用户名: 密码: 验证码:
托卡马克边缘等离子体中测地声模带状流的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了托卡马克等离子体涨落流中一种非常重要的静电涨落结构:带状流(zonal flows)。托卡马克等离子体中的带状流是极向上环向上对称的静电涨落,并且它在径向上有传播。理论研究表明带状流在调节背景湍流幅度、改善输运以及触发低约束模到高约束模转换(L-H转换)方面都有着重要的作用。它共有两个分支:低频带状流(Low Frequency Zonal Flow,LFZF)和有限频率的测地声模(Geodesic Acoustic Mode,GAM),本论文的重点是测地声模的实验测量,研究它的模特征、同背景湍流之间相互作用以及和输运的关系。
     本论文中测量测地声模的实验是在中国环流器2号A(Huanliuqi-2A,HL-2A成都)托卡马克上完成的。在国际上首次使用了特殊构造的三台阶静电Langmuir探针阵列,在托卡马克的极向、环向和径向三个方向上同时对测地声模的三维谱特征进行了测量,第一次同时给出了测地声模的三维谱特征。使用两点法计算了测地声模的三维谱功率谱密度S(k_θ,k_φ,k_r,f_(GAM)),结果表明测地声模在极向和环向对称,m=n=0;在径向上测地声模向外传播,径向波数为k_r=+1.8cm~(-1),宽度为Δk_r=1.5cm~(-1),用离子回旋半径ρ_i归一化后得到k_rρ_i=0.05,Δk_rρ_i=0.04;测地声模的径向波数谱S(k_r,f_(GAM))表明测地声模径向上向外传播,主要是行波成分,驻波分量非常少,它的群速度等于相速度,都是向外传播。
     本论文通过对实验数据详细地双谱分析和包络分析,首次澄清了在实验中观察到的测地声模同背景湍流两种相互作用:第一种相互作用对应于测地声模从背景湍流产生的能量守恒过程,表现为测地声模对高频背景湍流的直接幅度调制,是测地声模的产生过程;第二种相互作用反映测地声模对背景湍流的剪切效应,在这个过程中背景湍流通过测地声模把能量从低频向高频级联,是在测地声模产生之后和背景湍流的相互作用。本论文还研究了测地声模同高频湍流之间非线性耦合的共振现象。实验结果表明测地声模的相速度接近高频背景湍流的群速度,在两种速度最接近的时候共振现象最明显。本论文得出结论,测地声模由背景湍流通过非线性三波相互作用产生,并且反作用于背景湍流。
     本论文首次研究了测地声模对径向粒子输运的影响。分析结果表明测地声模的极向对称性能够抑制径向输运,并且测地声模密度涨落的极向不对称性引起输运通量在极向上的不对称。
     此外本论文还对测地声模进行了非线性动力学的相关分析,初步结果表明测地声模相对幅度越大非线性维数就越小。
The zonal flows in tokamak plasma, which are toroidally and poloidally symmetric with finite radial wavenumber, play a very import role in regulating the turbulence and enhancing the confinement. Zonal flows have two branches: the Low Frequency Zonal Flow (LFZF) and Geodesic Acoustic Mode (GAM). The experimental study of GAM is the subject of this thesis.
     The three-dimensional wavenumber and frequency spectrum for the geodesic acoustic mode (GAM) has been measured in the HuanLiuqi-2A tokamak for the first time. The spectrum provides definite evidence for the GAM, which is characterized by k_θ=k_φ= 0 and k_rρ_i≈0.04 - 0.09 with the full width at half-maximum k_rρ_i≈0.03 - 0.07. The localized GAM packet is observed to propagate outward in the radial direction with nearly the same phase and group velocity. A single peak feature is observed in S(k_r) spectrum, which implies there only exists traveling wave component in the GAM, with little standing wave component.
     The envelopes of the radial electric field and density fluctuations are observed to be modulated by the GAM. By comparing the experimental result with that of the envelope analysis using model signals, the mechanism of the envelope modulation has been identified. The results strongly suggest that the envelope modulation of the E_r fluctuations is dominantly caused by the direct regulation of the GAM during the GAM generation in the energy-conserving triad interaction, and the envelope modulation of the density fluctuations is induced by the GAM shearing effect, which transfers the fluctuation energy from low to high frequencies.
     In addition, all the cross- and auto-bicoherences for interactions between the GAM and turbulent fluctuations show a similar peaked feature that may reflect the resonant property in the nonlinear coupling between the GAM and turbulent fluctuations.
     The radial particle flux associated with GAM is studied in the thesis. The GAM can reduce the radial particle flux and the asymmetry in the density fluctuation of GAM possibly leads to the asymmetry of the radial particle flux.
     The nonlinear dynamics analysis is also applied to GAM. The nonlinear dimension decreases with the increasing of the relative amplitude of GAM.
引文
[1] J. Wesson. Tokamaks. Clarendon Press, second edition (1997).
    [2] T. J. Dolan. "Fusion Reasearch". Pergamon Press (2000).
    [3] A. H. Boozer. Physics of magnetically confined plasmas. Rev. Mod. Phys. 76(4), 1071 (2004). URL http://link.aps.org/abstract/RMP/v76/plO71.
    [4] J. D. Lawson. Some Criteria for a Power Producing Thermonuclear Reactor. Proceedings of the Physical Society. Section B 70(1), 6-10 (1957). URL http: //stacks.iop.org/0370-1301/70/6.
    [5] D. Bohm. The Characteristics of Electrical Discharges in Magnetic Fields. McGraw-Hill, New York (1949).
    [6] Lyman Spitzer, Jr. Particle Diffusion across a Magnetic Field. Phys. Fluids 3(4), 659-661 (1960). URL http://link.aip.Org/link/?PFL/3/659/1.
    [7] J. B. Taylor. Diffusion of plasma across a magnetic field. Phys. Rev. Lett. 6(6), 262-263 (1961).
    [8] F. Wagner, G. Becker, K. Behringer et al. Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak. Phys. Rev. Lett. 49(19), 1408-1412 (1982).
    [9] T. L. Rhodes, R. J. Taylor, E. J. Doyle et al. Poloidally Asymmetric response of turbulence to the H Mode on the CCT tokamak. Nucl. Fusion 33(12), 1787-1797 (1993).
    [10] J. W. Connor and H. R. Wilson. A review of theories of the L-H transition. Plasma Physics and Controlled Fusion 42(1), R1-R74 (2000). URL http: //stacks.iop.org/0741-3335/42/R1.
    [11] K. C. Shaing and E. C. Crume. Bifurcation theory of poloidal rotation in tokamaks: A model for L-H transition. Phys. Rev. Lett. 63(21), 2369-2372 (1989).
    
    [12] Z. Lin, S. Ethier, T. S. Hahm et al. Size Scaling of Turbulent Transport in Magnetically Confined Plasmas. Phys. Rev. Lett. 88(19), 195004 (2002).
    
    [13] W. Horton. Drift waves and transport. Rev. Mod. Phys. 71(3), 735-778 (1999).
    
    [14] J. W. Conner and H. R. Wilson. Survey of theories of anomalous transport. Plasma Physics and Controlled Fusion 36(5), 719-795 (1994). URL http: //stacks.iop.org/0741-3335/36/719.
    
    [15] ITER Physics Expert Groups. Chapter 2: Plasma confinement and transport. Nucl. Fusion 39(12), 2175-2249 (1999).
    
    [16] C. M. Surko and R. E. Slusher. Waves and Turbulence in a Tokamak Fusion Plasma. Science 221(4613), 817-822 (1983). URL http://www.sciencemag. org/cgi/content/abstract/221/4613/817.
    
    [17] P. C. Liewer. Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport. Nucl. Fusion 25(5), 543-621 (1985). URL http://link.aip.Org/link/?PFL/29/309/1.
    
    [18] A. J. Wootton, B. A. Carreras, H. Matsumoto et al. Fluctuations and anomalous transport in tokamaks. Phys. Fluids B: Plasma Physics 2(12), 2879-2903 (1990). URL http://link.aip.org/link/?PFB/2/2879/1.
    [19] B. A. Carreras. Progress in anomalous transport research in toroidal magnetic confinement devices. IEEE Transactions on Plasma Science 25(6), 1281-1321 (1997). ISSN 0093-3813.
    
    [20] M. Endler. Turbulent SOL transport in stellarators and tokamaks. Journal of Nuclear Materials Volumes 266-269(2), 84-90 (1999). URL http://www.sciencedirect.com/science/article/B6TXN-3X6SKP6-B/2/ 87828cf0d58455efa40e48f232ed5c70.
    
    [21] N. Chakrabarti, R. Singh, P. K. Kaw et al. Nonlinear excitation of geodesic acoustic modes by drift waves. Phys. Plasmas 14(5), 052308 (2007). URL http://link.aip.org/link/?PHP/14/052308/1.
    
    [22] H. Biglari, P. H. Diamond, and P. W. Terry. Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B: Plasma Physics 2(1), 1-4 (1990). URL http://link.aip.org/link/?PFB/2/1/1.
    [23] K. C. Shaing, J. E. C. Crume, and W. A. Houlberg. Bifurcation of poloidal rotation and suppression of turbulent fluctuations: A model for the L-H transition in tokamaks. Physics of Fluids B: Plasma Physics 2(6), 1492-1498 (1990). URL http://link.aip.Org/link/?PFB/2/1492/1.
    [24] Ch. P. Ritz, R. D. Bengtson, S. J. Levinson et al. Turbulent structure in the edge plasma of the TEXT tokamak. Physics of Fluids 27(12), 2956-2959 (1984). URL http://link.aip.Org/link/?PFL/27/2956/1.
    [25] Ch. P. Ritz, H. Lin, T. L. Rhodes et al. Evidence for confinement improvement by velocity-shear suppression of edge turbulence. Phys. Rev. Lett. 65(20), 2543-2546 (1990).
    [26] H. Y. W. Tsui, A. J. Wootton, J. D. Bell et al. A comparison of edge turbulence in tokamaks, stellarators, and reversed-field pinches. Physics of Fluids B: Plasma Physics 5(7), 2491-2497 (1993). URL http://link.aip.org/link/ ?PFB/5/2491/1.
    [27] R. A. Moyer, K. H. Burrell, T. N. Carlstrom et al. Beyond paradigm: Turbulence, transport, and the origin of the radial electric field in low to high confinement mode transitions in the DIII-D tokamak. Phys. Plasmas 2(6), 2397-2407 (1995). URL http://link.aip.Org/link/?PHP/2/2397/1.
    [28] J. A. Boedo, P. W. Terry, D. Gray et al. Suppression of Temperature Fluctuations and Energy Barrier Generation by Velocity Shear. Phys. Rev. Lett. 84(12), 2630-2633 (2000).
    [29] V. Antoni, E. Martines, D. Desideri et al. Electrostatic transport reduction induced by flow shear modification in a reversed field pinch plasma. Plasma Physics and Controlled Fusion 42(2), 83-90 (2000). URL http://stacks. iop.org/0741-3335/42/83.
    [30] M. G. Shats, K. Toi, K. Ohkuni et al. Inward Turbulent Transport Produced by Positively Sheared Radial Electric Field in Stellarators. Phys. Rev. Lett. 84(26), 6042-6045 (2000).
    [31] G. R. Tynan, L. Schmitz, R. W. Conn et al. Steady-state convection and fluctuation-driven particle transport in the H-mode transition. Phys. Rev. Lett. 68(20), 3032-3035 (1992).
    
    
    [32] P. W. Terry, D. E. Newman, and A. S. Ware. Suppression of Transport Cross Phase by Strongly Sheard Flow. Phys. Rev. Lett. 87(18), 185001 (2001).
    
    [33] T. S. Hahm and K. H. Burrell. Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma. Phys. Plasmas 2(5), 1648-1651 (1995). URL http://link.aip.Org/link/?PHP/2/1648/1.
    
    [34] T. S. Hahm, M. A. Beer, Z. Lin et al. Shearing rate of time-dependent E x B flow. Phys. Plasmas 6(3), 922-926 (1999). URL http://link.aip.org/ link/?PHP/6/922/1.
    
    [35] T. S. Hahm. Physics behind transport barrier theory and simulations. Plasma Phys. Control. Fusion 44, A87-A101 (2002).
    
    [36] S. Jachmich, G. V. Oost, R. R. Weynants et al. Experimental investigations on the role of ExB flow shear in improved confinement. Plasma Phys. Control. Fusion 40(6), 1105-1113 (1998).
    
    [37] K. H. Burrell. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices. The 38th annual meeting of the Division of Plasma Physics (DPP) of the American Physical Society, Plasma Phys. 4(5), 1499-1518 (1997). URL http://link.aip.Org/link/?PHP/4/ 1499/1.
    
    [38] B. A. Carreras, K. Sidikman, P. H. Diamond et al. Theory of shear flow effects on long-wavelength drift wave turbulence. Physics of Fluids B: Plasma Physics 4(10), 3115-3131 (1992). URL http://link.aip.Org/link/?PFB/4/3115/1.
    
    [39] R. E. Waltz, G. D. Kerbel, and J. Milovich. Toroidal gyro-Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes. Phys. Plasmas 1(7), 2229-2244 (1994). URL http://link. aip.org/link/?PHP/1/2229/1.
    
    [40] L. A. Charlton, B. A. Carreras, V. E. Lynch et al. Bifurcations and modulational interaction in negative compressibility turbulence. Physics of Plasmas 1(8), 2700-2710 (1994). URL http://link.aip.Org/link/?PHP/1/2700/1.
    
    [41] M. A. Beer and G. W. Hammett. The Dynamics of Small-Scale Turbulence-Driven Flows. Theroy of Fusion Plasmas, Proceeding of the Joint Varenna-Lausanne International Workshop, Varenna (1998).
    
    [42] R. E. Waltz, G. D. Kerbel, J. Milovich et al. Advances in the simulation of toroidal gyro-Landau fluid model turbulence. Phys. Plasmas 2(6), 2408-2416 (1995). URL http://link.aip.Org/link/?PHP/2/2408/1.
    
    [43] Y. B. Kim, P. H. Diamond, H. Biglari et al. Theory of neoclassical ion temperature-gradient-driven turbulence. Physics of Fluids B: Plasma Physics 3(2), 384-394 (1991). URL http://link.aip.Org/link/?PFB/3/384/1.
    
    [44] P. W. Terry. Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72(1), 109-165 (2000).
    
    [45] K. Ida. Experimental studies of the physical mechanism determining the radial electric field and its radial structure in a toroidal plasma. Plasma Phys. Control. Fusion 40(8), 1429-1488 (1998). URL http://stacks.iop.org/ 0741-3335/40/1429.
    
    [46]许宇鸿.多脉冲湍流加热实现L->H模转换物理机制的研究.博士论文,中国 科学技术大学(1998).
    
    [47]王文浩.磁约束等离子体边缘湍流长程相关特性及湍流雷诺胁强驱动极向流 研究.博士论文,中国科学技术大学(2002).
    
    [48] S. B. Korsholm, P. K. Michelsen, V. Naulin et al. Reynolds stress and shear flow generation. Plasma Phys. Control. Fusion 43, 1377-1395 (2001).
    
    [49] Y. H. Xu, C. X. Yu, J. R. Luo et al. Role of Reynolds Stress-Induced Poloidal Flow in Triggering the Transition to Improved Ohmic Confinement on the HT-6M Tokamak. Phys. Rev. Lett. 84(17), 3867-3870 (2000).
    
    [50] Y. H. Xu, C.-X. Yu, J. R. Luo et al. Improved Ohmic confinement induced by multipulse turbulent heating in the Hefei Tokamak-6M. Physics of Plasmas 5(6), 2317-2325 (1998). URL http://link.aip.Org/link/?PHP/5/2317/1.
    
    [51] K. C. Shaing and Y. Z. Zhang. Transition to high mode induced by reduction of magnetic stress. Phys. Plasmas 2(9), 3243-3245 (1995). URL http://link.aip.org/link/?PHP/2/3243/1.
    
    [52] K. C. Shaing and P. J. Christenson. Ion collisionality and L-H transition in tokamaks. Phys. Fluids B: Plasma Physics 5(3), 666-668 (1993). URL http://link.aip.Org/link/?PFB/5/666/1.
    
    [53] F. Hinton and Y.-B. Kim. Determination of the electric field near a separatrix in diverted tokamaks. Nucl. Fusion 34(7), 899-912 (1994). URL http:// stacks.iop.org/0029-5515/34/899.
    
    [54] K. Miyamoto. Direct ion orbit loss near the plasma edge of a divertor tokamak in the presence of a radial electric field. Nucl. Fusion 36(7), 927-38 (1996). URL http://stacks. iop.org/0029-5515/36/927.
    
    [55] S. I. Krasheninnikov and P. N. Yushmanov. The influence of a radial electric field on neoclassical orbits and ion prompt losses from tokamak edge plasmas. Phys. Plasmas 1(5), 1186-1194 (1994). URL http://link.aip.org/link/ ?PHP/1/1186/1.
    
    [56] Y. B. Kim, F. L. Hinton, H. S. John et al. Extended theory of main ion and impurity rotation and bootstrap current in a shear layer. Plasma Phys. Control Fusion 36(7A), A189-A193 (1994). URL http://stacks.iop.org/ 0741-3335/36/A189.
    
    [57] F. L. Hinton, J. Kim, m. Kim et al. Poloidal rotation near the edge of a tokamak plasma in H mode. Phys. Rev. Lett. 72(8), 1216-1219 (1994).
    
    [58] T. E. Stringer. Diffusion in Toroidal Plasmas with Radial Electric Field. Phys. Rev. Lett. 22(15), 770-774 (1969).
    
    [59] D. R. McCarthy, J. F. Drake, P. N. Guzdar et al. Formation of the shear layer in toroidal edge plasma. Phys. Fluids B: Plasma Physics 5(4), 1188-1199 (1993). URL http://link.aip.Org/link/?PFB/5/1188/1.
    
    [60] A. B. Hassam, T. M. Antonsen, J. F. Drake et al. Spontaneous poloidal spinup of tokamaks and the transition to the H mode. Phys. Rev. Lett. 66(3), 309-312 (1991).
    
    [61] S.-I. Itoh and K. Itoh. Model of the H-mode in tokamaks. Nucl. Fusion 29(6), 1031-1045 (1989).
    [62] K. C. Shaing and C. T. Hsu. Critical neutral density for high-mode bifurcation in tokamaks. Phys. Plasmas 2(6), 1801-1803 (1995). URL http://link.aip. org/link/?PHP/2/1801/l.
    [63] H. Xiao, R. D. Hazeltine, and P. M. Valanju. Analytical and numerical studies of ion mobility near the tokamak plasma edge. Phys. Plasmas 2(6), 1996-2006 (1995). URL http://link.aip.Org/link/?PHP/2/1996/1.
    [64] V. Rozhansky and M. Tendler. The effect of the radial electric field on the L-H transitions in tokamaks. Phys. Fluids B: Plasma Physics 4(7), 1877-1888 (1992). URL http://link.aip.Org/link/?PFB/4/1877/1.
    [65] M. T. V Rozhansky and S. Voskoboinikov. Dynamics of the L - H transition. Plasma Phys. Control. Fusion 38(8), 1327-1330 (1996). URL http://stacks. iop.org/0741-3335/38/1327.
    [66] A. Hasegawa and M. Wakatani. Self-organization of electrostatic turbulence in a cylindrical plasma. Phys. Rev. Lett. 59(14), 1581-1584 (1987).
    [67] B. A. Carreras, V. E. Lynch, and L. Garcia. Electron diamagnetic effects on the resistive pressure-gradient-driven turbulence and poloidal flow generation. Phys. Fluids B: Plasma Physics 3(6), 1438-1444 (1991). URL http://link. aip.org/link/?PFB/3/1438/1.
    [68] P. H. Diamond and Y.-B. Kim. Theory of mean poloidal flow generation by turbulence. Phys. Fluids B: Plasma Physics 3(7), 1626-1633 (1991). URL http://link.aip.org/link/?PFB/3/1626/1.
    [69] C. C. Porco, R. A. West, A. McEwen et al. Cassini Imaging of Jupiter's Atmosphere, Satellites, and Rings. Science 299(5612), 1541-1547 (2003). URL http://www.sciencemag.org/cgi/content/abstract/299/5612/1541.
    [70] M. Heimpel, J. Aurnou, and J. Wicht. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193-196 (2005).
    [71] Z. Lin, T. S. Hahm, W. W. Lee et al. Turbulent transport reduction by zonal flows: Massively parallel simulations. Science 281(5384), 1835-1837 (1998).
    [72] P. H. Diamond, S.-I. Itoh, K. Itoh et al. Zonal flows in plasma - a review. Plasma Phys. Control. Fusion 47(5), R35-R161 (2005).
    [73] K. Itoh, S.-I. Itoh, P. H. Diamond et al Physics of zonal flows. Phys. Plasmas 13(5), 055502 (2006). URL http://link.aip.Org/link/?PHP/13/055502/1.
    [74] J. Glanz. Physics: Turbulence May Sink Titanic Reactor. Science 274(5293), 1600 (1996).
    [75] M. N. Rosenbluth and F. L. Hinton. Poloidal Flow Driven by Ion-Temperature-Gradient Turbulence in Tokamaks. Phys. Rev. Lett. 80(4), 724-727 (1998).
    [76] F. L. Hinton and M. N. Rosenbluth. Dynamics of axisymmetric ExB and poloidal flows in tokamaks. Plasma Phys. Control. Fusion 41, A653-A662 (1999).
    [77] T. S. Hahm, K. H. Burrell, Z. Lin et al. Zonal flow measurements concept I. Plasma Phys. Control. Fusion 42, A205-A210 (2000).
    [78] K. Hallatschek and D. Biskamp. Transport control by coherent zonal flows in the core/edge transitional regime. Phys. Rev. Lett. 86(7), 1223-1226 (2001).
    [79] N. Winsor, J. L. Johnson, and J. M. Dawson. Geodesic Acoustic Waves in Hydromagnetic Systems. Phys. Fluids 11(11), 2448 (1968).
    [80] Z. Lin, T. S. Hahm, W. W. Lee et al. Effects of Collisional Zonal Flow Damping on Turbulent Transport. Phys. Rev. Lett. 83(18), 3645-3648 (1999).
    [81] C. T. Hsu, K. C. Shaing, and R. Gormley. Time dependent parallel viscosity and relaxation rate of poloidal rotation in the banana regime. Phys. Plasmas 1(1), 132-138 (1994). URL http://link.aip.Org/link/?PHP/1/132/1.
    [82] S. V. Novakovskii, C. S. Liu, R. Z. Sagdeev et al. The radial electric field dynamics in the neoclassical plasmas. Phys. Plasmas 4(12), 4272-4282 (1997). URL http://link.aip.org/link/?PHP/4/4272/1.
    [83] R. Z. Sagdeev, V. D. Shapiro, and V. Shevchenko. Convective cells and anomalous plasma diffusion. Soviet Journal of Plasma Physics 4, 551-559 (1978).
    [84] A. I. Smolyakov, P. H. Diamond, and V. I. Shevchenko. Zonal flow generation by parametric instability in magnetized plasmas and geostrophic fluids. Phys. Plasmas 7(5), 1349-1351 (2000). URL http://link.aip.Org/link/?PHP/7/1349/1.
    [85] K. Itoh, K. Hallatschek, and S.-I. Itoh. Excitation of geodesic acoustic mode in toroidal plasmas. Plasma Phys. Control. Fusion 47(3), 451-458 (2005).
    [86] B. B. Kadomtsev. uPlasma Turbulence". New York: Academic (1965).
    [87] K. H. Burrell. Tests of causality: Experimental evidence that sheared E x B flow alters turbulence and transport in tokamaks. Phys. Plasmas 6(12), 4418-4435 (1999). URL http://link.aip.Org/link/?PHP/6/4418/1.
    [88] E. J. Kim and P. H. Diamond. Random shearing by zonal flows and transport reduction. Phys. Plasmas 11(12), L77-L80 (2004). URL http://link.aip. org/link/?PHP/ll/L77/1.
    [89] A. M. Dimits, T. J. Williams, J. A. Byers et al. Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. Phys. Rev. Lett. 77(1), 71-74 (1996).
    [90] H. Y. W. Tsui, P. M. Schoch, and A. J. Wootton. Observation of a quasicoher-ent mode in the Texas Experimental Tokamak. Physics of Fluids B: Plasma Physics 5(4), 1274-1280 (1993). URL http://link.aip.Org/link/?PFB/5/ 1274/1.
    [91] H. Y. W. Tsui, K. Rypdal, Ch. P. Ritz et al. Coherent nonlinear coupling between a long-wavelength mode and small-scale turbulence in the TEXT tokamak. Phys. Rev. Lett. 70(17), 2565-2568 (1993).
    [92] P. M. Schoch, K. A. Connor, D. R. Demers et al. Zonal flow measurements using a heavy ion beam probe. Rev. Sci. Instrum. 74(3), 1846-1849 (2003).
    [93] P. M. Schoch. Electric field measurements on TEXT that indicate zonal like flows. Bull. Am. Phys. Soc. 46, 8 (2001).
    [94] A. V. Melnikov, L. G. Eliseev, A. V. Gudozhnik et al. Investigation of the plasma potential oscillations in the range of geodesic acoustic mode frequencies
    ??by heavy ion beam probing in tokamaks. Czechoslovak Journal of Physics 55(3), 349-360 (2005).
    
    [95] A. Fujisawa, T. Ido, A. Shimizu et al. Experimental progress on zonal flow physics in toroidal plasmas. Nuclear Fusion 47(10), S718-S726 (2007). URL http://stacks.iop.org/0029-5515/47/S718.
    
    [96] G. D. Conway, B. Scott, J. Schirmer et al. Direct measurement of zonal flows and geodesic acoustic mode oscillations in ASDEX Upgrade using Doppler reflectometry. Plasma Phys. Control Fusion 47(8), 1165-1185 (2005).
    
    [97] A. Bencze, M. Berta, S. Zoletnik et al. Observation of Zonal flow-like structures using the autocorrelation-width technique. Plasma Phys. Control. Fusion 48(4), S137-S153 (2006).
    
    [98] A. Fujisawa, K. Itoh, H. Iguchi et al. Identification of zonal flows in a toroidal plasma. Phys. Rev. Lett. 93(16), 165002 (2004).
    
    [99] A. Fujisawa, A. Shimizu, H. Nakano et al. Turbulence and transport characteristics of a barrier in a toroidal plasma. Plasma Phys. Control. Fusion 48(4), S205-S212 (2006).
    
    [100] A. Fujisawa, K. Itoh, A. Shimizu et al. Experimental studies of zonal flow and field in compact helical system plasma. Physics of Plasmas 15(5), 055906 (2008). URL http://link.aip.Org/link/?PHP/15/055906/1.
    
    [101] A. Bencze and S. Zoletnik. Autocorrelation analysis and statistical consideration for the determination of velocity fluctuations in fusion plasma. Phys. Plasmas 12, 052323 (2005).
    
    [102] V. Sokolov, X. Wei, A. K. Sen et al. Observation and identification of zonal flows in a basic physics experiment. Plasma Phys. Control. Fusion 48(4), S111-S122 (2006).
    
    [103] A. Fujisawa, K. Itoh, A. Shimizu et al. Spectrograph of electric field fluctuation in toroidal helical plasma. Plasma Phys. Control. Fusion 48(4), S31-S39 (2006).
    [104] A. Fujisawa, A. Shimizu, H. N. S. Ohsima et al. Properties of turbulence and stationary zonal flow on transport barrier in CHS. Plasma Phys. Control. Fusion 48(4), A365-A370 (2006).
    [105] G. S. Xu, B. N. Wan, M. Song et al. Direct measurement of poloidal long-wavelength E x B flows in the HT-7 tokamak. Phys. Rev. Lett. 91(12), 125001 (2003).
    [106] G. R. Tynan, C. Holland, J. H. Yu et al. Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device. Plasma Phys. Control. Fusion 48(4), S51-S73 (2006).
    [107] M. Jakubowski, R. J. Fonck, and G. R. McKee. Observation of coherent sheared turbulence flows in the DIII-D tokamak. Phys. Rev. Lett. 89(26), 265003 (2002).
    [108] S. Coda, M. Porkolab, and K. H. Burrell. Signature of turbulent zonal flows observed in the DIII-D tokamak. Phys. Rev. Lett. 86(21), 4835-4838 (2001).
    [109] R. McKee, R. J. Fonck, M. Jakubowski et al. Observation and characterization of radially sheared zonal flows in DIII-D. Plasma Phys. Control. Fusion 45, A477-A485 (2003).
    [110] G. R. McKee, D. K. Gupta, R. J. Fonck et al. Structure and scaling properties of the geodesic acoustic mode. Plasma Phys. Control. Fusion 48(4), S123-S136 (2006).
    [111] G. R. McKee, R. J. Fonck, D. K. Gupta etal. Turbulence velocimetry of density fluctuation imaging data. Rev. Sci Instrum. 75(10), 3490-3492 (2004).
    [112] G. R. Tynan, R. A. Moyer, M. J. Burin et al. On the nonlinear turbulent dynamics of shear-flow decorrelation and zonal flow generation. Phys. Plasmas 8(6), 2691-2699 (2001).
    [113] T. Ido, Y. Miura, K. Hoshino et al. Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak. Nucl. Fusion 46, 512-520 (2006).
    [114] T. Ido, Y. Miura, K. Kamiya et al. Geodesic-acoustic-mode in JFT-2M tokamak plasmas. Plasma Phys. Control. Fusion 48(4), S41-S50 (2006).
    
    
    [115] Y. Nagashima, K. Itoh, S.-I. Itoh et al. Bispectral Analysis applied to coherent floating potential fluctuations obtained in the edge plasma on JFT-2M. Plasma Phys. Control. Fusion 48(4), S1-S15 (2006).
    
    [116] Y. Nagashima, K. Hoshino, A. Ejiri et al. Observation of nonlinear coupling between small-poloidal wave-number potential fluctuations and turbulent potential fluctuations in ohmically heated plasmas in the JFT-2M tokamak. Phys. Rev. Lett. 95(9), 095002 (2005).
    
    [117] Y. Nagashima, K. Itoh, S.-I Itoh et al. In search of zonal flows by using direct density fluctuation measurements. Plasma Phys. Control. Fusion 49, 1611-1625 (2007).
    
    [118] Y. Hamada, A. Nishizawa, T. Ido et al. Zonal flows in the geodesic acoustic mode frequency range in the JIPP T-IIU tokamak plasmas. Nucl. Fusion 45(2), 81-88 (2005).
    
    [119] Y. Hamada, T. Watari, A. Nishizawa et al. Wavelet and Fourier analysis of zonal flows and density fluctuations in JIPP T-llU tokamak plasmas. Plasma Phys. Control. Fusion 48(4), S177-S192 (2006).
    
    [120] A. V. Melnikov, V. A. Vershkov, L. G. Eliseev et al. Investigation of geodesic acoustic mode oscillations in the T-10 tokamak. Plasma Phys. Control. Fusion 48(4), S87-S110 (2006).
    
    [121] C. Hidalgo, M. A. Pedrosa, E. Sanchez et al. Physics of sheared flow development in the boundary of fusion plasmas. Plasma Phys. Control. Fusion 48(4), S169-S176 (2006).
    
    [122] W. X. Ding, D. L. Brower, D. Craig et al. Nonambipolar Magnetic-Fluctuation-Induced Particle Transport and Plasma Flow in the MST Reversed-Field Pinch. Phys. Rev. Lett. 99(5), 055004 (2007). URL http://link.aps.org/ abstract/PRL/v99/e055004.
    
    [123] K. J. Zhao, T. Lan, J. Q. Dong et al. Toroidal Symmetry of the Geodesic Acoustic Mode Zonal Flow in a Tokamak Plasma. Phys. Rev. Lett. 96(25), 255004 (2006). URL http://link.aps.org/abstract/PRL/v96/e255004.
    [124] K. J. Zhao, J. Q. Dong, L. W. Yan et al. Characteristics of geodesic acoustic mode zonal flow and ambient turbulence at the edge of the HL-2A tokamak plasmas. Phys. Plasmas 14(12), 122301 (2007). URL http://link.aip.org/ link/?PHP/14/122301/1.
    [125] L. W. Yan, J. Cheng, W. Y. Hong et al. Three-dimensional features of GAM zonal flows in the HL-2A tokamak. Nucl. Fusion 47(12), 1673-1681 (2007). URL http: //stacks. iop. org/0029-5515/47/1673.
    [126] T. Lan, A. D. Liu, C. X. Yu et al. Spectral features of the geodesic acoustic mode and its interaction with turbulence in a tokamak plasma. Phys. Plasmas 15(5), 056105 (2008). URL http://link.aip.Org/link/?PHP/15/056105/1.
    [127] T. Lan, A. D. Liu, C. X. Yu et al. Spectral characteristics of geodesic acoustic mode in the HL-2A tokamak. Plasma Phys. Control. Fusion 50(4), 045002 (13pp) (2008). URL http://stacks.iop.org/0741-3335/50/045002.
    [128] G. D. Conway. Study of Turbulence and Radial Electric Field Transitions in ASDEX Upgrade using Doppler Reflectometry. Plasma Physics and Controlled Nuclear Fusion Research(Vienna: IAEA), IAEA/EX2-1 (2006).
    [129] A. Kramer-Flecken, S. Soldatov, H. R. Koslowski et al. Properties of Geodesic Acoustic Modes and the Relation to Density Fluctuations. Phys. Rev. Lett. 97(4), 045006 (2006). URL http://link.aps.org/abstract/PRL/v97/ e045006.
    [130] N. Miyato, Y. Kishimoto, and J. Li. Turbulence suppression in the neighbourhood of a minimum-q surface due to zonal flow modification in reversed shear tokamaks. Nuclear Fusion 47(8), 929-935 (2007). URL http: //stacks.iop.org/0029-5515/47/929.
    [131] K. Itoh, S.-I. Itoh, P. H. Diamond etal. Geodesic Acoustic Eigenmodes. Plasma Fusion Res. 1, 037 (2006).
    [132] N. Miyato, Y. Kishimoto, and J. Li. Global structure of zonal flow and electromagnetic ion temperature gradient driven turbulence in tokamak plasmas. Phys. Plasmas 11(12), 5557-5564 (2004). URL http://link.aip.org/link/ ?PHP/11/5557/1.
    
    
    [133] G. R. McKee, C. Fenzi, R. J. Fonck et al. Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited). Papers from the 14th Topical Conference on High Temperature Plasma Diagnostics, Rev. Sci. Instrum. 74(3), 2014-2019 (2003). URL http://link.aip.org/link/?RSI/ 74/2014/1.
    
    [134] G. R. McKee, R. J. Fonck, M. Jakubowski et al. Experimental characterization of coherent, radially-sheared zonal flows in the DIII-D tokamak. Phys. Plasmas 10(5), 1712-1719 (2003). URL http://link.aip.org/link/?PHP/10/1712/ 1.
    
    [135] M. Jakubowski. Measurment of Velocity Turbulence and Application to Zonal Flow Detection in Tokamak Plasmas. Ph.D. thesis, University of Wisconsin-Madison (2003).
    
    [136] M. Jakubowski, R. J. Fonck, C. Fenzi et al. Wavelet-based time-delay estimation for time-resolved turbulent flow analysis. Rev. Sci. Instrum. 72(1), 996-999 (2001).
    
    [137] M. Jakubowski, R. Fonck, J. S. Kim et al. Application of wavelet spectral analysis to plasma fluctuation measurements using beam emission spectroscopy . Proceedings of the 12th topical conference on high temperature plasma diagnostics, Rev. Sci. Instrum. 70(1), 874-877 (1999). URL http: //link.aip.org/link/?RSI/70/874/1.
    
    [138] M. G. Shats, H. Xia, and M. Yokoyama. Mean Ex B flows and GAM-like oscillations in the H-1 heliac. Plasma Phys. Control. Fusion 48(4), S17-S29 (2006).
    
    [139] S. Coda. An Experimental Study of Turbulence by Phase-Contrast Imaging in the DIII-D Tokamak. Ph.D. thesis, Massachussetts Institute of Technology (1997).
    
    [140] S. Coda and M. Porkolab. Edge fluctuation measurements by phase contrast imaging on DIII-D. Rev. Sci. Instrum. 66(1), 454-456 (1995). URL http: //link.aip.org/link/?RSI/66/454/1.
    
    [141] G. R. McKee. Observation and Characterization of Coherent, radially-sheared Zonal Flowss in the DIII-D Tokamak. 30TH EPS Conference on Controlled Fusion and Plasma Physics, European Physical Society, St. Petersburg, Russia (2003).
    [142] Y. Nagashima, S.-I. Itoh, M. Yagi et al. Convergence study of bispectral analysis in experiments of high temperature plasmas. Review of Scientific Instruments 77(4), 045110 (2006). URL http://link.aip.org/link/?RSI/77/045110/1.
    [143] K. Itoh, Y. Nagashima, m. Itoh et al. On the bicoherence analysis of plasma turbulence. Phys. Plasmas 12(10), 102301-102309 (2005).
    [144] A. Fujisawa, A. Shimizu, H. Nakano et al. Intermittent characteristics in coupling between turbulence and zonal flows. Plasma Physics and Controlled Fusion 49(3), 211-217 (2007). URL http://stacks.iop.org/0741-3335/ 49/211.
    [145] G. R. Tynan, M. J. Burin, C. Holland et al. Radially sheared azimuthal flows and turbulent transport in a cylindrical plasma. Phys. Plasmas 11(11), 5195-5203 (2004). URL http://link.aip.Org/link/?PHP/11/5195/1.
    [146] K. Miki, Y. Kishimoto, N. Miyato et al. Intermittent Transport Associated with the Geodesic Acoustic Mode near the Critical Gradient Regime. Physical Review Letters 99(14), 145003 (2007). URL http://link.aps.org/abstract/PRL/v99/e145003.
    [147] M. Ramisch, U. Stroth, S. Niedner et al. On the detection of Reynolds stress as a driving and damping mechanism of geodesic acoustic modes and zonal flows. New Journal of Physics 5, 12 (2003). URL http://stacks.iop.org/ 1367-2630/5/12.
    [148] N. Miyato, Y. Kishimoto, and J. Q. Li. Interplay between Zonal Flows/GAMs and ITG Turbulence in Tokamak Plasmas. Plasma Physics and Controlled Nuclear Fusion Research(Vienna: IAEA), IAEA-CN-69/TH/P2-11 (2006).
    [149] T. Watari, Y. Hamada, A. Fujisawa et al. Extension of geodesic acoustic mode theory to helical systems. Physics of Plasmas 12(6), 062304 (2005). URL http://link.aip.org/link/?PHP/12/062304/1.
    
    
    [150] T. Ido, Y. Miura, K. Hoshino et al. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak. Plasma Physics and Controlled Nuclear Fusion Research (Vienna: IAEA), IAEA/EX/4-6Rb (2004).
    
    [151] G.F.Matthews. Tokamak plasma diagnosis by electrical probes. Plasma Phys. Control. Fusion 36(10), 1595-1628 (1994).
    
    [152] P. C. Stangeby and G. M. McCracken. Plasma boundary phenomena in toka-maks. Nucl. Fusion 30(7), 1225 (1990).
    
    [153] I. H. Hutchinson. "Principles of Plasma Diagnostics". University Press, Cambridge , second edition (2002).
    
    [154] R. A. Pitts and P. C. Stangeby. Experimental tests of Langmuir probe theory for strong magnetic fields. Plasma Phys. Control. Fusion 32(13), 1237-1248 (1990).
    
    [155] P. C. Stangeby. Effect of bias on trapping probes and bolometers for Tokamak edge diagnosis. J. Phys. D: Appl. Phys. 15(6), 1007-1030 (1982).
    
    [156] S.-L. Chen and T. Sekiguchi. Instantaneous Direct-Display System of Plasma Parameters by Means of Triple Probe. Journal of Applied Physics 36(8), 2363-2375 (1965). URL http://link.aip.Org/link/?JAP/36/2363/1.
    
    [157] H. Lin, G. X. Li, R. D. Bengtson et al. A comparison of Langmuir probe techniques for measuring temperature fluctuations. Proceedings of the 9th topical conference on high temperature plasma diagnostics, Rev. Sci. Instrum. 63(10), 4611-4613 (1992). URL http://link.aip.Org/link/?RSI/63/4611/1.
    
    [158] H. Y. W. Tsui, R. D. Bengtson, G. X. Li et al. A new scheme for Langmuir probe measurement of transport and electron temperature fluctuations. Proceedings of the 9th topical conference on high temperature plasma diagnostics, Rev. Sci. Instrum. 63(10), 4608-4610 (1992). URL http://link.aip.org/ link/?RSI/63/4608/1.
    
    [159] H. Lin, R. D. Bengtson, and Ch. P. Ritz. Temperature fluctuations and transport in a tokamak edge plasma. Phys. Fluids B: Plasma Physics 1(10), 2027-2030 (1989). URL http://link.aip.org/link/?PFB/1/2027/1.
    
    [160] R. Balbín, C. Hidalgo, M. A. Pedrosa et al. Measurement of density and temperature fluctuations using a fast-swept Langmuir probe. Rev. Sci. Instrum . 63(10), 4605-4607 (1992). URL http://link.aip.org/link/?RSI/ 63/4605/1.
    
    [161] P. C. Liewer, J. M. McChesney, S. J. Zweben et al. Temperature fluctuations and heat transport in the edge regions of a tokamak. Phys. Fluids 29(1), 309-317 (1986). URL http://link.aip.Org/link/?PFL/29/309/1.
    
    [162] S. J. Levinson, J. M. Beall, E. J. Powers et al. Space/time statistics of the turbulence in a Tokamak edge plasma. Nucl. Fusion 24(5), 527-539 (1984).
    
    [163] D. W. Ross. On standard forms for transport equations and quasilinear fluxes. Plasma Phys. Control. Fusion 34(2), 137-146 (1992). URL http://stacks. iop.org/0741-3335/34/137.
    
    [164] E. J. Powers. Spectral techniques for experimental investigation of plasma diffusion due to polychromatic fluctuations. Nucl Fusion 14, 749 (1974).
    
    [165] C. Silva, B. Goncalves, C. Hidalgo et al. Fluctuation measurements using a five-pin triple probe in the Joint European Torus boundary plasma. Rev. Sci. Instrum. 75(10), 4314-4316 (2004). URL http://link.aip.org/link/?RSI/ 75/4314/1.
    
    [166] S. V. Mirnov and I. B. Semenov. Investigation of instabilities of plasma column in 'tokamak-3' device by correlation techniques. Sov. At. Energy 30(1), 20-27 (1971).
    
    [167] Y. J. Kim, K. W. Gentle, Ch. P. Ritz et al. The structure of magnetic fluctuations in tokamaks: Observations in the TEXT tokamak. Phys. Fluids B: Plasma Physics 3(3), 674-687 (1991). URL http://link.aip.org/link/ ?PFB/3/674/1.
    
    [168]项志遴,俞昌旋.《高温等离子体诊断技术》.上海科技技术出版社(1982).
    
    [169] J. M. Beall, Y. C. Kim, and E. J. Powers. Estimation of wavenumber and frequency spectra using fixed probe pairs. J. Appl. Phys. 53(6), 3933-3940 (1982).
    
    [170] Naofumi Iwama, Yasuo Ohba, and Takashige Tsukishima. Estimation of wavenumber and frequency spectra using fixed probe pairs. J. Appl. Phys. 50(5), 3197-3206 (1979).
    
    [171] C. L. Nikias and M. R. Raghuveer. Bispectrum Estimation: A Digital Signal Processing Framework. Proceedings of The IEEE. 75(7), 869-891 (1987).
    
    [172] Young C. Kim and Edward J. Powers. Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions. IEEE. Transactions on Plasma Science PS-7(2), 120-131 (1979).
    
    [173] Edward J. Powers, Jae Y. Hong, and Christoph P. Ritz. "Applied Digital Time Series Analysis". Preliminary version edition (1988).
    
    [174] Ch. P. Ritz, E. J. Powers, T. Rhodes et al. Advanced plasma fluctuation analysis techniques and their impact on fusion research(invited). Rev. Sci. Instrum. 59(8), 1739 (1988).
    
    [175] C. Holland, G. R. Tynan, P. H. Diamond et al. Evidence for Reynolds-stress driven shear flows using bispectral analysis: theory and experiment. Plasma Phys. Control. Fusion 44(5A), A453-A457 (2002). URL http://stacks.iop. org/0741-3335/44/A453.
    
    [176] S. Elgar and R. T. Guza. Statics of Bicoherence. IEEE Transactions on Acounstics, Sppeech and Signal Processing 36(10), 1667-1668 (1988).
    
    [177] Jam(?)ek Janez, S. Aneta, V. E. Peter et al. Time-phase bispectral analysis. Physical Review E 68, 016201 (2003).
    
    [178] V. Chandran and S. Elgar. Time-phase bispectral analysis. IEEE Trans. Signal Process 39, 2640-2651 (1991).
    
    [179] B. Ph. van Milligen, E. Sanchez, T. Estrada et al. Wavelet bicoherence: A new turbulence analysis tool. Phys. Plasmas 2(8), 3017-3032 (1995).
    
    [180] A. A. Ferreira, M. V. A. P. Heller, and I. L. Caldas. Experimental analysis of mode coupling and plasma turbulence induced by magnetic fields. Phys. Plasmas 7(9), 3567-3572 (2000).
    
    [181] B. Ph. van Milligen, C. Hidalgo, and E. Sanchez. Nonlinear Phenomena and Intermittency in Plasma Turbulence. Phys. Rev. Lett. 74(3), 395-398 (1995).
    
    [182] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. "Signals and Systems". Pearson Education, Inc., second edition (1997).
    
    [183] D. Gabor. Theory of communications. J. Inst. Electr. Eng., Part 3 90, 429-457 (1946).
    
    [184] S. Lawrence Marple, Jr. Computing the Discrete-Time "Analytic" Signal via FFT. IEEE Trans. Signal Proc. 47(9), 2600-2603 (1999).
    
    [185] Y. C. Kim, L. Kha'dra, and E. J. Powers. Wave modulation in a nonlinear dispersive medium. Phys. Fluids 23(11), 2250-2257 (1980).
    
    [186] U. Frisch." Turbulence, the legacy of A.N. Kolmogorov". Cambridge University Press (1995).
    
    [187] F. J. Crossley, P. Uddholm, P. Duncan et al. Experimental study of drift-wave saturation in quadrupole geometry. Plasma Phys. Control Fusion 34(2), 235-262 (1992).
    
    [188] P. J. Duncan and M. G. Rusbridge. The 'Amplitude' method for the study of nonlinear interactions of plasma waves. Plasma Phys. Control. Fusion 35, 825-835 (1993).
    
    [189] H. L. Pecseli and J. Trulsen. On the interpretation of experimental methods for investigating nonlinear wave phenomena. Plasma Phys. Control Fusion 35, 825-835 (1993).
    
    [190] C. Holland, G. R. Tynan, R. J. Fonck et al. Zonal-flow-driven nonlinear energy transfer in experiment and simulation. Phys. Plasmas 14(5), 056112 (2007). URL http://link.aip.org/link/?PHP/14/056112/1.
    
    [191] H. E. Hurst. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Eng. 116, 770-799 (1951).
    
    [192] B. B. Mandelbrot and J. R. Wallis. An Introduction to the Hurst phenomenon. Water Resour. 4, 909-918 (1969).
    
    [193] B. A. Carreras, B. van Milligen, M. A. Pedrosa et al. Long-Range Time Correlations in Plasma Edge Turbulence. Phys. Rev. Lett. 80(20), 4438-4441 (1998).
    
    [194] B. A. Carreras, B. Ph. van Milligen, M. A. Pedrosa et al. Self-similarity of the plasma edge fluctuations. Phys. Plasmas 5(10), 3632-3643 (1998). URL http://link.aip.org/link/?PHP/5/3632/1.
    
    [195] M. Sano and Y. Sawada. Measurement of the Lyapunov Spectrum from a Chaotic Time Series. Phys. Rev. Lett. 55(10), 1082-1085 (1985).
    
    [196] X. Zeng, R. Eykholt, and R. A. Pielke. Estimating the Lyapunov-exponent spectrum from short time series of low precision. Phys. Rev. Lett. 66(25), 3229-3232 (1991).
    
    [197] M. B. Kennel, R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403-3411 (1992).
    
    [198] P. Grassberger and I. Procaccia. Characterization of Strange Attractors. Phys. Rev. Lett. 50(5), 346-349 (1983).
    
    [199] W. Huang, W. X. Ding, D. L. Feng et al. Estimation of a Lyapunov-exponent spectrum of plasma chaos. Phys. Rev. E 50(2), 1062-1069 (1994).
    
    [200] W. X. Ding, W. Huang, X. D. Wang et al. Quasiperiodic transition to chaos in a plasma. Phys. Rev. Lett. 70(2), 170-173 (1993).
    
    [201]曾磊.HT-6M芯部微湍流特性及其与反常输运关系的研究.博士论文,中国科 学技术大学(1994).
    
    [202] M. T. Rosenstein, J. J. Collins, and C. J. D. Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena 65, 117-134 (1993).
    
    [203] A. M. Fraser and H. L. Swinney. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134-1140 (1986).
    
    [204] H. S. Kim, R. Eykholt, and J. D. Salas. Nonlinear dynamics, delay times, and embedding windows. Physica D: Nonlinear Phenomena 127, 48-60 (1999).
    
    [205] J. L. Kaplan and J. A. Yorke. Preturbulence: A regime observed in a fluid flow model of Lorenz. Communications in Mathematical Physics 67(2), 93-108 (1979).
    
    [206] C. E. Shannon. A Mathematical Theory of Communication. The Bell System Technical Journal 27, 379-423, 623-656 (1948).
    
    [207] A. N. Kolmogorov. Entropy per unit time as a metric invariant of automorphisms . Dokl. Akad. Nauk SSSR (Russian) 124, 754-755 (1959).
    
    [208] Y. Liu, X. T. Ding, Q. W. Yang et al. Recent advances in the HL-2A tokamak experiments. Nucl. Fusion 45(10), S239-S244 (2005).
    
    [209] Q. W. Yang, Y. Liu, X. T. Ding et al Overview of HL-2A experiment results. Nucl. Fusion 47, S635-S644 (2007).
    
    [210] L. Yan, W. Hong, J. Qian et al. Fast reciprocating probe system on the HL-2A tokamak. Rev. Sci Instrum. 76(9), 093506 (2005). URL http://link.aip. org/link/?RSI/76/093506/1.
    
    [211] Peter C Stangeby. "The Plasma Boundary of Magnetic Fusion Devices". Institute of Physics Publishing, Bristol and Philadelphia (1999).
    
    [212] Y. Kishimoto, K. Miki, N. Miyato et al Turbulent transport associated with GAM dynamics near critical gradient regime. Proceedings of the 21th IAEA Fusion Energy Conference, Chengdu, China(Vienna: IAEA),PD-2 (2006).
    
    [213] P. H. Diamond, M. N. Rosenbluth, E. Sanchez et al. In search of the elusive zonal flow using cross-bicoherence analysis. Phys. Rev. Lett. 84(21), 4842-4845 (2000).
    
    [214] C. Hidalgo, C. Silva, M. A. Pedrosa et al. Radial Structure of Reynolds Stress in the Plasma Boundary of Tokamak Plasmas. Phys. Rev. Lett. 83(11), 2203-2205 (1999).
    
    [215] P. H. Diamond, M. N. Rosenbluth, F. L. Hinton et al. Dynamics of zonal flows and self-regulating drift-wave turbulence. Plasma Physics and Controlled Nuclear Fusion Research (Vienna: IAEA,), IAEA-CN-69/TH3/1 (1998).
    
    [216] D. Jovanovic and R. Shukla. Nonlinear generation of zonal flows by drift waves. Phys. Lett. A 289(4-5), 219-224 (2001).
    
    [217] R. J. Fonck, M. Jakubowski, and G. R. McKee. Fluctuation Analysis Techniques for Detection of Zonal Flow Features in the DIII-D Tokamak. 44th Annual Meeting of the Division of Plasma Physics, American Physical Society , Orlando, FL Paper L01.009 (Nov. 13, 2002).
    
    [218] K. Itoh, K. Hallatschek, S.-I. Itoh et al. Coherent structure of zonal flow and onset of turbulent transport. Phys. Plasmas 12(6), 062303-062316 (2005).
    
    [219] T. Ning and S. M. Gao. Detection of Amplitude Modulation Using Bispectra. Acoustics, Speech, and Signal Processing, IEEE Conf 5, 469-472 (1992).
    
    [220] C. Holland, P. H. Diamond, S. Champeaux et al. Investigations of the role of nonlinear couplings in structure formation and transport regulation: experiment , simulation, and theory. Nucl. Fusion 43, 761-780 (2003).
    
    [221] P. H. Diamond, S. Champeaus, M. Malkov et al. Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation. Nucl. Fusion 41(8), 1067-1080 (2001).
    
    [222] B. B. Kadomtsev and V. I. Karpman. Nonlinear waves. Sov. Phys.-Usp. 14, 40-60 (1971).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700