用户名: 密码: 验证码:
基于糖的手性配体的设计、合成及其在不对称催化反应中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以糖为手性源,设计合成了吡啶、联吡啶醇类N,O配体,带有次级基团的手性单齿亚磷酸酯配体,并分别将其应用到二乙基锌对醛的不对称加成,Rh催化的不对称氢化反应中,研究了其催化性能。
     一、手性吡啶醇(P-1~P-13),单齿膦配体(Fphos、Gphos、ManniPhos)的设计合成
     1、以果糖为手性源,合成了12个结构系统调变的吡啶和联吡啶醇类手性配体(P-1~P-6);利用葡萄糖和果糖结构的差异性与相似性,以葡萄糖为手性源合成了6个与(P-2~P-3)互为“假对映体”的手性吡啶醇配体(P-8~P-13),并通过二维核磁确定了其绝对构型。
     2、将次级基团的概念引入到手性单齿膦配体的设计中,分别以果糖、葡萄糖、甘露醇为手性源经一锅法高效地合成了13个Fphos(F-1~F-13),9个Gphos(G-1~G-9),11个ManniPhos(M-1~M-4)共33个新型的手性单齿亚磷酸酯配体和1个单齿亚膦酰胺配体(M-5)。通过NMR,HRMS等表征手段确定了其结构。
     二、手性吡啶醇催化的二乙基锌对醛的不对称加成反应
     以果糖衍生的吡啶醇(P-1~P-5)为探针分子研究了其在二乙基锌对醛的不对称加成反应中的构效关系,得出配体的骨架长度是影响其立体选择性的重要因素。在此基础上,评价了互为“假对映体”的果糖和葡萄糖为手性源合成的手性配体(P-1~P-13)对该类反应的催化作用,在优化的条件下,5mo1%P-11为催化剂时,反应以定量的收率获得了最高达94.1%ee的对映体选择性。
     三、手性单齿膦-Rh配合物催化的不对称氢化反应
     研究了手性单齿亚磷酸酯类配体ManniPhos,Fphos,Gphos,单齿亚膦酰胺配体M-5的Rh配合物对α-脱氢氨基酸、衣康酸二甲酯、烯酰胺、β-脱氢
    
    基于搪的手性配体的设计、合成及其在不对称催化反应中的应用研究
    氨基酸四类官能化烯烃不对称氢化反应的催化性能,分析了配体的空间结构与
    其手性诱导能力之间的关系,初步证实了次级基团的作用,获得了一些规律性
    的认识。
     卜助一ManniPhos是一类对a一脱氢氨基酸、衣康酸二甲酷、芳香烯酞胺、
    E式一脂肪p一脱氢氨基酸不对称氢化反应的高效手性催化剂,在优化的反应条件
    下,对于a一脱氢氨基酸甲醋M一1a具有最好的手性诱导能力,在1.omol%的催
    化剂用量、常压下,以定量的转化率获得98%ee的对映体选择性。对于衣康酸
    二甲酷M一19具有最好的手性诱导能力,在10atm的氢气压力下,以定量地转
    化率反应获得99.1%ee的对映体选择性,ToN高达5000。对于芳香烯酞胺M一la
    具有最好的手性诱导能力,在10atm的氢气压力下,获得99.9%ee的对映体选
    择性,在初步的实验条件下TON可以大于4000。对于E-式脂肪p一脱氢氨基酸
    M一lg具有最好的手性诱导能力,40atrn的氢气压力下,获得99.9%ee的对映体
    选择性,TON为50。这是迄今为止单齿亚磷酸醋一Rh配合物对上述四类官能化
    烯烃催化不对称氢化反应取得的最好结果。
     2、手性亚嶙酞胺M一5对于上述四类底物的不对称氢化的手性诱导能力较
    差。对于Mann评hos配体,P/o杂环的手性环境极大地影响了配体的手性诱导
    能力,R一B取OL与D一甘露醇衍生的手性醇是相匹配的。
     3、Fphos和Gphos在助一催化的衣康酸二甲酷和芳香烯酞胺的不对称氢化
    反应中表现出高的催化活性和对映体选择性。在1.omof%的催化剂用量、IOatm
    的氢气压力下,对衣康酸二甲酷最高获得99.6%ee的对映体选择性,对芳香烯
    酞胺最高获得98.5%ee的对映体选择性。对a一脱氢氨基酸,最高只能获得
    89.1%ee的对映体选择性;对于p·脱氢氨基酸的催化活性和立体选择性均较差,
    在Zmol%的催化剂用量,10atln的压力下采用F一3作配体,对E-式脂肪p一脱氢
    氨基酸虽然能获得85.3%ee的对映体选择性,但转化率只有40%,对Z-式脂肪
    p一脱氢氨基酸虽然能定量的转化,但只能获得20.1%ee的对映体选择性。采用
    
    摘要川
    G一3作配体,对E一式脂肪p一脱氢氨基酸虽然能获得97.3%ee的对映体选择性,
    但转化率只有13%,对Z-式脂肪p一脱氢氨基酸也只能获得63.6%的转化率和
    60.5%ee对映体选择性。
     4.以互为非对映异构体的F一3和F一4为配体,研究了其混合体系的灿配
    合物在衣康酸二甲酷不对称氢化反应中的催化性能。
     5、Fphos和Gphos的手性诱导能力极大地受控于糖骨架3一位碳原子的绝
    对构型。总的来说,对于Fphos3一位碳原子的绝对构型为R的手性配体其手性
    诱导能力要远高于3一位碳原子的绝对构型为S的手性配体的手性诱导能力;对
    于Gphos3一位碳原子的绝对构型为S的手性配体的手性诱导能力要远高于3-
    位碳原子的绝对构型为R的手性配体的手性诱导能力。通过催化剂的构象分析,
    解释了Fphos和Gphos中3一位碳原子的绝对构型决定手性诱导能力的现象。
A series of new chiral pyridyl, bipyridyl alcohol and monophosphite ligands, derived from D-glucose, D-fluctose and D-mannitol, were synthesized and employed in asymmetric addition of diethylzinc to aldehydes and asymmetric hydrogenations.
    1. Synthesis of new chiral pyridyl, bipyridyl alcohols (P-1~P-13) and monophosphites (Fphos Gphos ManniPhos).
    To ascertain the structural features important for chiral recognition, we systematically tuned and designed 12 chiral pyridyl alcohols, which were readily synthesized from D-fructose. As pseudo-enantiomers of D-fructose-derived pyridyl alcohol, 6 chiral pyridyl alcohols were also designed and prepared from D-glucose. On the other hand, 33 new chiral monophosphite ligands, ie Fphos, Gphos and ManniPhos, containing additional groups in a proper spatial were synthesized, through simple route, from D-fructose, D-glucose and D-mannitol. The attaching additional groups in these ligands may not only act as hemilabile ligands but also offer the effect of additional groups in the rhodium catalyzed hydrogenation.
    2. The asymmetric addition of diethylzinc to aldehydes
    The structure-activity relationship of pyridyl alcohol ligands in the enantioselective addition of diethylzinc to aldehydes was investigated with
    
    
    
    D-fructose-derived pyridyl alcohols (P-l~P-5) as catalysts, which showed that the appropriate backbone length between the coordinating nitrogen and oxygen atom was crucial for highly effective catalysis with these ligands. Based on this principle, antipodal ligands derived from D-glucose have been designed and synthesized and applied in this asymmetric transformation. With the best ligands P-11, 94.1% ee has been obtained in this asymmetric reaction under the optimal conditions. From a synthetic viewpoint, it is of interest to note that with both D-fructose and D-glucose-derived pyridyl alcohols in hands, it is possible to obtain both enantiomers of the chiral products.
    3. Rh-catalyzed asymmetric hydrogenation using chiral monophosphite ligands The applications of new developed monophosphite ligands (Fphos, Gphos, ManniPhos) in Rh-catalyzed asymmetric hydrogenation of functionalized olefins such as α-dehydroamino acid derivatives, dimethyl itaconate, enamides and β-dehydroamino acid derivatives, were investigated. 1) The ManniPhos proved to be highly effective in the asymmetric hydrogenation reaction at low H2 pressure and room temperature. Highly enantioselectivity with 98% ee has been achieved in Rh-catalyzed asymmetric hydrogenation of a-dehydroamino acid derivatives with M-1a as ligand. With M-1g as ligand, 99.1% ee was obtained in Rh-catalyzed asymmetric hydrogenation of dimethyl itaconate with 5000 TON. In the Rh-catalyzed asymmetric hydrogenation of enamides 99.9% ee was obtained with M-la as ligand, and more than 4000 TON was also achieved. 99.9% ee was also achieved in Rh-catalyzed asymmetric hydrogenation of E-β-dehydroamino acid derivatives with M-lg as ligand. V
    ariation in the structure of P/O heterocycle in ManniPhos revealed that enantiomeric excesses strongly depended on the chirality of the P/O heterocycle. 2) The Fphos and Gphos ligands have also been shown to be
    
    
    
    
    highly effective in Rh-catalyzed hydrogenation of dimethyl itaconate and enamides. Up to 99.6% and 98.5% ee were obtained in hydrogenation of these two kinds of functionalized olefins, respectively. Good enantioselectivity up to 89.1% ee were also observed in Rh-catalyzed hydrogenation of a-dehydroamino acid derivatives. However, the Fphos and Gphos were not efficient ligands for Rh-catalyzed asymmetric hydrogenation of p-dehydroamino acid derivatives.
    The nonlinear effect in the asymmetric catalytic hydrogenation of dimethyl itaconate has also been studied using F-2 and F-5 as ligands, which exhibited strong +NLE. High ee value up to 93 .5% has been obtained with F-2 and F-5 ratio of 1:1
    To the Fphos and Gphos, the enantioselectivities depended strongly on the absolute configuration of carbon atom C-3 of carbohydrate backbone. In general, f
引文
1. For recent reviews, see (a) Ohkuma, T.; Noyori, R. in Catalytic Asymmetric Synthesis (Ed: Ojima, I), Wiley-VCH, Weinheim, 2000, p. 1; (b) Brown, J. M. in Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; p. 121.
    2. Nozaki, H.; Takaya, H.; Noyori, R. Tetrahedron Lett. 1966, 5239.
    3. Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3526.
    4. Blaser, H-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103.
    5. (a) Jones, G. B.; Chapman, B. J. Synthesis, 1995, 475; (b) Jones, G. B.Tetrahedron, 2001, 57, 7999.
    6. Corey, E. J.; Becker, K. B.; Varma, R. K. J. Am. Chem. Soc. 1972, 94, 8616.
    7. Corey, E. J.; Ensley, H. E. J. Am. Chem. Soc. 1975, 97, 6908.
    8. (a) Ferrira, V. F.; Pinheiro, S.; Perrone, C. C.; Costa, P. R. R. J. Braz. Chem. Soc. 2000, 11,266; (b) Jones, G. B.; Guzel, M. Tetrahedron. Lett. 2000, 41, 4695; (c) Sibi, M. P.; Ji, J.; Sansker, J. B.; Jasperse, C. P. J. Am. Chem. Soc. 1999, 121, 7517; (d) Mclntosh, J. M.; Kiser, E. J.; Tian, Z. Can. J. Chem. 1998, 6, 147.
    9. Kawabata, T.; Nagato, M.; Takasu, K.;Fuji, K. J. Am. Chem. Soc. 1999, 119, 3169.
    10. Paras, N. A.; MacMillan, D. W. C. J.. Am. Chem. Soc. 2001, 123, 4370.
    11. Sawamura, M.; Ito, Y. Chem. Rev. 1992, 92, 857.
    12. Hayashi, T.; Kanehira, K.; Tsuchiya, H.; Kumada, M. J. Chem. Soc., Chem. Commun. 1982, 1162.
    13. Hayashi, T.; Kanehira, K.; Hagihara, T.; Kumada, M. J. Org. Chem. 1988, 53,
    
    113.
    14. Knowles, W. S.; Christopfel, W. C.; Koenig, K. E.; Hobbs, C. F. in Catalytic Aspects of Metal Phosphane Complexes (Eds. E. C. Aleya, D. W. Meek), American Chemical Society, Washington, 1982, p. 325, 330.
    15. (a) Holz, J.; Quirmbach, M.; Schmidt, U.; Heller, D.; Stilrmer, R.; Borner, A. J. Org. Chem. 1998, 63, 8031; (b) Li, W.; Zhang, Z.; Xiao, D.; Zhang, X. J. Org. Chem. 2000, 65, 3489.
    16. Yamada, I.; Ohkuouchi, M.;Yamaguchi, M.;Yamagishi, T. J. Chem. Soc, Perkin Trans. 1 1997, 1869.
    17. For review of hemilabile ligands, see: Bader, A.; Linder, E. Coord. Chem. Rev. 1991, 108, 27.
    18. (a) Nomura, N.; Jin, J.; Park, H.; RajanBabu, T. V. J. Am. Chem. Soc. 1998, 120, 459; (b) Nandi, M.; Jin, J.; RajanBabu, T. V. J. Am. Chem. Soc. 1999, 121, 9899.
    19. For reviews, see: Blaser, H-U. Chem. Rev. 1992, 92, 935.
    20. Frohin, M.; Shi, Y. Synthesis. 2000, 1979.
    21. Saito. S.; Nakamura. Y.; Morita, Y. Chem. Pharm. Bull. 1985, 33, 5284.
    22. Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224.
    23. Corey, E. J.; William, J. Tetrahedron. Lett. 1975, 31, 2647.
    24. (a) R. C.; Miller, R. E.; Scattergood, A. J. Am. Chem. Soc. 1949, 71, 3072; (b) James, K.; Tatchell, A. R.; Ray, P. K. J. Chem. Soc.(C), 1967, 2681; (c) Singh, P. P.; Gharia, M. M.; Dasgupta, F.; Srivastava, H. C. Tetrahedron Lett. 1977, 439.
    25. Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D. In Application of Transition Metal Catalysts in Organic Synthesis. Springer Press. 1998, p 5.
    26. (a) Fort, Y.; Becket, S.; Caubere, P. Tetrahedron. 1994, 50, 11893; (b) Adams,
    
    R.; Miyano, S. J. Am. Chem. Soc. 1954, 76, 3168.
    27. Baggett, N.; Stribblehill, P. J. Chem. Soc., Perkin Trans. 1, 1977, 1123.
    28. Genov, M.; Kostova, K.; Dimitrov, V. Tetrahedron. Asymmetry 1997, 8, 1869.
    29.周永贵 中科院上海有机化学研究所1996级博士学位论文,1999.
    30. Alexakis, A.; Burton, J.; Vastra, J.; Benhaim, C.; et al. Eur. J. Org. Chem. 2000, 4011.
    31. Frankland E. J. Liebigs. Ann. Chem., 1849, 71,171.
    32. (a) Carruthers, W. In Comprehensive Organometalic Chemistry; Wilkinson, G.; Ed.; Pergamon Press: Oxford, 1982, Chapter 49. (b) Hursthouse, M. B.; Motevaili, M.; Obiren, P.; Walsh, J. R; Jones, A. C. J. Mater. Chem. 1991, 1, 139.
    33. Sato, T.; Soai, K.; Suzuki, K.; Mukaiyama, T. Chem. Lett. 1978, 601.
    34. Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823.
    35. Pu, L.; Yu, H. B. Chem. Rev. 2001, 101,757, and references therein
    36. For pyridyl alcohols see: (a) Bolm, C.; Zehnder, M.; Bur, D. Angew. Chem., Int. Ed. Engl. 1990, 29, 205; (b) Bolm, C.; Ewald, M.; Felder, M.; Schlingloff, G. Chem. Ber. 1992, 125, 1169; (c) Bolm, C.; Schlingloff, G.; Harms, K. Chem. Ber. 1992, 125, 1191; (d) Chelucci, G.; Soccolini, F. Tetrahedron: Asymmetry 1992, 3, 1235; (e) Collomb, P.; Zelewsky, A. Von. Tetrahedron: Asymmetry 1998, 9, 3911; (f) Ishizaki, M.; Fujita, K.; Shimamoto, M.; Hoshino, O. Tetrahedron: Asymmetry 1994, 5, 411; (g) Ishizaki, M.; Hoshino, O. Chem. Lett 1994, 337; (h) Williams, D.; Fromhold, M. G. Synlett. 1997, 523; (i) Macedo, E.; Moberg, C. Tetrahedron: Asymmetry 1995, 6, 549; (j) Kang, J.; Kim, H.-Y.; Kim, J.-H. Tetrahedron: Asymmetry 1999, 10, 2523; (k) Kotsuki, H.; Nakagawa, Y.; Moriya, N.; Tateishi, H.; Ochi, M.; Suzuki, T.; Isobe, K. Tetrahedron:
    
    Asymmetry 1995, 6, 1165; (1) Kotsuki, H.; Hayakawa, H.; Tateishi, H.; Wakao, M.; Shiro, M. Tetrahedron: Asymmetry 1998, 9, 3203; (m) Wu, Y.; Yun, H.; Wu, Y.; Ding, K.; Zhou, Y. Tetrahedron: Asymmetry 2000, 11, 3543; (n) Yun, H.; Wu, Y.; Wu, Y.; Ding, K.; Zhou, Y. Tetrahedron Lett. 2000, 41, 10263; (o) Zhang, H.; Chan, K. S. J. Chem. Soc., Perkin. Trans. 1. 1999, 381; (p) Soai, K.; Shibata, T.; Sato, I. Acc. Chem. Res. 2000, 33, 382; (q) Goanvic, D. L.; Holler, M.; Pale, P. Tetrahedron: Asymmetry 2002, 13, 119; (r) Zhong, Y. W.; Lei, X. S; Lin, G. Q. Tetrahedron: Asymmetry 2002, 13, 2251.
    37. Zhang, H.; Xue, F.; Mak, T. M. S.; Chan, K. S. J. Org. Chem. 1996, 61, 8002.
    38. Kwong, H. L.; Lee, W. S. Tetrahedron: Asymmetry 1999, 10, 3791.
    39. Zhou, Y. G.; Dai, L. X.; Hou, X. L. Chin. J. Chem. 2000, 18, 121.
    40. (a) Huang, H.; Chen, H.; Hu, X.; Bai, C.; Zheng, Z. Tetrahedron: Asymmetry 2003, 14, 297; (b) Huang, H.; Zheng, Z.; Chen, H.; Bai, C.; Wang J. Tetrahedron: Asymmetry 2003, 14, 1285.
    41. (a) Asami, M.; Watanabe, H.; Honda, K.; Inoue, S. Tetrahedron: Asymmetry 1998, 9, 4165; (b) Kang, J.; Lee, J. W.; Kim, J. I. J. Chem. Soc., Chem. Commun. 1994, 2009; (c) Watanabe, M.; Araki, S.; Butsugan, Y.; Uemura, M. J. Org. Chem. 1991, 56, 2218; (d) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071; (e) Kang, S. K.; Jenon, J. H.; Yamaguchi, T.; Kim, J. S.; Ko, B. S. Tetrahedron: Asymmetry 1995, 6, 2139.
    42. Osbron, A.; Jardine, F. H.; Young, J. F.; Wildinson, G. J. Chem. Soc. A. 1966, 1711.
    43. (a) Knowles, W. S.; Sabacky, M. J. J. Chem. Soc., Chem. Commun., 1968, 1445; (b) Horner, L.; Siegel, H.; Buthe, H. Angew. Chem. Int. Ed. Engl. 1968, 7, 942.
    44. (a) Ohkuma, T.; Noyori, R. in Catalytic Asymmetric Synthesis (Ed: Ojima, I),
    
    Wiley-VCH, Weinheim, 2000, p. 1. (b) 殷元骐,蒋耀忠.不对称催化反应进展,科学出版社,2000, P 43 (c) Noyori, R. Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, New York, NY, 1994.
    45. Knowles, W. S. Acc. Chem. Res. 1983, 16, 106.
    46. (a) Morrison, J. D.; Burnett, R. E.; Aguiar, A. M. J. Am. Chem. Soc. 1971, 93, 1301; (b) Kagan, H. B.; Dang, T. P. J. Chem. Soc. Chem. Commun. 1971, 481; (c) Kagan, H. B.; Dang, T. P. J. Am. Chem. Soc. 1972, 94, 6429.
    47. Claver, C.; Fernandez, E.; Gillon, A.; Heslop, K.; Hyett, D. J.; Martorell, A.; Orpen, A. G.; Pringle, P. G. Chem. Commun. 2000, 961.
    48. Reetz, M. T.; Mehler, G. Angew. Chem. Int. Ed. 2000, 39, 3889.
    49. van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11539.
    50. (a) Fu, Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Chem. Commun. 2002, 480; (b) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem. Int. Ed. Engl. 2002, 41, 2348.
    51. (a) Jia, X.; Li, X.; Xu, Li.; Shi, Q.; Yao, X.; Chan, A. S. C.J. Org. Chem. 2003, 68, 4539; (b) Zeng, Q.; Liu, H.; Cui, X.; Mi, A.; Jiang, Y.; Li, X.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2002, 13, 115; (c) Jia, X.; Guo, R.; Li, X.; Yao, X.; Chan, A. S. C. Tetrahedron Lett. 2002, 43, 5541.
    52. Schenck, T. G.; Downes, J. M.; Milne, C. R. C.; Mackenzie, P. B.; Boucher, H. Inorg. Chem. 1985, 24, 2334.
    53. Blott, A. H. Org. Syn., Coll. Vol. 1950, p 1.
    54. (a) Zhu, G.; Cao, P.; Jiang, Q.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 1799; (b) Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125.
    
    
    55. (a) Burk, M. J.; Bienewald, F.; Harris, M.; Zanotti, G. A. Angew. Chem. Int. Ed Engl. 1998, 37, 1931; (b) Berens, U.; Burk, M. J.; Gerlach, A.; Hems, W. Angew. Chem. Int. Ed. Engl. 2000, 39, 1981; (c) Tang, W.; Liu, D.; Zhang, X. Org. Lett. 2003, 5, 205.
    56. Jendralla, H.; Henning, R.; Seruing, B.; Herchen, J.; Kulitzscher, B.; Wunner, J. Synlett. 1993, 155.
    57. Blackmond, D. G., Rosner, T.; Neugebauer, T.; Reetz, M. T. Angew. Chem. Int. Ed. Engl. 1999, 38, 2196.
    58. Reetz, M. T.; Neugebauer, T. Angew. Chem. Int. Ed. Engl. 1999, 38, 179.
    59. Zhang, Z.; Zhu, G.; Jiang, Q.; Xiao, D.; Zhang, X. J. Org. Chem. 1999, 64, 1774.
    60. (a) Kagan, H. B.; Langlois, N.; Dang, T. P. J. Organomet. Chem. 1975, 90, 353; (b) Sinou, D.; Kagan, H. B. J. Organomet. Chem. 1976, 114, 325.
    61. Noyori, R.; Ohta, M.; Hsiao, Y.; Kitarmura, M.; Ohta, T.; Takaya, H. J. Am. Chem. Soc. 1986, 108, 7117.
    62. Kitarmura, M.; Hsiao, Y.; Noyori, R., Takaya, H. Tetrahedron Lett. 1987, 28, 4829.
    63. Burk, M. J.; Wang, Y. M.; Lee, J. R. J. Am. Chem. Soc. 1996, 118, 5142.
    64. Zhang, F. Y.; Pai, C. C.; Chan, A. S. C. J. Am. Chem. Soc. 1998, 120, 5808.
    65. Zhang, F. Y.; Kwok, W. H.; Chan, A. S. C. Tetrahedron: Asymmetry, 2001, 12, 2337.
    66. (a) Zhu, G.; Zhang, X. J. Org. Chem. 1998, 63, 9590; (b) Xiao, D.; Zhang, Z.; Zhang, X. Org. Lett. 1999, 1, 1679; (c) Li, W.; Zhang, X. J. Org. Chem. 2000, 65, 5871.
    67. (a) Gridnev, I. D.; Yasutake, M.; Higashi, N.; Imamoto, T. J. Am. Chem. Soc.
    
    2001, 123, 5268; (b) Gridnev, I. D.; Higashi, N.; Imamoto, T. J. Am. Chem. Soc. 2001, 122, 10486.
    68. Lee, S.; Zhang, Y. J.; Song, C. E.; Lee, J. K.; Choi, J. H. Angew. Chem. Int. Ed. Engl. 2002, 41,847.
    69. Tang, W.; Zhang, X. Angew. Chem. Int. Ed. Engl. 2002, 41, 1612.
    70. Reetz, M. T.; Mehler, G. Meiswinkel, A.; Sell, T. Tetrahedron. Lett. 2002, 43, 7941.
    71. Burk, M. J.; Casy, G.; Johnson, N. B. J. Org. Chem. 1998, 63, 6084.
    72. Tang, W.; Chi, Y.; Zhang, X. Org. Lett. 2002, 4, 1695.
    73. Komarov, I. V.; B(?)rner, A. Angew. Chem. Int. Ed. 2001, 40, 1197.
    74. (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 160; (b) Iverson, B. L. Nature. 1997, 385, 113; (c)Borman, S. Chem. Eng. News. 1997, (June 16), 32.
    75. Achiwa, K.; Soga, T. Tetrahedron. Lett. 1978, 1119.
    76. Zhu, G.; Chen, Z.; Zhang, X. J. Org. Chem. 1999, 64, 6907.
    77. (a) Heller, D.; Holz, J.; Drexler, H. J.; Lang, J.; Drauz, K.; Krimmer, H. P.; Borner, A. J. Org. Chem. 2001, 66, 6816; (b) Lee, S.; Zhang, Y. J. Org. Lett. 2002, 4, 2429; (c) Holz, J.; Monsees, A.; Jiao, H.; You, J.; Komarov, I. V.; Fischer, C.; Drauz, K.; Borner, A. J. Org. Chem. 2003, 68, 1701; (d) Tang, W.; Zhang, X. Org. Lett. 2002, 4, 4159; (e) Zhou, Y. G.; Tang, W.; Wang, W. B.; Li, W.; Zhang, X. J.Am. Chem. Soc. 2002, 124, 4952; (f) You, J.; Drexler, H. J.; Zhang, S.; Fischer, C.; Heller, D. Angew. Chem. Int. Ed. Engl. 2003, 42, 913; (g) Yasutake, M.; Gridnev, I. D.; Higashi, N.; Imamoto, T. Org. Lett. 2001, 3, 1701; (h) Ohashi, A.; Kikuchi, S.; Yasutake, M.; Imamoto, T. Eur. J. Org. Chem. 2002, 8, 5196; (i) Tang, W.; Wang, W.; Chi, Y.; Zhang, X.Angew. Chem. Int. Ed. Engl. 2003, 42, 3509.
    
    
    78. Pena, D. M.; Minnaard, A. J.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 14552.
    79. (a) Landis, C. R.; Halpern, J. J. Am. Chem. Soc. 1987, 109, 1746; (b) Feldgus, S.; Landis, C. R. J. Am. Chem. Soc. 2000, 122, 12714; (c) Giemoth, R.; Heinrich, H.; Adams, N. J.; Deeth, R. J.; Bargon, J.; Brown, J. M. J. Am. Chem. Soc. 2000, 122, 12381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700