用户名: 密码: 验证码:
三江平原挠力河流域湿地生态系统水文过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地具有巨大的环境功能和效益,但近半个世纪以来在各种自然因素及人类干扰作用下,湿地的数量和面积锐减,服务功能退化严重。湿地水文情势的改变是湿地退化的最根本原因。利用水文模型能对湿地复杂的水文过程进行概化和模拟,尤其是具有物理基础的分布式水文模型能够反映流域产汇流的空间分布规律,模拟变化环境(如土地利用和气候变化等)下的水循环过程,可对湿地生态系统的管理、保护和恢复起到技术支撑作用。
     本研究的主要目标是基于分布式水文模型研究适宜我国三江平原地区的湿地生态系统管理、保护和恢复方法。为此,首先构建了一个概念性的集总式模型(NAM),以初步确定流域下垫面的水文特征参数,了解挠力河流域水文情势的变化及主要的影响因素。进一步,基于气象、水文、遥感和数字高程模型等多源数据集构建了挠力河流域地表水/地下水耦合模型(MIKE SHE/MIKE11),以流域内四个水文观测站1998~2000年逐日径流数据率定模型,以2003~2005年数据验证模型。进一步使用IPCC第四次评估报告公布的7个全球气候模式(GCMs)预估了流域2050s的气候情景,并基于这些情景模拟了未来气候变化对流域湿地水文情势的潜在影响。最后根据前面多个章节研究的结果,提出了适宜于挠力河流域的湿地生态系统管理、保护和恢复方案。研究的主要结论总结如下:
     (1)概念性集总式模型可以对挠力河流域降雨径流过程进行较好的模拟,模型在率定期的表现优于验证期。造成模型在验证期模拟效果降低的最主要原因可能在于农业开发活动对流域下垫面性质强烈而快速的改变。自20世纪50年代以来三江平原地区强烈的农业开发活动深刻影响了流域水文情势,并且这种影响在近20年仍然在持续。概念性集总式模型不确定性主要来源于输入数据、模型结构和最优参数集的选择。NAM模型只能对整个研究区的水文特性进行平均考虑,无法对融雪、人为干扰(抽水灌溉等)、不同土地利用类型的水文特性等进行深入考虑。
     (2)模拟和实测的水文过程线比较图以及定量的模型效果评价说明所构建的MIKE SHE/MIKE11耦合模型能够较好地模拟三江平原挠力河流域水循环过程,对湿地的管理和保护起到了技术支撑的作用。模型在率定期和验证期的Nash-Sutcliffe系数均达到0.65以上。水量平衡分析显示,模型率定期流域内总蒸散发量超过总降水量,流域处于水量损失的状态。对不同土地利用类型进行的水量平衡分析说明了湿地在调节区域气候和涵养水源方面的重要作用。流域内大面积农田采取的井灌措施导致了地下水水位的持续下降,农田抽水灌溉的吸水效应也对被农田包围的湿地和林地构成显著影响。模型不确定性的主要来源包括输入数据、模型结构和参数的选择。
     (3)GCMs对未来气候的预估结果表明,A2、A1B和B1.三个排放情景下挠力河流域在2050s年代的降水、温度和潜在蒸散发水平与基准期相比均有所提高,以A1B情景增加幅度最大。不同的气候模式对未来流域气候的预估趋势基本一致,但存在变动幅度大小的差异。气候变化的水文影响分析表明,未来流域内河道径流量在一年大部分时间都有所增加,以A1B情景增加量最高,集合平均模式AEM预测下游控制站菜咀子站的年径流总量在A2、A1B和B1情景下将分别增加7.7%,10.1%和6.8%。河道径流量的变化相对于降水量的变化有明显的延迟效应,这与流域中下游大面积沼泽湿地的蓄洪滞水和径流调节能力有关。未来流域总降水和蒸散发量都有明显升高趋势,但蒸散发的增加量较降水的增量更高。在全球气候变化的背景下,如果仍然维持当前的景观格局且不采取其它补水措施的话,未来挠力河流域的水资源供需矛盾将加剧,而流域内的湿地将面临更大的水量损失风险,极有可能进一步退化。气候模式的模拟结果也说明未来流域地表径流(坡面漫流)增加明显,如果不采取对应的防洪治涝和退耕还湿措施,流域将面临更大的洪涝灾害和水土流失风险。
     (4)根据水文模型模拟所反映的当前挠力河流域内湿地管理和保护方面面临的主要问题,提出了三种基本的湿地管理、保护和恢复方案(思路),分别对应着不同的湿地恢复强度和策略。方案一重点考虑核心湿地区的连续性,将处于成片湿地周边的破碎化农田等恢复为湿地,方案二将流域内全部水稻田恢复为湿地,方案三将流域内全部早地恢复为湿地。依据模型模拟结果并考虑现实可操作性,认为方案一在各个水文指标上均对流域湿地的保护具有积极正面的效果,且退耕还湿比例非常有限(耕地面积仅减少了6.68%),不会对农业生产造成显著影响,是一种合理且易于实施的最优方案。考虑到三江平原挠力河地区的流域特征以及该区湿地可能受到的未来气候变化的影响,实施湿地生态系统的管理、保护和恢复方案主要应从适当程度的退耕还湿、科学有效的生态补水、以及能落到实处的湿地生态环境保护等多方面开展。
As one of the three biggest ecosystems on this planet wetland provides human beings with not only great amount of resources, but also precious environmental functions and benefits. However, wetlands in China have been suffering constantly from the global change and anthropogenic disturbance over the last50years. The cumulative effects of increasing wetland loss, as well as intensified adjacent land use continue to threaten the structure and function of wetlands. Water regime in wetland has been changed significantly in many regions, which is the main reason for wetland degradation. Models, especially physically-based distributed hydrological models, can often accurately represent complex wetland hydrological situations. They can provide us detail information of the watershed hydrological processes, and improve our understanding of the physical, chemical and biological processes within a watershed and the way they interact. Distributed hydrological models such as MIKE SHE, can also be used to simulate hydrological impacts of future climate and landuse change on the functioning of wetlands, which can be expected to benefit wetland management, protection and restoration.
     The main purpose of this thesis was to establish a framework for wetland management and restoration based on an integrated surface/groundwater hydrological modelling system, i.e. MIKE SHE. To achieve this goal, a lumped conceptual NAM model was firstly built to help understand the basic hydrology characteristics of the study area-Naoli River Basin in northeast China. Then, the coupled MIKE SHE/MIKE11model was constructed using multisource data, based on which the main hydrological process of the watershed was able to be simulated. Furthermore, seven Global Circulation Models (GCMs) and their arithmetic ensemble mean (AEM) were used to predict the climate patterns in 2050s under three emission scenarios (A2, A1B, and B1). Hydrological impacts of climate change upon the wetland was investigated by running GCM output through validated the MIKE SHE/MIKE11hydrological model. Finally, the optimal wetland management and restoration scheme was proposed based on the outputs from modelling. The main conclusions are summarized as follows:
     (1) The MIKE11HD/NAM modelling system is capable of simulating the rainfall/runoff process of Naoli River Basin. Model performance during calibration period was generally better than that during validation period with modification on underlying surface characteristics caused by intensive human activities. The ongoing agricultural development since1950s has significantly changed the hydrological regime of the watershed, and there is no sign that the wetland degradation trend has stopped currently. The uncertainty of our conceptual model comes mainly from input data, model structure and the selection of optimal parameter set. Although NAM can effectively represent the major hydrologic processes based on limited data and a modest number of parameters, it deals with each catchment averagely. Therefore, it is not able to adequately address problems such as snowmelt, irrigation and impacts of land use change on water regime.
     (2) Quantitative statistical parameters and visual comparison of simulated and observed hydrograph show that the MIKE SHE/MIKE11modelling system can effectively simulate the major hydrological processes of Naoli River Basin. The Nash-Sutcliffe coefficient during both calibration and validation periods was above0.65, a criterion as satisfaction. According to water balance analysis, the total evapotranspiration during the simulation period exceeded the total precipitation, and baseflow contributed a large portion to the channel flow, which means that the watershed was of deficit in water balance. Water balance analysis for different landuse types demonstrated the wetland's important functions in climate regulation and water conservation. The widely adopted well irrigation, a conventional practice, in the area has led to the constant decline of groundwater level. The uncertainty of the coupling model lies mainly in the input data, model structure and the selection scheme of optimal parameter set.
     (3) On the whole, the GCMs predicted that the precipitation, evapotranspiration and temperature in the watershed would rise considerably in2050s under all the three emission scenarios, compared with the baseline situation. However, there were differences in the amount of variation between GCMs. The three scenarios show consistently greater discharge for most of the year, with A1B scenario the highest. The AEM predicted that the annual discharge in the downstream would increase7.7%,10.1%and6.8%for A2, A1B, and B1scenarios, respectively. There was a delayed river flow response to the changing precipitation in the lowland catchment, owing to the functions of water retention and runoff regulation of wetlands. Water balance analysis showed that annual total precipitation within the area would increase significantly, but annual total evapotranspiration would increase much more. If the current landscape pattern stays unchanged and no other recharge measures are carried out, the water shortage situation would be more severe in the context of global climate change. Wetlands within the watershed are at greater risk of being shrunk and degraded.
     (4) Based on the conclusions of modelling practice, three wetland management and restoration-planning schemes (corresponding to the relevant regulation strategies and strength) have been presented. Scheme1concerns mainly on the continuity and integrity of the core wetland area, and it reconverts the fragmental croplands into an integrated wetland with the relatively virginal remnant. Scheme2reconverts all the paddy field while Scheme3all the dryland within the watershed into wetland. According to modelling results, Scheme1is optimal, as it is favorable to wetland protection in terms of most hydrological indicators and no harm on food security in the region would be expected. Considering the geohydrologic conditions of the Naoli River Basin, as well as the potential impact of climate change, the planning scheme should be carried out from the following aspects:reconversion of cropland into wetland at a rational level, effective water recharge, and wetland environmental protection.
引文
[1]蔡摇福,周广胜,李荣平.东北玉米农田下垫面参数动态特征[J].生态学杂志,2011,30(3),494-501.
    [2]曾小凡,周建中,翟建青,苏布达,熊明.2011-2050年长江流域气候变化预估问题的探讨[J].气候变化研究进展,2011,7(2),116-122.
    [3]陈厦,桑卫国.暖温带地区 3种森林群落叶面积指数和林冠开阔度的季节动态[J].植物生态学报,2007,31(3),431-436.
    [4]崔保山,刘兴土.三江平原挠力河流域湿地生态特征变化研究[J].自然资源学报,2001,16(2),107-1 14.
    [5]崔保山,杨志峰.湿地生态环境需水量研究[J].环境科学学报,2002,22(2),219-224.
    [6]崔保山,杨志峰.湿地生态环境需水量等级划分与实例分析[J].资源科学,2003,25(1),21-28.
    [7]崔保山,杨志峰.湿地学[M].北京:北京师范大学出版社.2006.
    [8]邓伟,胡金明.湿地水文学研究进展及科学前沿问题[J].湿地科学,2003,1(1),12-20.
    [9]丁维康.三江平原地区的水文特征[J].水文,1982,2,4144.
    [10]丁一汇,任国玉,石广玉,宫鹏,郑循华,翟盘茂,张德二,赵宗慈,王绍武,王会军,罗勇,陈德亮,高学杰,戴晓苏.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展,2006,2(1),3-8.
    [11]董李勤,章光新.全球气候变化对湿地生态水文的影响研究综述[J].水科学进展,201 1,22(3),429-436.
    [12]冯夏清,章光新.基于水循环模拟的流域湿地水资源合理配置初探[J].湿地科学,2012,1 0(4),459-466.
    [13]付强,梁川,杨广林.三江平原井灌水稻生育期内水分供需平衡状况分析[J].东北农业大学学报,2002,33(1),53-57.
    [14]付强,梁川,杨广林,祖伟.三江平原井灌水稻区土壤渗透规律研究[J].农业系统科学与综合研究,2001,17(4),260-263.
    [15]甘郝新,吕能辉,罗惠红,何虹.ArcHydro水文地理数据模型及其应用[J].人民珠江,2011,32(2),32-36.
    [16]顾问,陈葆德,杨玉华,董广涛IPCC-AR4全球气候模式在华东区域气候变化的预估能力评价与不确定性分析[J].地理科学进展,2010,29(7),818-826.
    [17]郭龙珠,王福林,吴昌友,肖建民.三江平原挠力河流域水文地质参数的分析与确定[J].东北农业大学学报,2008,39(9),44-48.
    [18]郭跃东,何岩,邓伟,张明祥,章光新.扎龙国家自然湿地生态环境需水量研究[J].水土保持学报,2004,18(6),163-174.
    [19]郝振纯,鞠琴,余钟波,王璐,江微娟.IPCC-AR4气候模式对长江流域气温和降水的模拟性能评估及未来情景预估[J].第四纪研究,2010,30(1),127-137.
    [20]郝振纯,李丽,王加虎,罗健.分布式水文模型理论与方法[M].北京:科学出版社.2010.
    [21]侯伟,匡文慧,张树文,张养贞,李颖.近50年来三江平原北部土地利用/土地覆被变化及生态效应分析[J].生态环境,2006,15(4),752-756.
    [22]侯伟,张树文,张养贞,匡文慧.三江平原挠力河流域50年代以来湿地退缩过程及驱动力分析[J].自然资源学报,2004,19(6),725-731.
    [23]贾仰文,高辉,牛存稳,仇亚琴.气候变化对黄河源区径流过程的影响[J].水利学报,2008,39(1),52-58.
    [24]贾仰文,王浩,倪广恒,杨大文,王建华,秦大庸.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社.2005.
    [25]贾志军,张稳,黄耀,赵晓松,宋长春.三江平原沼泽湿地垦殖对蒸散量的影响[J].环境科学,2010,31(4),833-842.
    [26]江志红,陈威霖,宋洁,王冀.7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估[J].大气科学,2009,33(1),109-120.
    [27]江志红,张霞,王冀.IPCC-AR4模式对中国21世纪气候变化的情景预估[J].地理研究,2008,27(4),787-799.
    [28]姜琦刚,崔瀚文,李远华.东北三江平原湿地动态变化研究[J].吉林大学学报(地球科学版),2009,39(6),1127-1133.
    [29]姜昀.济南市城市化进程中的水文循环演变研究[D].山东科技大学,2011.
    [30]金鑫,郝振纯,张金良.水文模型研究进展及发展方向[J].水土保持研究,2006,13(4).197-199.
    [31]鞠琴,郝振纯,余钟波,徐海卿,江微娟,郝洁IPCC AR4气候情景下长江流域径流预测[J].水科学进展,2011,22(4),462-469.
    [32]康百赢,马向东,魏永霞.三江平原湿地补水与发展地表水灌溉的初步研究[J].农业系统科学与综合研究,2003,19(2),156-157.
    [33]李翀,杨大文.基于栅格数字高程模型DEM的河网提取及实现[J].中国水利水电科学研究院学报,2004,2(3),208-214.
    [34]李丹颖.陆面水文模型VIC研究及其与天气发生器的集成[D].武汉大学,2005.
    [35]李根柱,王贺新,朱教君.辽东次生林区主要阔叶林型叶面积指数季节动态[J].生态学杂志,2008,27(12),2049-2055.
    [36]李国良,付强,冯艳,李伟业,刘仁涛.基于混沌的三江平原月降水时间序列分析[J].数学的实践与认识,2007,37(6),76-81.
    [37]李恒鹏,杨桂山,金洋.太湖流域土地利用变化的水文响应模拟[J].湖泊科学,2007,19(5),537-543.
    [38]李红艳,王维峰.浅淡三江平原退耕还湿工程的深远意义[J].现代化农业,2005,2,1-3.
    [39]李加林,赵寒冰,刘闯,曹云刚.辽河三角洲湿地生态环境需水量变化研究[J].水土保持学报,2006,20(2),129-134.
    [40]李九一,李丽娟,姜德娟,杨俊伟.沼泽湿地生态储水量及生态需水量计算方法探讨[J].地理学报,2006,61(3),289-296.
    [41]李兴春,林年丰,汤洁,李青山,王教和.扎龙湿地生态环境需水量研究[J].吉林大学学报(理学版),2004,42(1),143-146.
    [42]刘昌明,李道峰,田英.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5),437-445.
    [43]刘殿伟.过去50年三江平原土地利用/覆被变化的时空特征与环境效应[D].吉林大学,2006.
    [44]刘红玉,李兆富.挠力河流域湿地景观演变的累积效应[J].地理研究,2006,25(4),606-616.
    [45]刘红玉,张世奎,吕宪国.三江平原湿地景观结构的时空变化[J].地理学报,2004,59(3),391-400.
    [46]刘亮.小兴安岭阔叶红松林叶面积指数季节动态及特征[D].东北林业大学,哈尔滨.2009.
    [47]刘敏,江志红.13个IPCCAR4模式对中国区域近40a气候模拟能力的评估[J].南京气象学院学报,2009,32(2),256-268.
    [48]刘宁,高波,董哲仁.当代水利科技前沿[M].北京:中国水利水电出版社.2006.
    [49]刘兴土.三江平原沼泽湿地的蓄水与调洪功能[J].湿地科学,2007,5(1),64-68.
    [50]刘正茂,姜明,佟守正.三环泡滞洪区的水文功能研究[J].湿地科学,2008,6(2),242-248.
    [51]刘正茂,吕宪国,夏广亮,陈志科,孙永贺.近50年挠力河流域上游径流深变化过程及其驱动机制研究[J].水文,2011,31(3),44-50.
    [52]刘卓颖.黄土高原地区分布式水文模型的研究与应用[D].清华大学,2005.
    [53]卢文喜,李平,王福林,郭龙珠.挠力河流域三维地下水流数值模拟[J].吉林大学学报:地球科学版,2007,37(3),541-545.
    [54]栾延龄,张学雷,管振范.三江平原黏质草甸土特性及防涝措施[J].黑龙江水利科技,2007,35(5),106-107.
    [55]栾兆擎,章光新,邓伟,胡金明,周德民.三江平原50a来气温及降水变化研究[J].干旱区资源与环境,2007,21(11),39-43.
    [56]罗先香,邓伟,何岩.三江平原沼泽性河流径流演变的驱动力分析[J].地理学报,2002,57(5), 603-610.
    [57]罗新兰,陈祥兰,姚运生,卢涛,殷红,高西宁,张彦.东北玉米叶面积指数动态模拟模型研究[J].江苏农业科学,2012,40(1),91-94.
    [58]马海波,董增川,张文明,梁忠民.SCE-UA算法在TOPMODEL参数优化中的应用[J].河海大学学报(自然科学版),2006,34(4),361-365.
    [59]马铁民.松花江水质模型简介[J].东北水利水电,2007,25(278,),48-51.
    [60]孟宪民,.崔保山,邓伟,吕宪国.松嫩流域特大洪灾的醒示:湿地功能的再认识[J].自然资源学报,1999,14(1),14-21.
    [61]聂晓,王毅勇,刘兴土,赵志春,马婷婷.控制灌溉下三江平原稻田耗水量和水分利用效率研究[J].农业系统科学与综合研究,2011,27(2),228-232.
    [62]曲春晖,任友山,李长有,师娟.挠力河水系水文特性[J].黑龙江水专学报,1998,25(4),92-95.
    [63]芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[J].水利水电科技进展,2002,22(3),56-58.
    [64]佘有贵.NAM模型在珠江流域初步应用实践[J].人民珠江,2005,3,34-37.
    [65]宋开山,刘殿伟,王宗明.1954年以来三江平原土地利用变化及驱动力[J].地理学报,2008,63(1),93-104.
    [66]孙映宏,姬战生,周蔚.基于MIKE11 HD和NAM耦合模型在河流施工围堰对防洪安全影响分析中的应用与研究[J].浙江水利科技,2009,2,30-34.
    [67]唐从国,刘丛强.基于Arc Hydro Tools的流域特征自动提取——以贵州省内乌江流域为例[J].地球与环境,2006,34(3),30-37.
    [68]汪爱华,张树清,张柏.三江平原沼泽湿地景观空间格局变化[J].生态学报,2003,23(2),237-243.
    [69]王波.三江平原地区水资源合理配置与土地资源的高效利用战略构思[J].黑龙江水利科技,2010,38(3),5-7.
    [70]王冀,娄德君,曲金华,张凯IPCC-AR4模式资料对东北地区气候及可利用水资源的预估研究[J].自然资源学报,2009,24(9),1647-1656.
    [71]王建群,韩丽,马铁民.扎龙湿地生态系统需水量[J].湖泊科学,2006,18(2),114-119.
    [72]王蕊,王中根,夏军.地表水和地下水耦合模型研究进展[J].地理科学进展,2008,27(4),37-41.
    [73]王韶华,刘文朝,刘群昌.三江平原农业需水量及适宜水稻种植面积的研究[J].农业工程学报,2004,20(4),50-53.
    [74]王韶华,田园.三江平原地下水埋深变化及成因的初步分析[J].灌溉排水学报,2003,22(2), 61-64.
    [75]王盛萍.典型小流域土地利用与气候变异的生态水文响应研究[D].北京:北京林业大学,2007.
    [76]王盛萍,张志强,唐寅,郭军庭MIKE-SHE与MUSLE耦合模拟小流域侵蚀产沙空间分布特征[J].农业工程学报,2010,26(3),92-98.
    [77]王帅.基于水质模型的小流域污染控制方案[D].南京大学,2011.
    [78]王昔定.浦江县城乡一体化供水水源的数值模拟计算[J].浙江水利科技,2006,(5),43-45.
    [79]王兴菊,许士国,张奇.湿地水文研究进展综述[J].水文,2006,26(4),1-5.
    [80]王友贞,叶乃杰.江淮丘陵易旱地区适宜水旱种植比的研究[J].水土保持研究,2003,10(4),159-161.
    [81]王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述[J].自然资源学报,2003,18(2),168-173.
    [82]王中根,夏军,刘昌明,欧春平,张永勇.分布式水文模型的参数率定及敏感性分析探讨[J].自然资源学报,2007,22(4),649-655.
    [83]吴益.和田河流域径流过程分析与模拟[D].河海大学,2006.
    [84]吴运军,张树文,侯伟,张养贞,包春红.近50年来挠力河流域居民地,耕地和沼泽地动态关系分析[J].资源科学,2006,28(4),78-83.
    [85]武震,张世强,张小文.流域水文模型参数识别的现代优化方法研究进展[J].冰川冻土,2008,30(1),64-71.
    [86]奚歌,刘绍民,贾立.黄河三角洲湿地蒸散量与典型植被的生态需水量[J].生态学报,2008,28(11),5356-5369.
    [87]徐帮树.滑坡预测的水文-力学耦合模型研究[D].华东师范大学,2006.
    [88]徐涵秋,唐菲.新一代Landsat系列卫星Landsat 8遥感影像新增特征及其生态环境意义[J].生态学报,2013,33(11),3249-3257.
    [89]徐宗学.水文模型[M].北京:科学出版社.2009.
    [90]徐宗学.水文模型:回顾与展望[J].北京师范大学学报(自然科学版),2010,46(3),278-289.
    [91]徐宗学,程磊.分布式水文模型研究与应用进展[J].水利学报,2010,41(9),1009-1017.
    [92]颜春起,林鹤.白浆土水分特征及其形成原因分析[J].土壤肥料,1982,1,21-25.
    [93]杨志峰,崔保山,刘静玲.生态环境需水量理论,方法与实践[M].北京:科学出版社.2003.
    [94]姚允龙,吕宪国,王蕾.1956年~2005年挠力河径流演变特征及影响因素分析[J].资源科学,2009a,31(4),648-655.
    [95]姚允龙,吕宪国,王蕾.气候变化对挠力河径流量的影响[J].华东师范大学学报(自然科学版),2009b,3,153-159.
    [96]余国营.洪灾后的反思——湿地管理和洪水灾害的生态关系浅析[J].生态学杂志,1999,18(1),34-38.
    [97]张方敏,申双和.我国参考作物蒸散的空间分布和时间趋势[J].南京气象学院学报,2007,30(5),705-709.
    [98]张金存,芮孝芳.分布式水文模型构建理论与方法述评[J].水科学进展,2007,18(2),286-292.
    [99]张莉.全球海气耦合模式对东亚降水模拟的检验[D].中国科学院研究生院,2008.
    [100]张树清,张柏,汪爱华.三江平原湿地消长与区域气候变化关系研究[J].地球科学进展,2001,16(6),836-841.
    [101]张祥伟.湿地生态需水量计算[J].水利规划与设计,2005,2,13-19.
    [102]张养贞,黄锡畴.三江平原沼泽土壤的发生,性质与分类[J].地理科学,1981,1(2),171-180.
    [103]张勇,刘时银,丁永建.中国西部冰川度日因子的空间变化特征[J].地理学报,2006,61(1),89-98.
    [104]张勇,刘时银,上官冬辉,谢昌卫,韩海东,王建.天山南坡科其卡尔巴契冰川度日因子变化特征研究[J].冰川冻土,2005,27(3),337-343.
    [105]章光新,尹雄锐,冯夏清.湿地水文研究的若干热点问题[J].湿地科学,2008,6(2),105-115.
    [106]赵艳波,刘正茂,吴凤梅.挠力河流域湿地水文特征变化研究[J].水文,2005,25(1),58-64.
    [107]郑红星,刘静.东北地区近40年干燥指数变化趋势及其气候敏感性[J].地理研究,2010,30(10),1765-1774.
    [108]郑蕾.黑龙江省主要耕地土壤水分入渗性能试验研究[D].东北农业大学,哈尔滨.2010.
    [109]智协飞,伍清,白永清,祁海霞.基于IPCC-AR4模式资料的地面气温超级集合预测[J].气象科学,2010,30(5),708-714.
    [110]周德民,宫辉力,胡金明,赵魁义.湿地水文生态学模型的理论与方法[J].生态学杂志,2007,26(1),108-114.
    [111]周林飞,许士国,李青山,刘大庆.扎龙湿地生态环境需水量安全阈值的研究[J].水利学报,2007,38(7),845-851.
    [112]朱士江,孙爱华,张忠学.三江平原不同灌溉模式水稻需水规律及水分利用效率试验研究[J].节水灌溉,2009,11,12-14.
    [113]Abbott M B, Bathurst J C, Cunge J A, O'connell P E, Rasmussen J. An introduction to the European Hydrological System--Systeme Hydrologique Europeen,"SHE",1:history and philosophy of a physically-based, distributed modeling system[J]. Journal of Hydrology,1986a,87(1-2),45-59.
    [114]Abbott M B, Bathurst J C, Cunge J A, O'connell P E, Rasmussen J. Introduction to the European Hydrological System-Systeme Hydrologique Europeen,"SHE",2:Structure of a Physically-based, Distributed Modelling System[J]. Journal of Hydrology,1986b,87(1-2),61-77.
    [115]Abbott M B, Ionescu F. On the numerical computation of nearly horizontal flows[J]. Journal of Hydraulic Research,1967,5(2),97-117.
    [116]Abbott M B, Refsgaard J C. Distributed hydrological modelling[M]. Dordrecht:Kluwer Academic Publishers.1996.
    [117]Ajami N K, Duan Q, Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework:Confronting input, parameter, and model structural uncertainty in hydrologic prediction[J]. Water Resources Research,2007,43(1), W01403, DOI: 01410.01029/02005WR004745.
    [118]Al-Khudhairy D H A, Thompson J R Modelling the hydrology of an underdrained catchment and the effects of reverting to its former natural state[A]. In J. C. Refsgaard,& E. A. Karalis (Eds.), Operational Water Management[C]. Rotterdam, Netherlands:Balkema Publishers.1997.333-340.
    [119]Al-Khudhairy D H A, Thompson J R, Gavin H, Hamm N A S. Hydrological modelling of a drained grazing marsh under agricultural land use and the simulation of restoration management scenarios[J]. Hydrological Sciences Journal,1999,44(6),943-971.
    [120]Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[J]. Rome, Italy,1998.
    [121]Alley R, Berntsen T, Bindoff N L, Chen Z, Chidthaisong A, Friedlingstein P, Gregory J, Hegerl G, Heimann M, Hewitson B, Hoskins B, Joos F, Jouzel J, Kattsov V, Lohmann U, Manning M, Matsuno T, Molina M, Nicholls N, Overpeck J, Qin D, Raga G, Ramaswamy V, Ren J, Rusticucci M, Solomon S, Somerville R, Stocker T F, Scott P, Stouffer R J, Whetton P, Wood R A, Wratt D. Climate change 2007:The physical science basis. Summary for Policymakers. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva, Switzerland.2007.
    [122]An S, Li H, Guan B, Zhou C, Wang Z, Deng Z, Zhi Y, Liu Y, Xu C, Fang S, Jiang J, Li H. China's natural wetlands:past problems, current status, and future challenges[J]. AMBIO:A Journal of the Human Environment,2007,36(4),335-342.
    [123]Andersen J, Dybkjaer G, Jensen K H, Refsgaard J C, Rasmussen K. Use of remotely sensed precipitation and leaf area index in a distributed hydrological model[J]. Journal of Hydrology,2002, 264(1-4),34-50.
    [124]Andersen J, Refsgaard J C, Jensen K H. Distributed hydrological modelling of the Senegal River Basin-model construction and validation[J]. Journal of Hydrology,2001,247(3),200-214.
    [125]Andreasson J, Bergstrom S, Carlsson B, Graham L P, Lindstrom G. Hydrological change-climate change impact simulations for Sweden[J]. AMBIO:A Journal of the Human Environment,2004, 33(4),228-234.
    [126]Arnell N W, Reynard N S. The effects of climate change due to global warming on river flows in Great Britain[J]. Journal of Hydrology,1996,183(3),397-424.
    [127]Arnell N W. The effect of climate change on hydrological regimes in Europe:a continental perspective[J]. Global environmental change,1999,9(1),5-23.
    [128]Arnell N W. Effects of IPCC SRES* emissions scenarios on river runoff:a global perspective[J]. Hydrology and Earth System Sciences Discussions,2003,7(5),619-641.
    [129]Arnold J G, Allen P M, Bernhardt G. A comprehensive surface-groundwater flow model[J]. Journal of Hydrology,1993,142(1),47-69.
    [130]Bashford K E, Beven K J, Young P C. Observational data and scale-dependent parameterizations: explorations using a virtual hydrological reality [J]. Hydrological Processes,2002,16(2),293-312.
    [131]Bastiaanssen W G M, Menenti M, Feddes R A, Holtslag A A M.A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation[J]. Journal of Hydrology,1998,212,198-212.
    [132]Bathurst J C, O'connell P E. Future of distributed modelling:the Systeme Hydrologique Europeen[J]. Hydrological Processes,1992,6(3),265-277.
    [133]Beck M B, Halfon E. Uncertainty, identifiability and the propagation of prediction errors:a case study of Lake Ontario[J]. Journal of Forecasting,1991,10(1-2),135-161.
    [!34]Beven K. Prophecy, reality and uncertainty in distributed hydrological modelling[J]. Advances in Water Resources,1993,16(1),41-51.
    [135]Beven K. A manifesto for the equifinality thesis[J]. Journal of Hydrology,2006,320(1),18-36.
    [136]Beven K, Binley A. The future of distributed models:model calibration and uncertainty prediction[J]. Hydrological Processes,1992,6(3),279-298.
    [137]Beven K, Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology[J]. Journal of Hydrology,2001,249(1),11-29.
    [138]Beven K J, Kirkby M J, Schofield N, Tagg A F. Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments[J]. Journal of Hydrology,1984,69(1),119-143.
    [139]Beven K J. A discussion of distributed hydrological modelling[A]. In M. B. Abbott,& J. C. Refsgaard (Eds.), Distributed Hydrological Modelling[C]. Dordrecht:Kluwer.1996.
    [140]Beven K J, Kirkby M J. A physically based, variable contributing area model of basin hydrology[J]. Hydrological Sciences Bulletin,1979,24(1),43-69.
    [141]Beyene T, Lettenmaier D P, Kabat P. Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios[J]. Climatic Change,2010,100(3-4),433-461.
    [142]Biftu G F, Gan T Y. Semi-distributed, physically based, hydrologic modeling of the Paddle River Basin, Alberta, using remotely sensed data[J]. Journal of Hydrology,2001,244(3),137-156.
    [143]Blasone R S, Madsen H, Rosbjerg D. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling[J]. Journal of Hydrology,2008, 353(1-2),18-32.
    [144]Boegh E, Thorsen M, Butts M B, Hansen S, Christiansen J S, Abrahamsen P, Hasager C, Jensen N O, van der Keur P, Refsgaard J C. Incorporating remote sensing data in physically based distributed agro-hydrological modelling[J]. Journal of Hydrology,2004,287(1-4),279-299.
    [145]Bonan G B, Oleson K W, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson R E, Yang Z-L. The Land Surface Climatology of the Community Land Model Coupled to the NCAR Community Climate Model*[J]. Journal of Climate,2002,15(22),3123-3149.
    [146]Boyle D P, Gupta H V, Sorooshian S Multicriteria calibration of hydrologic models[A]. In Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau,& R. Turcotte (Eds.), Calibration of watershed models[C]:American Geophysical Union.2004.185-196.
    [147]Braithwaite R J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling[J]. Journal of Glaciology,1995,41(137),153-160.
    [148]Braithwaite R J, Zhang Y. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model[J]. Journal of Glaciology,2000,46(152),7-14.
    [149]Brooks R H, Corey A T. Hydraulic properties of porous media[M] (Hydrology Papers, Colorado State University, Vol. March). Fort Collins.1964.
    [150]Brubaker K, Rango A, Kustas W. Incorporating radiation inputs into the snowmelt runoff model[J]. Hydrological Processes,1996,10(10),1329-1343.
    [151]Buttle J M. Effects of suburbanization upon snowmelt runoff[J]. Hydrological Sciences Journal, 1990,35(3),285-302.
    [152]Butts M B, Payne J T, Kristensen M, Madsen H. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation[J].Journal of Hydrology,2004, 298(1-4),242-266.
    [153]Calder I R Hydrologic effects of land-use change[A]. In D. R. Maidment (Ed.), Handbook of hydrology.[C]. New York:McGraw-Hill, Inc.1992.
    [154]Campo L, Caparrini F, Castelli F. Use of multi-platform, multi-temporal remote-sensing data for calibration of a distributed hydrological model:an application in the Arno basin, Italy[J]. Hydrological Processes,2006,20(13),2693-2712.
    [155]Chen J M, Chen X, Ju W, Geng X. Distributed hydrological model for mapping evapotranspiration using remote sensing inputs[J]. Journal of Hydrology,2005,305(1),15-39.
    [156]Cheng C T, Ou C P, Chau K W. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration[J]. Journal of Hydrology,2002,268(1),72-86.
    [157]Christiaens K, Feyen J. Analysis of uncertainties associated with different methods to determine soil hydraulic properties and their propagation in the distributed hydrological MIKE SHE model[J]. Journal of Hydrology,2001,246(1-4).63-81.
    [158]Christiaens K, Feyen J. Constraining soil hydraulic parameter and output uncertainty of the distributed hydrological MIKE SHE model using the GLUE framework[J]. Hydrological Processes, 2002a,16(2),373-391.
    [159]Christiaens K, Feyen J. Use of sensitivity and uncertainty measures in distributed hydrological modeling with an application to the MIKE SHE model[J]. Water Resources Research,2002b,38(9), 1169.
    [160]Christiansen J S, Thorsen M, Clausen T, Hansen S, Refsgaard J C. Modelling of macropore flow and transport processes at catchment scale[J]. Journal of Hydrology,2004,299(1-2),136-158.
    [161]Chun K P, Wheater H S, Onof C J, Whitehead P G. Streamflow estimation for six UK catchments under future climate scenarios[J]. Hydrology research,2009,40(2/3),96-112.
    [162]Clair T A. Canadian freshwater wetlands and climate change[J]. Climatic Change,1998,40(2), 163-165.
    [163]Conly F M, van der Kamp G. Monitoring the hydrology of Canadian prairie wetlands to detect the effects of climate change and land use changes[J]. Environmental Monitoring and Assessment, 2001,67(1-2),195-215.
    [164]Conway D. The impacts of climate variability and future climate change in the Nile Basin on water resources in Egypt[J]. International Journal of Water Resources Development,1996,12(3),277-296.
    [165]Dai Z, Li C, Trettin C, Sun G, Amatya D, Li H. Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain[J]. Hydrology and Earth System Sciences, 2010a,14(6),1033-1046.
    [166]Dai Z, Trettin C C, Li C, Amatya D M, Sun G, Li H. Sensitivity of Stream flow and Water Table Depth to Potential Climatic Variability in a Coastal Forested Watershed[J]. Journal of the American Water Resources Association,2010b,46(5),1036-1048.
    [167]Dawson T P, Berry P M, Kampa E. Climate change impacts on freshwater wetland habitats[J]. Journal for Nature Conservation,2003,11(1),25-30.
    [168]De Troch F P, Troch P A, Su Z, Lin D S, Abbott M B, Refsgaard J C Application of remote sensing for hydrological modelling[A]. In M. B. Abbott,& J. C. Refsgaard (Eds.), Distributed Hydrological Modelling[C]. The Netherlands:Kluwer Academic Publishers.1996.165-191.
    [169]Delworth T L, Broccoli A J, Rosati A, Stouffer R J, Balaji V, Beesley J A, Cooke W F, Dixon K W, Dunne J, Dunne K. GFDL's CM2 global coupled climate models. Part I:Formulation and simulation characteristics[J]. Journal of Climate,2006,19(5),643-674.
    [170]DHL Auto Calibration Tool, User Guide. DHI, Horsholm, Denmark.2011a.
    [171]DHI. MIKE 11, A Modelling System for Rivers and Channels, Reference Manual. DHI, Horsholm, Denmark.2011b.
    [172]DHI. MIKE SHE User Manual Volume 1:User Guide. DHI, Hersholm, Denmark.2011c.
    [173]DHI. MIKE SHE User Manual Volume 2:Reference Guide. DHI, H(?)rsholm, Denmark.2011d.
    [174]Doherty J, Welter D. A short exploration of structural noise[J]. Water Resources Research,2010, 46(5), W05525, doi:05510.01029/02009WR008377.
    [175]Doulgeris C, Georgiou P, Papadimos D, Papamichail D. Ecosystem approach to water resources management using the MIKE 11 modeling system in the Strymonas River and Lake Kerkini[J]. Journal of environmental management,2012,94(1),132-143.
    [176]Duan Q, Gupta H V, Sorooshian S, Rousseau A N, Turcotte R. Calibration of watershed models[M] (Vol.6). Washington, DC:American Geophysical Union.2003.
    [177]Duan Q, Sorooshian S, Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resources Research,1992,28(4),1015-1031.
    [178]Duan Q, Sorooshian S, Gupta V K. Optimal use of the SCE-UA global optimization method for calibrating watershed models[J]. Journal of Hydrology,1994,158(3),265-284.
    [179]Eglington S M, Gill J A, Bolton M, Smart M A, Sutherland W J, Watkinson A R. Restoration of wet features for breeding waders on lowland grassland[J]. Journal of Applied Ecology,2008,45(1), 305-314.
    [180]Engeland K, Gottschalk L. Bayesian estimation of parameters in a regional hydrological model[J]. Hydrology and Earth System Sciences,2002,6(5),883-898.
    [181]Ewen J, Parkin G. Validation of catchment models for predicting land-use and climate change impacts.1. Method[J]. Journal of Hydrology,1996,175(1-4),583-594.
    [182]Fohrer N, Haverkamp S, Eckhardt K, Frede H G. Hydrologic response to land use changes on the catchment scale[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2001,26(7-8),577-582.
    [183]Franks S W, Beven K J, Quinn P F, Wright I R. On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes:equifinality and the problem of robust calibration[J]. Agricultural and Forest Meteorology,1997,86(1),63-75.
    [184]Freeze R A, Harlan R L. Blueprint for a physically-based, digitally-simulated hydrologic response model[J]. Journal of Hydrology,1969,9(3),237-258.
    [185]Gill G O, Rosbjerg D, Gil A, Ondracek M, Dikgola K. Assessing climate change impacts on river flows and environmental flow requirements at catchment scale[J]. Ecohydrology,2010,3(1),28-40.
    [186]Gallagher M R, Doherty J. Parameter interdependence and uncertainty induced by lumping in a hydrologic model[J]. Water Resources Research,2007,43(5), W05421.
    [187]Getirana A C. Bonnet M P, Rotunno Filho O C, Mansur W J. Improving hydrological information acquisition from DEM processing in floodplains[J]. Hydrological Processes,2009,23(3),502-514.
    [188]Gilvear D J, Mclnnes R J. Wetland hydrological vulnerability and the use of classification procedures:a Scottish case study [J]. Journal of environmental management,1994,42(4),403-414.
    [189]Goderniaux P, Brouyere S, Fowler H J, Blenkinsop S, Therrien R, Orban P, Dassargues A. Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves[J]. Journal of Hydrology,2009,373(1),122-138.
    [190]Goodrich D C, Faures J-M, Woolhiser D A, Lane L J, Sorooshian S. Measurement and analysis of small-scale convective storm rainfall variability[J]. Journal of Hydroiogy,1995,173(1),283-308.
    [191]Gordon C. Cooper C, Senior C A, Banks H, Gregory J M, Johns T C, Mitchell J F, Wood R A. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments[J]. Climate Dynamics,2000,16(2-3),147-168.
    [192]Gosling S N, Bretherton D, Haines K, Arnell N W. Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2010,368(1926),4005-4021.
    [193]Graham D N, Butts M B Flexible integrated watershed modeling with MIKE SHE[A]. In V. P. Singh,& D. K. Frevert (Eds.), Watershed models[C]. Boca Raton, USA:CRC Press.2006.245-272.
    [194]Graham L P, Hagemann S, Jaun S, Beniston M. On interpreting hydrological change from regional climate models[J]. Climatic Change,2007,81(1),97-122.
    [195]Grayson R B, Bloschl G Spatial modelling of catchment dynamics[A]. In R. B. Grayson,& G. Bloschl (Eds.), Spatial Patterns in Catchment Hydrology:Observations and Modelling[C]. Cambridge:Cambridge University Press.2001.51-81.
    [196]Grayson R B, Bloschl G, Western A W, McMahon T A. Advances in the use of observed spatial patterns of catchment hydrological response[J]. Advances in Water Resources,2002,25(8-12), 1313-1334.
    [197]Grayson R B, Moore I D, McMahon T A. Physically based hydrologic modeling:1. A Terrain-based model for investigative purposes[J]. Water Resources Research,1992,28(10),2639-2658.
    [198]Grimes D I F, Diop M. Satellite-based rainfall estimation for river flow forecasting in Africa. I: Rainfall estimates and hydrological forecasts[J]. Hydrological Sciences Journal,2003,48(4),567-584.
    [199]Grimes D I F, Pardo-Iguzquiza E, Bonifacio R. Optimal areal rainfall estimation using raingauges and satellite data[J]. Journal of Hydrology,1999,222(1-4),93-108.
    [200]Hapuarachchi H, Li Z, Wang S. Application of SCE-UA method for calibrating the Xinanjiang watershed model[J]. Journal of lake sciences,2001,13(4),304-314.
    [201]Hartig E K, Grozev O, Rosenzweig C. Climate change, agriculture and wetlands in Eastern Europe: vulnerability, adaptation and policy[J]. Climatic Change,1997,36(1-2),107-121.
    [202]Henriksen H J, Troldborg L, Nyegaard P, Sonnenborg T O, Refsgaard J C, Madsen B. Methodology for construction, calibration and validation of a national hydrological model for Denmark[J]. Journal of Hydrology,2003,280(1-4),52-71.
    [203]Herron N, Davis R, Jones R. The effects of large-scale afforestation and climate change on water allocation in the Macquarie River catchment, NSW, Australia[J]. Journal of environmental management,2002,65(4),369-381.
    [204]Hock R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology,2003, 282(1),104-115.
    [205]Houser P R, Shuttleworth W J, Famiglietti J S, Gupta H V, Syed K H, Goodrich D C. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation[J]. Water Resources Research,1998,34(12),3405-3420.
    [206]Huang Y, Chen X, Li Y, Willems P, Liu T. Integrated modeling system for water resources management of Tarim River Basin[J]. Environmental Engineering Science,2010,27(3),255-269.
    [207]Hulme M, Zhao Z C, Jiang T. Recent and future climate change in East Asia[J]. International Journal of Climatology,1994,14(6),637-658.
    [208]Hundecha Y, Bardossy A. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model[J]. Journal of Hydrology,2004, 292(1-4),281-295.
    [209]Im S, Brannan K. M, Mostaghimi S. Simulating hydrologic and water quality impacts on an urbanizing watershed[J]. Journal of the American Water Resources Association,2003,39(6),1465-1479.
    [210]Im S, Kim H, Kim C, Jang C. Assessing the impacts of land use changes on watershed hydrology using MIKE SHE[J]. Environmental geology,2009,57(1),231-239.
    [211]Immerzeel W W, Droogers P. Calibration of a distributed hydrological model based on satellite evapotranspiration[J]. Journal of Hydrology,2008,349(3),411-424.
    [212]IPCC. Climate change 1996-impacts, adaptations and mitigation of climate change:scientific technical analysis. Contribution of working group II to the second assessment report of the IPCC[R]. Cambridge:Cambridge University Press.1996.
    [213]IPCC. Climate change 2001:impacts, adaptation, and vulnerability. Technical summary, and summary for policymakers. Third assessment report of working group I of the intergovernmental panel on climatic change[R]. Cambridge:Cambridge University Press.2001.
    [214]Jenkins G, Lowe J. Handling uncertainties in the UKCIP02 scenarios of climate change[R]. Exeter, UK.2003.
    [215]Jungclaus J H, Keenlyside N, Botzet M, Haak H, Luo J-J, Latif M, Marotzke J, Mikolajewicz U, Roeckner E. Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM[J]. Journal of Climate,2006,19(16),3952-3972.
    [216]K-1 model developers. K-1 coupled model (MIROC) description[R]. Center for Climate System Research, University of Tokyo, National Institute for Environmental Studies, Frontier Research Center for Global Change.2004.
    [217]Kay A L, Davies H N. Calculating potential evaporation from climate model data:a source of uncertainty for hydrological climate change impacts[J]. Journal of Hydrology,2008,358(3),221-239.
    [218]Kent D M. Evaluating wetland functions and values[A]. In D. M. Kent (Ed.), Applied wetlands science and technology, New York,2001 (pp.55-80):Lewis Publishers.
    [219]Kirchner J W. Getting the right answers for the right reasons:Linking measurements, analyses, and models to advance the science of hydrology[J]. Water Resources Research,2006,42(3), W03S04, doi:10.1029/2005 WR004362.
    [220]Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. science,1983, 220(4598),671-680.
    [221]Kite G W, Pietroniro A. Remote sensing applications in hydrological modelling[J]. Hydrological Sciences Journal/Journal des Sciences Hydrologiques,1996,41(4),563-592.
    [222]Kristensen K J, Jensen S E. A model for estimating actual evapotranspiration from potential evapotranspiration[J]. Nordic Hydrology,1975,6(3),170-188.
    [223]Kuczera G, Mroczkowski M. Assessment of hydrologic parameter uncertainty and the worth of multiresponse data[J]. Water Resources Research,1998,34(6),1481-1489.
    [224]Langevin C, Swain E, Wolfert M. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary[J]. Journal of Hydrology,2005,314(1-4),212-234.
    [225]Legates D R, McCabe G J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation[J]. Water Resources Research,1999,35(1),233-241.
    [226]Liang X, Lettenmaier D P, Wood E F, Burges S J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophyical Research, 1994,99(D7),14415-14428.
    [227]Liu H L, Bao A M, Pan X L, Chen X. Effect of Land-Use Change and Artificial Recharge on the Groundwater in an Arid Inland River Basin[J]. Water resources management,2013,27(10),3775-3790.
    [228]Liu H L, Chen X, Bao A M, Wang L. Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed[J]. Journal of Hydrology,2007,347(3),448-459.
    [229]Liu T, Willems P, Feng X-W, Li Q, Huang Y, Bao A M, Chen X, Veroustraete F, Dong Q. On the usefulness of remote sensing input data for spatially distributed hydrological modelling:case of the Tarim River basin in China[J]. Hydrological Processes,2012,26(3),335-344.
    [230]Lohani V, Refsgaard J, Clausen T, Erlich M, Storm B. Application of SHE for irrigation-command-area studies in India[J]. Journal of irrigation and drainage engineering,1993,119(1),34-49.
    [231]Lorup J K, Refsgaard J C, Mazvimavi D. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling:Case studies from Zimbabwe[J]. Journal of Hydrology,1998,205(3-4),147-163.
    [232]Lu J, Sun G, McNulty S G, Comerford N B. Sensitivity of pine flatwoods hydrology to climate change and forest management in Florida, USA[J]. Wetlands,2009,29(3),826-836.
    [233]Madsen H. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives[J]. Journal of Hydrology,2000,235(3),276-288.
    [234]Madsen H. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives[J]. Advances in Water Resources,2003,26(2),205-216.
    [235]Madsen H, Jacobsen T. Automatic calibration of the MIKE SHE integrated hydrological modelling system[A]. In 4th DHI Software Conference, Helsing(?)r, Denmark,2001.
    [236]Makungo R, Odiyo J, Ndiritu J, Mwaka B. Rainfall-runoff modelling approach for ungauged catchments:A case study of Nzhelele River sub-quaternary catchment[J]. Physics and Chemistry of the Earth, Parts A/B/C,2010,35(13),596-607.
    [237]Mamillapalli S, Srinivasan R, Arnold J G, Engel B A. Effect of spatial variability on basin scale modeling[A]. In Proceedings of the Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, New Mexico,1996.
    [238]Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne J. The new 1PSL climate system model:IPSL-CM4[J]. Note du Pole de Modelisation, IPSL,2005,26,1-86.
    [239]Martinez C J, Campbell K L, Annable M D, Kiker G A. An object-oriented hydrologic model for humid, shallow water-table environments[J]. Journal of Hydrology,2008,351(3-4),368-381.
    [240]McMichael C E, Hope A S. Predicting streamflow response to fire-induced landcover change: Implications of parameter uncertainty in the MIKE SHE model[J]. Journal of environmental management,2007,84(3),245-256.
    [241]Mertens J, Madsen H, Feyen L, Jacques D, Feyen J. Including prior information in the estimation of effective soil parameters in unsaturated zone modelling[J]. Journal of Hydrology,2004,294(4), 251-269.
    [242]Mertens J, Madsen H, Kristensen M, Jacques D, Feyen J. Sensitivity of soil parameters in unsaturated zone modelling and the relation between effective, laboratory and in situ estimates[J]. Hydrological Processes,2005,19(8),1611-1633.
    [243]Milsom T P, Langton S D, Parkin W K, Peel S, Bishop J D, Hart J D, Moore N P. Habitat models of bird species' distribution:an aid to the management of coastal grazing marshes[J]. Journal of Applied Ecology,2000,37(5),706-727.
    [244]Mitsch W J, Gosselink J G. Wetlands (4th ed.)[M]. New Jesey:John Wiley and Sons.2007.
    [245]Morris E M Forecasting flood flows in grassy and forested basins using a deterministic distributed mathematical model[A]. In Hydrological Forecasting[C]. IAHS Publication.1980.
    [246]Mortsch L D. Assessing the impact of climate change on the Great Lakes shoreline wetlands[J]. Climatic Change,1998,40(2),391-416.
    [247]Moussa R, Chahinian N, Bocquillon C. Distributed hydrological modelling of a Mediterranean mountainous catchment-Model construction and multi-site validation[J]. Journal of Hydrology, 2007,337(l),35-51.
    [248]Murphy J M, Sexton D M, Barnett D N, Jones G S, Webb M J, Collins M, Stainforth D A. Quantification of modelling uncertainties in a large ensemble of climate change simulations[J]. Nature,2004,430(7001),768-772.
    [249]Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung T Y, Kram T. Special report on emissions scenarios:a special report of Working Group III of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press.2000.
    [250]Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part Ⅰ-A discussion of principles[J]. Journal of Hydrology,1970,10(3),282-290.
    [251]Newbold C, Mountford J O. Water level requirements of wetland plants and animals. English Nature Freshwater Series No.5[M]. Peterborough:English Nature.1997.
    [252]Nielsen S A, Hansen E. Numerical simulation of the rainfall-runoff process on a daily basis[J]. Nordic Hydrology,1973,4(3),171-190.
    [253]Nijssen B, Lettenmaier D P, Liang X, Wetzel S W, Wood E F. Streamflow simulation for continental-scale river basins[J]. Water Resources Research,1997,33(4),711-724.
    [254]Nijssen B, O'Donnell G M, Hamlet A F, Lettenmaier D P. Hydrologic sensitivity of global rivers to climate change[J]. Climatic Change,2001,50(1-2),143-175.
    [255]Nohara D, Kitoh A, Hosaka M, Oki T. Impact of climate change on river discharge projected by multimodel ensemble[J]. Journal of Hydrometeorology,2006,7(5),1076-1089.
    [256]Oogathoo S. Runoff simulation in the Canagagigue Creek watershed using the MIKE SHE model[D]. McGill University, Montreal.2006.
    [257]Ostojski M. Application of hydrological and hydraulic models for hydrological data transfer[J]. Acta Geophysica,2013,61(3),690-705.
    [258]Parkin G, O'donnell G, Ewen J, Bathurst J C, O'Connell P E, Lavabre J. Validation of catchment models for predicting land-use and climate change impacts.2. Case study for a Mediterranean catchment[J]. Journal of Hydrology,1996,175(1-4),595-613.
    [259]Paul S, Ktlsel K, Alewell C. Reduction processes in forest wetlands:tracking down heterogeneity of source/sink functions with a combination of methods[J]. Soil Biology and Biochemistry,2006, 38(5),1028-1039.
    [260]Phillips T J, Gleckler P J. Evaluation of continental precipitation in 20th century climate simulations:The utility of multimodel statistics[J]. Water Resources Research,2006,42(3), W03202, doi:03210.01029/02005WR004313.
    [261]Poiani K A, Johnson W C. A spatial simulation model of hydrology and vegetation dynamics in semi-permanent prairie wetlands[J]. Ecological Applications,1993,3(2),279-293.
    [262]Prudhomme C, Reynard N, Crooks S. Downscaling of global climate models for flood frequency analysis:where are we now?[J]. Hydrological Processes,2002,16(6),1137-1150.
    [263]Rabuffetti D, Barbero S. Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte Region case study[J]. Hydrology and Earth System Sciences Discussions, 2005,9(4),457-466.
    [264]Ramsar Bureau. Climate change and wetlands:impacts, adaptations and mitigation.Ramsar COP8 DOC.11[R]. Gland, Switzerland:Ramsar Convention Bureau.2002a.
    [265]Ramsar Bureau. The Ramsar Strategic Plan 2003-2008[R]. Gland, Switzerland:Ramsar Convention Bureau.2002b.
    [266]Refsgaard J C. Parameterisation,calibration and validation of distributed hydrological models[J]. Journal of Hydrology.1997,198(1-4),69-97.
    [267]Refsgaard J C, Grayson R B, Bloschl G Towards a formal approach to calibration and validation of models using spatial data[A]. In R. B. Grayson,& G. Bloschl (Eds.), Spatial patterns in catchment hydrology:observations and modelling[C]. Cambridge:Cambridge University Press. 2001.329-354.
    [268]Refsgaard J C, Knudsen J. Operational validation and intercomparison of different types of hydrological models[J]. Water Resources Research,1996,32(7),2189-2202.
    [269]Refsgaard J C, Storm B MIKE SHE[A]. In V. P. Singh (Ed.), Computer models of watershed hydrology[C]. Highlands Ranch, Colorado:Water Resources Publications.1995.809-846.
    [270]Refsgaard J C, Storm B Construction, calibration and validation of hydrological models[A]. In M. B. Abbott,& J. C. Refsgaard (Eds.), Distributed hydrological modelling[C]. The Netherlands: Springer.1996.41-54.
    [271]Refsgaard J C, Storm B, Clausen T. Systeme Hydrologique Europeen (SHE):review and perspectives after 30 years development in distributed physically-based hydrological modelling[J]. Hydrology research,2010,41(5),355-377.
    [272]Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics,1931,1(5), 318-333.
    [273]Rodriguez-Iturbe 1. Ecohydrology:A hydrologic perspective of climate-soil-vegetation dynamies[J]. Water Resources Research,2000,36(1),3-9.
    [274]Romanowicz A A, Vanclooster M, Rounsevell M, La Junesse I. Sensitivity of the SWAT model to the soil and land use data parametrisation:a case study in the Thyle catchment, Belgium[J]. Ecological Modelling,2005,187(1),27-39.
    [275]Sahagian D, Melack J. Global wetland distribution and functional characterization:trace gases and the hydrologic cycle[J]. IGBP Report 46,1998.
    [276]Sahoo G B, Ray C, De Carlo E H. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream[J]. Journal of Hydrology,2006,327(1-2),94-109.
    [277]Schmugge T J, Kustas W P, Ritchie J C, Jackson T J, Rango A. Remote sensing in hydrology[J]. Advances in Water Resources,2002,25(8),1367-1385.
    [278]Seibert J. Reliability of model predictions outside calibration conditions[J]. Nordic Hydrology, 2003,34(5),477-492.
    [279]Shrestha R, Rode M. Multi-objective calibration and fuzzy preference selection of a distributed hydrological model[J]. Environmental Modelling & Software,2008,23(12),1384-1395.
    [280]Singh C R, Thompson J R, French J R, Kingston D G, Mackay A W. Modelling the impact of prescribed global warming on runoff from headwater catchments of the Irrawaddy River and their implications for the water level regime of Loktak Lake, northeast India[J]. Hydrology and Earth System Sciences,2010,14(9),1745-1765.
    [281]Singh P, Kumar N, Arora M. Degree-day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas[J]. Journal of Hydrology,2000,235(1),1-11.
    [282]Singh R, Refsgaard J, Yde L. Application of irrigation optimisation system (IOS) to a major irrigation project in India[J]. Irrigation and Drainage Systems,1999a,13(3),229-248.
    [283]Singh R, Refsgaard J, Yde L, J(?)rgensen G, Thorsen M. Hydraulic-hydrological simulations of canal-command for irrigation water management[J]. Irrigation and Drainage Systems,1997,11(3), 185-213.
    [284]Singh R, Subramanian K, Refsgaard J. Hydrological modelling of a small watershed using MIKE SHE for irrigation planning[J]. Agricultural Water Management,1999b,41(3),149-166.
    [285]Siriwardena L, Finlayson B L, McMahon T A. The impact of land use change on catchment hydrology in large catchments:The Comet River, Central Queensland, AustraliafJ]. Journal of Hydrology,2006,326(1-4),199-214.
    [286]Solomon S, Qin D, Manning M, Alley R B, Berntsen T, Bindoff N L, Chen Z, Chidthaisong A, Gregory J M, Hegerl G C. Climate change 2007:The physical science basis, contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge:Cambridge University Press.2007.
    [287]Sorenson L G, Goldberg R, Root T L, Anderson M G. Potential effects of global warming on waterfowl populations breeding in the northern Great Plains[J]. Climatic Change,1998,40(2),343-369.
    [288]Sorooshian S, Gupta V K Model calibration[A]. In V. P. Singh (Ed.), Computer models of watershed hydrology[C]. Colorado:Water Resources Publications.1995.
    [289]Stisen S, Jensen K H, Sandholt I, Grimes D I F. A remote sensing driven distributed hydrological model of the Senegal River basin[J]. Journal of Hydrology,2008,354(1-4),131-148.
    [290]Stoll S, Hendricks Franssen H J, Butts M, Kinzelbach W. Analysis of the impact of climate change on groundwater related hydrological fluxes:a multi-model approach including different downscaling methods[J]. Hydrology and Earth System Sciences Discussions,2011,7,21-38,
    [291]Su M, Stolte W J, Van Der Kamp G. Modelling Canadian prairie wetland hydrology using a semi-distributed streamflow model[J]. Hydrological Processes.2000,14(14),2405-2422.
    [292]Sultana Z. Coulibaly P. Distributed modelling of future changes in hydrological processes of Spencer Creek watershed[J]. Hydrological Processes.2011,25,1254-1270.
    [293]Tebaldi C, Knutti R. The use of the multi-model ensemble in probabilistic climate projections[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007,365(1857),2053-2075.
    [294]Thanapakpawin P, Richey J, Thomas D, Rodda S, Campbell B, Logsdon M. Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand[J]. Journal of Hydrology,2007,334(1-2),215-230.
    [295]Thiemann M, Trosset M, Gupta H, Sorooshian S. Bayesian recursive parameter estimation for hydrologic models[J]. Water Resources Research,2001,37(10),2521-2535.
    [296]Thodsen H. The influence of climate change on stream flow in Danish rivers[J]. Journal of Hydrology,2007,333(2),226-238.
    [297]Thompson J R. Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections[J]. Hydrology research, 2012,43(4),507-530.
    [298]Thompson J R, Gavin H, Refsgaard A, Refstrup S renson H, Gowing D J. Modelling the hydrological impacts of climate change on UK lowland wet grassland[J]. Wetlands Ecology and Management,2009,17(5),503-523.
    [299]Thompson J R, Green A J, Kingston D G, Gosling S N. Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models[J]. Journal of Hydrology,2013,486,1-30.
    [300]Thompson J R, Sorenson H R, Gavin H, Refsgaard A. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England[J]. Journal of Hydrology,2004,293(1-4),151-179.
    [301]Tianqi A, Takeuchi K, Ishidaira H, Yoshitani J, Fukami K. Development and application of a new algorithm for automated pit removal for grid DEMs[J]. Hydrological Sciences Journal,2003,48(6), 985-997.
    [302]Tiner R W. Wetland indicators:a guide to wetland indentification, delineation, classification, and mapping[M]. Boca Raton, Florida:Lewis Publishers, CRC Press.1999.
    [303]Trefry M G, Muffels C. FEFLOW:a finite-element ground water flow and transport modeling tool[J]. Groundwater,2007,45(5),525-528.
    [304]Tsang C F. Comments on model validation[J]. Transport in porous media,1987,2(6),623-629.
    [305]Usul N, Turan B. Flood forecasting and analysis within the Ulus Basin, Turkey, using geographic information systems[J]. Natural Hazards,2006,39(2),213-229.
    [306]Vazquez R F, Feyen J. Assessment of the effects of DEM gridding on the predictions of basin runoff using MIKE SHE and a modelling resolution of 600 m[J]. Journal of Hydrology,2007, 334(1-2),73-87.
    [307]Vazquez R F, Feyen L, Feyen J, Refsgaard J C. Effect of grid size on effective parameters and model performance of the MIKE-SHE code[J]. Hydrological Processes,2002,16(2),355-372.
    [308]Vazquez R F, Willems P, Feyen J. Improving the predictions of a MIKE SHE catchment-scale application by using a multi-criteria approach[J]. Hydrological Processes,2008,22(13),2159-2179.
    [309]Van der Valk A. The biology of freshwater wetlands[M]. Oxford:Oxford University Press.2006.
    [310]van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5),892-898.
    [311]Veihe A, Quinton J. Sensitivity analysis of EUROSEM using Monte Carlo simulation Ⅰ: hydrological, soil and vegetation parameters[J]. Hydrological Processes,2000,14(5),915-926.
    [312]Vrugt J A, Ter Braak C J, Clark M P, Hyman J M, Robinson B A. Treatment of input uncertainty in hydrologic modeling:Doing hydrology backward with Markov chain Monte Carlo simulation[J]. Water Resources Research,2008a,44(12), W00B09, doi:10.1029/2007WR006720.
    [313]Wagener T. Evaluation of catchment models[J]. Hydrological Processes,2003,17(16),3375-3378.
    [314]Wagener T, Boyle D P, Lees M J, Wheater H S, Gupta H V, Sorooshian S. A framework for development and application of hydrological models[J]. Hydrology and Earth System Sciences Discussions,2001,5(1),13-26.
    [315]Wang Q J. The genetic algorithm and its application to calibrating conceptual rainfall-runoff models[J]. Water Resources Research,1991,27(9),2467-2471.
    [316]Wegehenkel M. Estimating of the impact of land use changes using the conceptual hydrological model THESEUS--a case study[J]. Physics and Chemistry of the Earth,2002,27(9-10),631-640.
    [317]Wheeler B D, Gowing D J G, Shaw S C, Mountford J O, Money R P Ecohydrological guidelines for lowland wetland plant communities[A]. In A. W. Brooks, P. V. Jose,& M. I. Whiteman (Eds.), Environment Agency (Anglian Region)[C]. Peterborough, United Kingdom.2004. of water conditions in fens[A]. In J. M. R. Hughes,& A. L. Heathwaite (Eds.), Hydrology and hydrochemistry of British wetlands[C]. Chichester:Wiley.1995.63-82.
    [319]Wijesekara G N, Gupta A, Valeo C, Hasbani J-G, Qiao Y, Delaney P, Marceau D J. Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada[J]. Journal of Hydrology,2012,412,220-232.
    [320]Willmott C J. On the validation of models[J]. Physical geography,1981,2(2),184-194.
    [321]Wood E F, Sivapalan M, Beven K, Band L. Effects of spatial variability and scale with implications to hydrologic modeling[J]. Journal of Hydrology,1988,102(1),29-47.
    [322]Xevi E, Christiaens K, Espino A, Sewnandan W, Mallants D, Sorensen H, Feyen J. Calibration, validation and sensitivity analysis of the MIKE-SHE model using the Neuenkirchen catchment as case study[J]. Water resources management,1997,11(3),219-242.
    [323]Xiao X, Melillo J M, Kicklighter D W, Pan Y, McGuire A D, Helfrich J. Net primary production of terrestrial ecosystems in China and its equilibrium response to changes in climate and atmospheric CO2 concentration[J]. Chinese Journal of Plant Ecology,1998,22(2),97-118.
    [324]Yan J, Smith K R. Simulation of Integrated Surface Water and Ground Water Systems-Model Formulation[J]. Water Resources Bulletin,1994,30(5),879-890.
    [325]Young C A, Escobar-Arias M I, Fernandes M, Joyce B, Kiparsky M, Mount J F, Mehta V K, Purkey D, Viers J H, Yates D. Modeling the hydrology of climate change in California's Sierra Nevada for subwatershed scale adaptationl[J]. Journal of the American Water Resources Association,2009,45(6),1409-1423.
    [326]Zeinivand H. Development of Spatially Distributed Hydrological WetSpa Modules for Snowmelt, Soil Erosion, and Sediment Transport[D]. Vrije Universiteit Brussel, Brussel.2009.
    [327]Zhang Z, Wang S, Sun G, McNulty S G, Zhang H, Li J, Zhang M, Klaghofer E, Strauss P. Evaluation of the MIKE SHE Model for Application in the Loess Plateau, China[J]. Journal of the American Water Resources Association,2008,44(5),1108-1120.
    [328]Zhou M C, Ishidaira H, Hapuarachchi H P, Magome J, Kiem A S, Takeuchi K. Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin[J]. Journal of Hydrology,2006, 327(1),151-173.
    [329]Zhu Y P, Zhang H P, Chen L, Zhao J F. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River[J]. Science of the Total Environment, 2008,406(1),57-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700