数据读出系统,以便满足整个系统的高速要求。
     在EAST的低杂波系统中,鉴相仪采用的鉴相器件只能鉴别两路信号在-180°~+180°范围内的相位差大小,而不能区分相位的前后关系,这给带符号的相位计算造成了很大的难度。同时,鉴相器件在0°和±180°附近输出的电压—相位特性需要用高阶多项式描述,高阶多项式的求根运算也会增加相位计算的时间。
     针对相位计算的上述特点,我们设计了专用的硬件电路系统来完成相位计算。该系统的设计主要采用如下的技术路线:
     1.使用高速ADC将微波相位信号数字化,为使用高速的数字信号处理技术进行相位计算打下基础。
     2.根据鉴相器件的输出特性,使用Matlab/Simulink设计合适的相位算法并建立算法模型。
     3.使用大容量高性能的FPGA(Field Programmable Gate Array)器件,利用其内嵌的DSP核及其它丰富的资源,加上针对特殊运算的专用电路,实现相位算法的硬件设计。
     4.在单个FPGA器件中实现多个微波通道相位的并行计算。
     该相位计算系统可以快速完成EAST低杂波系统的20路微波主波导的相位计算,并且比采用传统DSP器件的方案具有更高的性价比。
     在此基础上,我们设计了基于PCI总线的光纤数据传输方案,同时保留了在HT-7托卡马克上具有成功经验的RS-485接口。在只使用光纤传输数据的情况下,整个系统不仅可以提供高速的数据传输通道,还可以有效地将地线与相位计算系统隔离,避免了在复杂的电磁环境下进行长距离传输时相互之间可能存在的影响。整个系统在实时操作系统QNX平台上运行,这样可以获得更快的软件响应速度。
     目前,整个相位计算和读出系统已经设计完成,并经过了一系列测试,即将与低杂波系统一起在EAST托卡马克上安装。
Lower Hybrid Current Drive (LHCD) is an effective method to sustain steady-state operation in tokamak. The energy of Lower Hybrid Waves (LHW) can be coupled into plasma to accelerate electrons by means of the Landau damping. The current drive efficiency depends on the plasma density, toroidal magnetic field and launched LHW power coupling spectrum. With various phase differences at each waveguide, the power coupling spectrums are diverse. If the phase differences are too small, some of the microwave beam cannot arrive at the center of plasma and the drive efficiency will be quite low. Otherwise, if the difference is too big, most of the LHW power will be absorbed by those outside electrons and the conversion efficiency will still be unsatisfactory. By feedback control of the phase differences at each waveguide, a specific power coupling spectrum can be maintained in purpose of increasing the drive efficiency and improving the plasma confinement. This is the prerequisite that the LHW system could achieve various goals in physics experiments.
     An LHW system with frequency of 2.45GHz, of which the microwave is derived from 20 KU-2.45 Klystron Amplifiers made in Russia, is applied on EAST (Experiment Advanced Super-conducting Tokamak). Since the phase of the klystron amplifier's output microwave is quite sensitive to the negative high voltage on its cathode, approximately a 10 degrees' phase movement can be brought about by a change of 1% on the negative high voltage, a feedback control, which should be completed much faster than the negative high voltage's fluctuations, must be achieved in order to maintain an experiment required power coupling spectrum.
     Considering about each part of the whole feedback control procedure, the software execution of feedback control will occupy most of the time cost, so a high-speed phase calculating and readout system are designed and implemented to satisfy the speed requirement of the entire feedback control.
     In the LHW system of EAST, the phase detector can only detect the magnitude of the phase difference in the range from -180°to +180°between the two input signals, but cannot recognize whether the current phase is positive or negative. This makes the signed phase calculation more difficult. Also, since the phase voltage output around 0°and±180°of the phase detector needs a high-order polynomial to describe, the high-order root operation will increase the time cost of phase calculation.
     According to the difficulties mentioned above, a phase calculating system, which is a hardware circuit, is designed and implemented as a solution. The main technical features of this system are as follows:
     1. A high-speed analog-digital converter converts the phase voltage into digital signals, which is a necessary preparation for the use of high-speed digital signal process technique.
     2. By analyzing the characteristic relationship between the phase voltage and the phase differences, a proper phase calculating algorithm for the specific phase detector is designed and the corresponding algorithm model is constructed in Matlab/Simulink environment.
     3. A large capacity and high performance FPGA (Field Programmable Gate Array) device, by taking the advantages of its embedded DSP cores and other abundant resources, plus some specific circuit modules for special calculations, is present to implement the phase algorithm model in hardware.
     4. Parallel process of phase calculating for multi-channels is implemented in a single FPGA device.
     As a result of the applications of these technologies, the phase calculating system has the ability to complete the calculation of all phase differences at 20 waveguides in the EAST LHW system in a considerable short time, and has better price/performance ratio than traditional DSP solutions.
     On the basis of the accomplishment of the phase calculating system, a data readout system is then designed and implemented based on PCI bus and fiber channel, with a RS-485 interface that has successful experience on the HT-7 Tokamak. When the connection between the readout system and the phase calculating system is constructed only through the fiber channel, it can not only provide a high speed data transmission path but also isolate the ground of the two systems. The readout system is running on QNX platform, a real-time operating system, so the software response is enhanced.
引文
[1]石秉仁,磁约束聚变原理与实践,第一版,北京,原子能出版社,1999
    [2][日]宫本健朗,热核聚变等离子体物理学,第一版,北京,科学出版社,1981,1-8
    [3]王乃彦,聚变能及其未来,第一版,北京,清华大学出版社,2001
    [4]朱士尧,核聚变原理,中国科学技术大学出版社,1992
    [5]N.J.Fisch,Phys.Rev.Lett.,41,1978,873
    [6]N.J.Fisch and C.F.F.Karney,Phys.Rev.Lett.,1985,54:897
    [7]石秉仁,磁约束聚变原理与实践,第一版,北京,原子能出版社,1999
    [8]沈慰慈,匡光力等,HT-7低杂波电流驱动效率与等离子体参数相关性实验,核聚变与等离子体物理,Vol.23,No.4,2003.12
    [9]李嗣服,计算机控制基础,中国科学技术大学出版社,2001
    [10]Ron Parker,Status of Lower Hybrid Project,MIT Plasma Science and Fusion Center,Alcator C-MOD PAC Meeting,Februry 6-7,2002
    [11]Ron Parker,Lower Hybrid,MIT Plasma Science and Fusion Center,Alcator C-MOD PAC Meeting,January 25-27,2002
    [12]S.Bernabei,J.C.Hosea,D.Loesser,et al.,A Low Hybrid Current Drive System for Alcator C-Mod,May 2001
    [13]Lin Jian-an,Kuang Guang-li,et al.,Composition of HT-7 LHCD and its Protection System,Plasma Science & Technology,Vol.3,No.6,(2001)
    [14]王茂,新HT-7低杂波天线微波特性的测量与低杂波单管实验的研究,中科院等离子体物理研究所硕士论文,2002.6.7
    [1]戴逸民,频率合成与锁相技术,合肥,中国科学技术大学出版社,1995
    [2]林建安,低杂波系统监控技术研究,中科院等离子体物理研究所博士论文,2002.12
    [3]徐辉,EAST低杂波相位反馈控制系统研究,中科院等离子体物理研究所硕士论文,2007.5
    [4]AD8302 datasheet,Rev.A,Analog Devices,Inc.,2002
    [5]罗龙智,周南,罗海,整数开平方快速算法及其定点DSP实现,电子科技大学,微计算机信息,2007(08)
    [6]Yamin Li and Wanming Chu,Parallel-Array Implementations of a Non-Restoring Square Root Algorithm,ICCD'97,International Conference on Computer Design,October 12-15,1997,Austin,Texas,USA,pp.690-695
    [1]Cyclone II Device Handbook,Altera Corporation,2007
    [2]ADS5277 datasheet,Texas Instruments,SBAS333B-February 2005-Revised August 2005
    [3]Fully Differential-Amplifiers,James Karki,Texas Instruments,Application Report,SLOA054D,January 2002
    [4]THS4502 datasheet,Texas Instruments,SLOS352D -April 2002-Revised January 2004
    [5]LM324 datasheet,Fairchild Semiconductor Corporation,Rev.1.0.4,2002
    [6]Interfacing High-Speed LVDS Outputs of the ADS527x/ADS524x,Goutam Dutta,Nagarajan Viswanathan,Anand Udupa,Texas Instruments,Application Report SBOA104-February 2005
    [7]Connecting Xilinx FPGAs to Texas Instruments ADS527x Series ADCs,Xilinx,Inc.,XAPP774(V1.1),November 4,2004
    [8]吴秀清,周荷琴,微型计算机原理与接口技术第二版,中国科学技术大学出版社,合肥2002,374-377
    [9]LVDS Application and Data Handbook,Texas Instruments,SLLD009,November 2002
    [10]SN65LBC179A,Low-Power Differential Line Driver and Receiver Pairs,Texas Instruments,SLLS377C-May 2000-Revised June 2001
    [11]TLK1501 datasheet,0.6 to 1.5 GBPS Transceiver,Texas Instruments,SLLS428F-June 2000-Revised January 2004
    [12]A DC-Balanced,Partitioned-Block,8B/10B Transmission Code,A.X.Widmer and R A.Franaszek,IBM J.RES.DEVELOR Vol.27 No.5,September 1983
    [13]AFBR-53 DSZ datasheet,850nm VCSEL,1×9 Fiber Optic Transceivers for Gigabit Ethernet,Avago Technologies,V02-0457EN,May 25,2007
    [14]MAX7221 datasheet,Serial Interfaced 8-Digit LED Display Driver,Maxim,19-4452,Rev.4,July 2003
    [15]9013 datasheet,NPN Epitaxial Silicon Transistor,Revised October 1999
    [16]TPS5430 datasheet,3A Wide Input Range Step-Down Swift Converter,Texas Instruments,SLVS2362C,January,2006-Revised November 2006
    [17]LM 1084 datasheet,5A Low Dropout Positive Regulators,National Semiconductor,June 2005
    [18]LP3883 datasheet,3A Fast-Response Ultra Low Dropout Linear Regulators,National Semicondutor,June 2005
    [19]LM337T datasheet,3-Terminal Adjustable Negative Regulators,National Semiconductor,November 2001
    [20]Con figuration Handbook,CF5V1-2.2,Altera Corporation,August 2005
    [21]Quartus II Handbook QIISV 1-6.1,Altera Corporation,November 2006
    [22]MA3J147 datasheet,Panasonic
    [23]MC74LVX4245 datasheet,Dual Supply Octal Translating Transceiver with 3-State Outputs,Rev.3,Semiconductor Components Industries,LLC,2001
    [1]AD8302 datasheet,Rev.A,Analog Devices,Inc.,2002
    [2]AD8307 datasheet,Rev.C,Analog Devices,Inc.,2006
    [3]徐辉,EAST低杂波相位反馈控制系统研究,中科院等离子体物理研究所硕士论文,2007.5
    [4]Cyclone II Device Handbook,Altera Corporation,2007
    [5]DSP Builder User Guide,Rev.6.1,Altera Corporation,December 2006
    [6]潘松,黄继业,王国栋,现代DSP技术,西安电子科技大学出版社,2003
    [7]罗龙智,周南,罗海,整数开平方快速算法及其定点DSP实现,电子科技大学,微计算机信息,2007(08)
    [8]Yamin Li and Wanming Chu,Implementation of Single Precision Floating Point Square Root on FPGAs,Proc.Of the IEEE Symposium on FPGAs for Custom Computing Machines,Napa,California,USA,April 1997
    [9]戢小亮,基于FPGA快速平方根算法的实现,西安邮电学院,现代电子技术,2007年第14期总第253期
    [10]Yamin Li and Wanming Chu,Parallel-Array Implementations of a Non-Restoring Square Root Algorithm,ICCD'97,International Conference on Computer Design,October 12-15,1997,Austin,Texas,USA,pp.690-695
    [1]QNX Neutrino RTOS System Architecture,for Release 6.30 or later,QNX Software Systems,Ltd.,2004
    [2]徐竟青,黄俊峰,李一平,QNX设备驱动程序的编制,计算机工程,第29卷第12期,2003年7月
    [3]IndustioCP-132系列多串口卡使用手册,中文第一版,Moxa Technologies CO.,Ltd.,2002.4
    [4]QNX Neutrino Realtime Operating System,Utilities Reference,for QNX Newtrino 6.2,QNX Software Systems,Ltd.,2002
    [5]Michaie R.Sweet,Serial Programming Guide for POSIX Operating Systems,5th Edition,4th Revision
    [6]QNX Neutrino Realtime Operating System,Photon microGUI Programmer's Guide,for QNX Newtrino 6.2.ONX Software Svstems,Ltd.,2002
    [7]邹海,边信黔等,QNX环境下多线程编程,微计算机信息,2004年第20卷第6期
    [8]David R.Butenhof,Programming with POSIX Threads,Addison-Wesley Professional,May 26,2007
    [9]SN65LBC 179A,Low-Power Differential Line Driver and Receiver Pairs,Texas Instruments,SLLS377C-May 2000-Revised June 2001
    [10]PCI9054 Data Book,Version 2.1,PLX Technology Inc.,January 2000
    [11]93LC66A/B,4K 2.5V Microwire Serial EEPROM,Microchip Technology Inc.,1998
    [12]TLK1501 datasheet,0.6 to 1.5 GBPS Transceiver,Texas Instruments,SLLS428F-June 2000-Revised January 2004
    [13]PCI Local Bus Specification,Revision 2.2,PCI special Interest Group,December 18,1998
    [14]王斑,苗克坚,QNX驱动程序的编写,微型电脑应用,2006年第22卷第3期
    [15]曹园,吴勇,傅鹏等,QNX4.25设备驱动程序的编写,中国科学院等离子体物理研究所,单片机与嵌入式系统应用,2003年第4期
    [16]QNX Neutrino Realtime Operating System,Library Reference,for QNX Newtrino 6.2,QNX Software Systems,Ltd.,2002
    [1]John Koeter,What's an LFSR?,Texas Instruments,SCTA036A,December 1996
    [2]http://mathworld.wolfram.com/PrimitivePolynomial.html,Primitive Polynomial,Wolfram Research,Inc.
    [3]DS257 V1.0,Linear Feedback Shift Register V3.0,Xilinx Inc.,March 28,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700