用户名: 密码: 验证码:
Acetobacter sp. CCTCC M209061细胞催化潜手性酮不对称还原反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性醇是重要的的手性中间体,可广泛应用于手性药物和功能材料的合成。如对映体纯的(R)-4-三甲基硅基-3-丁炔-2-醇{(R)-TMSBL}可用于合成治疗老年痴呆症药物的中间体(R)-苯甲基-4-羟基-2-戊炔酸。
     与化学合成法相比,生物法反应条件温和、立体选择性高、环境友好,故日益受到人们的青睐。全细胞催化无需添加昂贵的辅酶,同时酶和辅酶都被保护在天然的细胞环境中,有利于保持其活性。因此,利用微生物细胞催化潜手性4-三甲基硅基-3-丁炔-2-酮(TMSBO)不对称还原合成对映体纯的(R)-TMSBL具有重要的意义。近年来的研究发现,许多酶和微生物细胞在含离子液体介质中具有较高的活性、选择性和稳定性。基于以上情况,本论文从可能遵循反Prelog规则催化TMSBO不对称还原合成(R)-TMSBL的微生物样品中筛选高效菌株,通过对比研究不同介质中该微生物细胞催化TMSBO不对称还原反应特性,阐明不同离子液体对该反应的影响规律及机理,揭示在含离子液体介质中该微生物细胞的催化特性,并建立可用于高效、高选择性合成对映体纯(R)-TMSBL的生物催化反应体系。
     从可能遵循反Prelog规则催化TMSBO不对称还原反应的微生物样品中,筛选到多株能催化TMSBO不对称还原的微生物菌株。经复筛发现,从“中华开菲尔”菌粒中筛选得到的微生物菌株XZY003催化TMSBO不对称还原生成(R)-TMSBL的效果最好。通过微生物形态、生理生化特性和16S rDNA基因序列逐级鉴定出菌株XZY003属于Acetobacter ghanaensis或其亚种,命名为Acetobacter sp. CCTCC M209061。与已报道的遵循反Prelog规则的微生物相比,在TEA-HCl缓冲液反应体系中Acetobacter sp. CCTCC M209061细胞催化TMSBO不对称还原生成(R)-TMSBL的效率最高; Acetobacter sp. CCTCC M209061细胞催化TMSBO不对称还原反应的最适条件为:pH值5.0,辅底物为异丙醇,其浓度130.6 mmol/L,反应温度30℃,底物浓度6.0 mmol/L以及振荡速度180 r/min;在此条件下,反应的初速度、最大产率及产物的e.e.值分别可达0.50μmol/min、71%和99%以上。此外,Acetobacter sp. CCTCC M209061细胞能催化其它一系列潜手性酮不对称还原生成对映体纯手性醇。试验表明,水相中存在较为严重的底物和产物抑制,导致最大产率和最适底物浓度较低。
     为解决这一问题,通过代谢调控途径,利用咪唑类离子液体能改善细胞膜通透性的特性,在反应体系中添加与水互溶的咪唑类离子液体,以改变底物和产物在细胞内的浓度,进而提高底物浓度和产率;同时探讨不同亲水性离子液体对Acetobacter sp. CCTCC M209061细胞催化TMSBO不对称还原反应的影响规律。研究表明,组成离子液体的阴、阳离子类型对Acetobacter sp. CCTCC M209061细胞催化TMSBO不对称还原反应有较大影响,特定阴阳离子的匹配对其发挥最佳催化效果至关重要。当组成离子液体的阴离子为BF_4~-和TfO-时,Acetobacter sp. CCTCC M209061细胞的催化活性较低;当阳离子为C_nMIM~+时,随着n值的增加,Acetobacter sp. CCTCC M209061细胞的催化活性呈下降趋势;只有当C_2OHMIM+和NO_3-匹配时,Acetobacter sp. CCTCC M209061细胞的催化活性最高。在含离子液体C_2OHMIM·NO_3的反应介质中,Acetobacter sp. CCTCC M209061细胞催化TMSBO的不对称还原反应的最适底物浓度可达9.0 mmol/L,反应初速度达1.7μmol/min,最大产率为91%,均高于水相体系的对应值,并且产物的e.e.也保持99%以上。此外,在含C2OHMIM·NO_3介质中,Acetobacter sp. CCTCC M209061能高效地催化一系列潜手性酮不对称还原反应。在所考察的15种亲水性离子液体中,Acetobacter sp. CCTCC M209061细胞在含离子液体C2OHMIM·NO_3介质中具有较高的糖代谢活性和适宜的细胞膜完整性,表明C_2OHMIM·NO_3对Acetobacter sp. CCTCC M209061细胞具有较好的生物相容性,同时该离子液体可能适度地改善细胞膜的通透性,有助于生成的产物迅速运输到胞外,部分解除产物的抑制和降低其对细胞的毒性作用。这很好地解释了在含C2OHMIM·NO_3介质中细胞催化效率较高。但是,该反应的最适底物浓度仍较低(9.0 mmol/L),最大产率有待于进一步提高。
     为此,尝试采用相转移的方法,利用第二相对底物和产物的萃取作用,解决上述问题。有机溶液/缓冲液是常见的双相反应体系,故首先在不同有机溶剂与TEA-HCl缓冲液组成的双相体系中进行Acetobacter sp. CCTCC M209061细胞催化TMSBO不对称还原反应。在所研究的有机溶剂范围内,当其Log P低于3.5时,该不对称还原反应的初速度和最大产率随着有机溶剂Log P值的升高而升高;Log P高于3.5时,该不对称还原反应的初速度和最大产率随着有机溶剂Log P值的升高而降低。与其他有机溶剂相比,正己烷为最适有机介质。在正己烷/TEA-HCl缓冲液双相反应体系中,该反应的初速度最高为1.8μmol/h,产率最大为90%。显然,正己烷/TEA-HCl缓冲液不能有效地提高反应效率。实验表明,有机溶剂对Acetobacter sp. CCTCC M209061细胞的毒性较大,导致细胞的催化活性及稳定性大大下降。
     用具有良好生物相容性的疏水性离子液体替代有机溶剂作为萃取相可提高细胞活性。为此,研究了不同疏水性离子液体对Acetobacter sp. CCTCC M209061细胞催化TMSBO不对称还原反应的影响。在所研究的疏水性离子液体中,C_4MIM·PF_6最适充当该反应的第二相。在TEA-HCl缓冲液/C_4MIM·PF_6双相反应体系中,Acetobacter sp. CCTCC M209061细胞催化TMSBO不对称还原反应的最适条件为:缓冲液与C_4MIM·PF_6两相体积比4:1,底物浓度60.0 mmol/L,缓冲液pH值5.0,辅底物浓度555.7 mmol/L,反应温度30℃,振荡速度200 r/min。在此条件下,反应初速度为9.4μmol /h,最大产率和产物e.e.值分别达到93%和99%以上。与正己烷/缓冲液双相体系相比,最适底物浓度(60.0 mmol/L vs. 9.0 mmol/L)和最大产率(93% vs. 90%)均有所提高。在所研究的范围内,Acetobacter sp. CCTCC M209061细胞在TEA-HCl缓冲液/ C_4MIM·PF_6双相反应体系中的糖代谢活性,且细胞膜较为完整,表明C_4MIM·PF_6对Acetobacter sp. CCTCC M209061细胞具有较好的生物相容性;另外,离子液体C_4MIM·PF_6对底物和产物具有较高的萃取效率,这很好地解释了Acetobacter sp. CCTCC M209061细胞在TEA-HCl缓冲液/C_4MIM·PF_6双相体系中催化TMSBO不对称还原反应的效率较高这一现象。另一方面,红外光谱法分析表明,离子液体C_4MIM·PF_6能进入Acetobacter sp. CCTCC M209061细胞内,且在细胞膜中富集,提示该离子液体可能与胞内的醇脱氢酶系存在相互作用。此外,在缓冲液/C_4MIM·PF_6双相体系中,Acetobacter sp. CCTCC M209061细胞能高效催化其它一系列潜手性酮不对称还原反应。
     在以上所考察的四种反应体系中, Acetobacter sp. CCTCC M209061细胞在缓冲液/C_4MIM·PF_6双相反应体系中的操作稳定性最好,而在正己烷/缓冲液双相反应体系中的操作稳定性最差。
     本研究不仅奠定离子液体用于微生物细胞催化的理论基础,还提供一条高效制备对映体纯手性醇的新途径。
Chiral alcohols are important building blocks for the synthesis of chiral pharmaceuticals and functional materials. For example, enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol {(R)-TMSBL} is a key chiral block for the synthesis of (R)-benzyl-4-hydroxyl-2-pentynoate with the potential therapeutical function for Alzheimer’s disease.
     Compared with the chemical ways, the biocatalytic routes have gained more and more attention owing to its mild reaction conditions, high enantioselectivity, high efficiency, and low environmental concerns. Using whole cells can avoid the need for coenzyme addition, protect the related enzymes and coenzyme from inactivation by keeping them in natural environment of cells. As a result, it is of great significance to prepare enantiopure (R)-TMSBL throught microbial cell-mediated asymmetric reduction of prochiral 4-(trimethylsilyl)-3-butyn-2-one (TMSBO). In recent years, a number of investigations have showed that many enzymes and microbial cells have higher activity, selectivity and stability in IL-containing systems. In this dissertation, the microbial strains, which are highly effective and enantioselective in catalyzing asymmetric reduction of TMSBO to enantiopure (R)-TMSBL, were screened out from various possible microbial samples following anti-Prelog rule for stereoselective reduction reactions, and a comparative study was made of the biocatalytic asymmetric reduction of TMSBO catalyzed by the novel microbial cells in various reaction media. The effects of various ionic liquids (ILs) on the bioreduction of TMSBO were examined and the catalytic performances exhibited by the cells in IL-containing systems were characterized. Additionally, the novel biocatalytic reaction system used for highly efficient and enantioselective synthesis of enantiopure (R)-TMSBL was established.
     Several microbial strains, capable of catalyzing the asymmetric reduction of TMSBO to enantiopure (R)-TMSBL have been screened out from the microbial samples. Among them, the strain XZY003 isolated from China kefir grains has proven to be the best one for the asymmetric reduction of TMSBO. It has been identified to be a member of Acetobacter species by morphological, physiological and biochemical tests and further 16S rDNA gene sequence analysis, and named as Acetobacter sp. CCTCC M209061. In comparison with the reported microbial strains following anti-Prelog rule, Acetobacter sp. CCTCC M209061 cells exhibited higher efficiency and enantioselectivity in catalyzing the anti-Prelog reduction of TMSBO to enantiopure (R)-TMSBL in TEA-HCl buffer. The optimal reaction conditions for the bioreduction of TMSBO with Acetobacter sp. CCTCC M209061 cells were as follows: buffer pH 5.0, cosubstrate 2-propanol, 2-propanol concentration 130.6 mmol/L, reaction temperature 30 oC, substrate concentration 6.0 mmol/L and shaking rate 180 r/min. Under these conditions, the initial reaction rate, the maximum yield and the product e.e. were 0.50μmol/min, 71% and >99%, respectively. Additionally, the novel strain Acetobacter sp. CCTCC M209061 was capable of catalyzing the anti-Prelog asymmetric reduction of a series of other prochiral ketones to the corresponding enantiopure chiral alcohols in aqueous monophasic system. However, the maximum yield and the optimal substrate concentration for the bioreduction carried out in aqueous monophasic system were relatively low, possibly due to the pronounced inhibition of the reaction by the substrate and/or the product in this system.
     In order to solve this problem, a metabolic regulation way, namely adding water-miscible imidazolium ILs to the aqueous buffer to make the cell membrane more permeable and thus lower the product concentration in the cells and enhance the reaction efficiency, was attempted. Also, the effects of various hydrophilic ILs on the bioreduction of TMSBO were examined and the catalytic performances of the cells in the IL-containing systems were characterized. It was found that the catalytic performance of the biocatalyst depended not only on the types of anion and cation of the IL, but also on their combination. Acetobacter sp. CCTCC M209061 cells displayed drastically low catalytic activity in the co-solvent systems involving BF4-- or TfO--based ILs. In the case of C_nMIM~+-based ILs, the catalytic activity of the cells decreased with the increasing n value. With the pairing of C2OHMIM+ with NO3-, the cells manifested the highest catalytic activity and therefore the IL 1-(2'-hydroxyl) ethyl-3-methylimidazolium nitrate (C_2OHMIM·NO_3) was considered as the optimal IL for the bioreduction reaction. In the C_2OHMIM·NO_3-containing system, several crucial influential variables were examined. Under the optimized reaction conditions for the bioreduction in the C_2OHMIM·NO_3-containing system, the substrate concentration was 9.0 mmol/L, and the initial reaction rate and the maximum yield weres 1.7μmol/min and 91%, resepectively, which were higher than the corresponding values with the aqueous monophasic system. Also, the product e.e. was not affected and remained above 99%. Furthermore, the biocatalytic anti-Prelog asymmetric reduction of a series of other prochiral ketones catalyzed by Acetobacter sp. CCTCC M209061 cells were successfully performed in the C_2OHMIM·NO_3-containing system. Of all the tested 15 hydrophilic ILs, Acetobacter sp. CCTCC M209061 cells had the highest sugar metabolic activity and suitable cell membrane integrity in the reaction system involving the IL C_2OHMIM·NO_3, showing the better biocompatibility of the IL with Acetobacter sp. CCTCC M209061 cells. Besides, the IL C_2OHMIM·NO_3 can properly increase the cell membrane permeability, which is helpful for the rapid transport of the formed product out of cells and thus partly relieves inhibitory and toxic effects by the product. All these can well account for the highest catalytic efficiency of the cells in the C_2OHMIM·NO_3-containing system. However, it should be noted that the optimal substrate concentration is rather low (9 mmol/L), and the maximum yield needs further improvement.
     To tackle this problem, phase transfer method was used in this work with the expectation that the second phase can effectively extract the substrate and the product. Generally, organic solvent/buffer biphasic system is adopted for this purpose. So the asymmetric reduction of TMSBO with Acetobacter sp. CCTCC M209061 cells was initially carried out in various organic solvent/buffer biphasic systems. The effects of organic solvents on the bioreduction of TMSBO varied widely. The initial reaction rate and the maximum yield both increased with increasing Log P values of organic solvents when Log P values was lower than 3.5 and the initial reaction rate and the maximum yield both reduced with increasing Log P values of organic solvents when Log P values was higher than 3.5. n-Hexane was found to be the most suitable organic solvent for the bioreduction among all the tested organic solvents. For the bioreduction performed in the n-hexane/buffer biphasic system, the initial reaction rate, the maximum yield and the product e.e. were1.8μmol/h, 90% and >99%, respectively, under the optimal reaction conditions. Obviously, using n-hexane/buffer biphasic system failed to enhance the efficiency of the reaction efficiently. As shown by our experiments, the organic solvent n-hexane was quite toxic to the cells, leading to a substantial drop in the catalytic activity of the cells.
     Using ILs, instead of traditional organic solvents, could improve the cell activity. So the effects of various hydrophobic ILs on the bioreduction of TMSBO were examined. Of all the tested hydrophobic ILs, 1-butyl-3-methylimidzolum hexafluorophosphate (C_4MIM·PF_6) showed to be the most suitable one for the bioreduction. In the buffer/C_4MIM·PF_6 biphasic system, the optimal volume ratio of buffer to C_4MIM·PF_6, substrate concentration, buffer pH, co-substrate concentration, reaction temperature and shaking rate were 4/1, 60.0 mmol/L, 5.0, 555.7 mmol/L, 30 oC and 200 r/min, respectively, under which the initial reaction rate, the maximum yield and the product e.e. were 9.4μmol/h, 93% and >99%, respectively. The optimal substrate concentration (60.0 mmol/L vs. 9.0 mmol/L) and the maximum yield (93% vs. 91%) in the C_4MIM·PF_6-based biphasic systems were much higher than those achieved in n-hexane/buffer biphasic system. Among the examined 7 hydrophobic ILs, Acetobacter sp. CCTCC M209061 cells showed the highest sugar metabolic activity and cell membrane integrity in buffer/C_4MIM·PF_6 biphasic system, indicating the IL’s excellent biocompatibility with the cell. Additionally, the IL C_4MIM·PF_6 can extrac the substrate and the product efficiently. The above-described results contributes to the observation that the efficiency of the asymmetric bioreduction catalyzed by Acetobacter sp. CCTCC M209061 cells was relatively higher in the C_4MIM·PF_6-based biphasic system.On the other hand, the FT-IR analysis showed that the IL C_4MIM·PF_6 was able to enter Acetobacter sp. CCTCC M209061 cells and accumulate within cell membrane, suggesting that the IL was likely to interact with the enzymes associated with the bioreduction within the cells. Furthermore, the biocatalytic anti-Prelog asymmetric reduction of a series of other prochiral ketones using Acetobacter sp. CCTCC M209061 cells were successfully carried out in the C_4MIM·PF_6-based biphasic system.
     Among the above-mentioned four reaction systems examined, the best operational stability of Acetobacter sp. CCTCC M209061 cells was observed in the buffer/C_4MIM·PF_6 biphasic system, and the poorest one was recorded in the n-hexane/buffer biphasic system.
     The study will not only establish the underlying theories for applications of ILs in microbial whole-cell biocatalysis, but also provide a novel and efficient route to enantiopure chiral alcohols.
引文
[1] Goldberg K., Schroer K., Lutz S., et al. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - part I: processes with isolated enzymes [J]. Applied Microbiology and Biotechnology, 2007, 76 (2): 237-248
    [2] Zilbeyaz K., Kurbanoglu E.B. Production of (R)-1-(4-bromo-phenyl)-ethanol by locally isolated Aspergillus niger using ram horn peptone [J]. Bioresource Technology, 2008, 99 (6): 1549-1552
    [3] Pociecha D., Glogarova M., Gorecka E., et al. Behavior of frustrated phase in ferroelectric and antiferroelectric liquid crystalline mixtures [J]. Physical Review E 2000, 61 (6): 6674-6677
    [4] Xue L., Zhou D., Tang L., et al. The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer-metal complex, silica-supported chitosancobalt complex [J]. Reactive & Functional Polymers, 2004, 58:117-121
    [5] Chartrain M., Roberge C., Chung J., et al. Asymmetric bioreduction of (2-(4-nitro-phenyl)-N-(2-oxo-2-pyridin-3-yl-ethyl)-acetamide) to its corresponding (R)-alcohol [(R)-N-(2-hydroxy-2-pyridin-3-yl-ethyl)-2-(4-nitro-phenyl)-acetamide] by using Candida sorbophila MY 1833 [J]. Enzyme and Microbial Technology, 1999, 25 (6): 489-496
    [6] Chase T. Alcohol dehydrogenases: identification and names for gene families [J]. Plant Molecular Biology Reporter, 1999, 17 (4): 333-350
    [7] Klimacek M., Kavanagh K., Wilson D., et al. Pseudomonas fluorescens mannitol 2-dehydrogenase and the family of polyol-specific long-chain dehydrogenases/reductases: sequence-based classification and analysis of structure–function relationships [J]. Chemico-Biological interactions, 2003, 143:559-582
    [8] Kataoka M., Kita K., Wada M., et al. Novel bioreduction system for the production of chiral alcohols [J]. Applied Microbiology and Biotechnology, 2003, 62 (5): 437-445
    [9]欧志敏,吴坚平,杨立荣等.微生物法还原羰基化合物生产手性醇的研究—生物法合成手性药物的重要手段[J].山东农业大学学报:自然科学版, 2003, 34 (3):459-462
    [10] Kurbanoglu E., Zilbeyaz K., Kurbanoglu N., et al. Enantioselective reduction of substituted acetophenones by Aspergillus niger [J]. Tetrahedron: Asymmetry, 2007, 18 (10): 1159-1162
    [11] Ramos A., Ribeiro J., Vazquez L., et al. On the microbial reduction of ethylα-methylacetoacetate [J]. Tetrahedron: Asymmetry, 2009, 20 (5): 559-561
    [12] Hage A., Petra D., Field J., et al. Asymmetric reduction of ketones via whole cell bioconversions and transfer hydrogenation: complementary approaches [J]. Tetrahedron: Asymmetry, 2001, 12 (7): 1025-1034
    [13] Lavandera I., H?ller B., Kern A., et al. Asymmetric anti-Prelog reduction of ketones catalysed by Paracoccus pantotrophus and Comamonas sp. cells via hydrogen transfer [J]. Tetrahedron: Asymmetry, 2008, 19 (16): 1954-1958
    [14]刘湘,方志杰,许建和.酵母细胞催化芳香酮的不对称还原反应[J].催化学报, 2006, 27 (1): 20-24
    [15]杨忠华,姚善泾.有效控制活性酵母细胞催化β-羰基酯不对称还原反应立体选择性的研究[J].催化学报, 2004, 25 (010): 805-808
    [16]欧志敏,金志华,吴坚平等.伴有辅酶再生过程的Saccharomyces cerevisiae B5不对称还原2'-氯-苯乙酮的催化反应动力学[J].高校化学工程学报, 2005, 19 (4): 511-517
    [17] Groeger H., Hummel W., Rollmann C., et al. Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase [J]. Tetrahedron, 2004, 60 (3): 633-640
    [18] Comasseto J., Andrade L., Omoriá., et al. Deracemization of aryl ethanols and reduction of acetophenones by whole fungal cells of Aspergillus terreus CCT 4083, A. terreus CCT 3320 and Rhizopus oryzae CCT 4964 [J]. Journal of Molecular Catalysis B: Enzymatiy, 2004, 29 (1): 55-61
    [19] Salvi N., Chattopadhyay S. Asymmetric reduction of 3-aryl-3-keto esters using Rhizopus species [J]. Bioorganic & medicinal chemistry, 2006, 14 (14): 4918-4922
    [20] Ribeiro J., de Sousa L., Soares M., et al. Microbial reduction ofα-acetyl-γ-butyrolactone [J]. Tetrahedron: Asymmetry, 2006, 17 (6): 984-988
    [21] Nakamura K., Takenaka K., Fujii M., et al. Asymmetric synthesis of both enantiomers of secondary alcohols by reduction with a single microbe [J]. Tetrahedron Letters, 2002, 43 (20): 3629-3631
    [22] Utsukihara T., Misumi O., Kato N., et al. Reduction of various ketones by red algae [J]. Tetrahedron: Asymmetry, 2006, 17 (8): 1179-1185
    [23] Homann M., Vail R., Previte E., et al. Rapid identification of enantioselective ketone reductions using targeted microbial libraries [J]. Tetrahedron, 2004, 60 (3): 789-797
    [24] Wei Z., Li Z.Y., Lin G.Q. Anti-Prelog microbial reduction of aryl-halomethyl or -hydroxymethyl ketones with Geotrichum sp. 38 [J]. Tetrahedron, 1998, 54 (43): 13059-13072
    [25] Hu J., Xu Y. Anti-Prelog reduction of prochiral carbonyl compounds by Oenococcus oeni in a biphasic system [J]. Biotechnology Letters, 2006, 28 (14): 1115-1119
    [26] Tsujigami T., Sugai T., Ohta H. Microbial asymmetric reduction ofα-hydroxyketones in the anti-Prelog selectivity [J]. Tetrahedron: Asymmetry, 2001, 12 (18): 2543-2549
    [27] Lou W.Y., Wang W., Smith T., et al. Biocatalytic anti-Prelog stereoselective reduction of 4'-methoxyacetophenone to (R)-1-(4-methoxyphenyl) ethanol with immobilized Trigonopsis variabilis AS2. 1611 cells using an ionic liquid-containing medium [J]. Green Chemistry, 2009, 11 (9): 1377-1384
    [28] Fantin G., Fogagnolo M., Giovannini P., et al. Anti-Prelog microbial reduction of prochiral carbonyl compounds [J]. Tetrahedron, 1996, 52 (10): 3547-3552
    [29] Musa M., Ziegelmann-Fjeld K., Vieille C., et al. Asymmetric reduction and oxidation of aromatic ketones and alcohols using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus [J]. Journal of Organic Chemistry, 2007, 72 (1): 30-34
    [30] Lee M.Y., Dordick J.S. Enzyme activation for nonaqueous media [J]. Current Opinion in Biotechnology, 2002, 13 (4): 376-384
    [31] Erbeldinger M., Mesiano A.J., Russell A.J. Enzymatic catalysis of formation of Z-aspartame in ionic liquid - an alternative to enzymatic catalysis in organic solvents [J]. Biotechnology Progress, 2000, 16 (6): 1129-1131
    [32] van Rantwijk F., Lau R.M., Sheldon R.A. Biocatalytic transformations in ionic liquids [J]. Trends in Biotechnology, 2003, 21 (3): 131-138
    [33] Song C.E. Enantioselective chemo- and bio-catalysis in ionic liquids [J]. Chemical Communications, 2004, (9): 1033-1043
    [34] Klibanov A. Improving enzymes by using them in organic solvents [J]. Nature, 2001, 409 (6817): 241-246
    [35] Ulbert O., Fráter T., Bélafi-BakóK., et al. Enhanced enantioselectivity of Candida rugosa lipase in ionic liquids as compared to organic solvents [J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 31 (1-3): 39-45
    [36] Yuan Y., Bai S., Sun Y. Comparison of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquids and organic solvents [J]. Food Chemistry, 2006, 97 (2): 324-330
    [37] Vidya P., Chadha A. The role of different anions in ionic liquids on Pseudomonas cepacia lipase catalyzed transesterification and hydrolysis [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 57 (1-4): 145-148
    [38] Lozano P., de Diego T., CarriéD., et al. Enzymatic ester synthesis in ionic liquids [J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 21 (1): 9-13
    [39] Nara S., Harjani J., Salunkhe M., et al. Lipase-catalysed polyester synthesis in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid [J]. Tetrahedron Letters, 2003, 44 (7): 1371-1373
    [40] Eckstein M., Wasserscheid P., Kragl U. Enhanced enantioselectivity of lipase from Pseudomonas sp. at high temperatures and fixed water activity in the ionic liquid, 1-butyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl] amide [J]. Biotechnology Letters, 2002, 24 (10): 763-767
    [41] Itoh T., Han S., Matsushita Y., et al. Enhanced enantioselectivity and remarkable acceleration on the lipase-catalyzed transesterification using novel ionic liquids [J]. Green Chemistry, 2004, 6 (9): 437-439
    [42] Lou W.Y., Zong M.H., Wu H., et al. Markedly improving lipase-mediated asymmetric ammonolysis of d, l-p-hydroxyphenylglycine methyl ester by using an ionic liquid as the reaction medium [J]. Green Chemistry, 2005, 7 (7): 500-506
    [43] Li X.F., Lou W.Y., Smith T., et al. Efficient regioselective acylation of 1-β-d-arabinofuranosylcytosine catalyzed by lipase in ionic liquid containing systems [J]. Green Chemistry, 2006, 8 (6): 538-544
    [44] Li N., Ma D., Zong M.H. Enhancing the activity and regioselectivity of lipases for 3'-benzoylation of floxuridine and its analogs by using ionic liquid-containing systems [J]. Journal of Biotechnology, 2008, 133 (1): 103-109
    [45] Zhao H., Luo R., Malhotra S. Kinetic study on the enzymatic resolution of homophenylalanine ester using ionic liquids [J]. Biotechnology Progress, 2003, 19 (3): 1016-1018
    [46] Lozano P., de Diego T., Guegan J., et al. Stabilization of a-chymotrypsin by ionic liquids in transesterification reactions [J]. Biotechnology and Bioengineering, 2001, 75: 563-569
    [47] Liu Y.Y., Lou W.Y., Zong M.H., et al. Increased enantioselectivity in the enzymatic hydrolysis of amino acid esters in the ionic liquid 1-butyl-3-methyl-imidazolium tetrafluoroborate [J]. Biocatalysis and Biotransformation, 2005, 23 (2): 89-95
    [48] Hinckley G., Mozhaev V., Budde C., et al. Oxidative enzymes possesses catalytic activity in systems with ionic liquids [J]. Biotechnology Letters, 2002, 24 (24): 2083-2087
    [49] Laszlo J., Compton D. Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids [J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 18 (2): 109-120
    [50] Okrasa K., Guibe-Jampel E., Therisod M. Ionic liquids as a new reaction medium for oxidase–peroxidase-catalyzed sulfoxidation [J]. Tetrahedron: Asymmetry, 2003, 14 (17): 2487-2490
    [51] Kamiya N., Matsushita Y., Hanaki M., et al. Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media [J]. Biotechnology Letters, 2008, 30 (6): 1037-1040
    [52] Rayne S., Mazza G. Trichoderma reesei derived cellulase activity in three N, N-dimethylethanolammonium akylcarboxylate ionic liquids [J]. 2007, hdl:10101/npre.2007.632.1
    [53] Lou W.Y., Xu R., Zong M.H. Hydroxynitrile lyase catalysis in ionic liquid-containing systems [J]. Biotechnology Letters, 2005, 27 (18): 1387-1390
    [54] Gaisberger R., Fechter M., Griengl H. The first hydroxynitrile lyase catalysed cyanohydrin formation in ionic liquids [J]. Tetrahedron: Asymmetry, 2004, 15 (18): 2959-2963
    [55] Kaftzik N., Wasserscheid P., Kragl U. Use of ionic liquids to increase the yield and enzyme stability in theβ-galactosidase catalysed synthesis of N-acetyllactosamine [J]. Organic Process Research & Development, 2002, 6: 553–557
    [56] Shi Y.G., Fang Y., Ren Y.P., et al. Effect of ionic liquid [BMIM][PF6] on asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate by Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35 (11): 1419-1424
    [57] Roberts N.J., Lye G.J. Application of room-temperature ionic liquids in biocatalysis: Opportunities and challenges [J]. ACS Symposium Series, 2002, 818: 347-359
    [58] Pfruender H., Amidjojo M., Kragl U., et al. Efficient whole-cell biotransformation in a biphasic ionic liquid/water system [J]. Angewandte Chemie - International Edition, 2004, 43 (34): 4529-4531
    [59] Howarth J. Oxidation of aromatic aldehydes in the ionic liquid [BMIM][PF6] [J]. Tetrahedron Letters, 2000, 41 (34): 6627-6629
    [60] Cull S.G., Holbrey J.D., Vargas-Mora V., et al. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations [J]. Biotechnology and Bioengineering, 2000, 69 (2): 227-233
    [61] Eckstein M., Villela M., Liese A., et al. Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction [J]. Chemical Communications, 2004, 9: 1084-1085
    [62] Wang W., Zong M.H., Lou W.Y. Use of an ionic liquid to improve asymmetric reduction of 4'-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2. 2241 cells [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 56 (1): 70-76
    [63] Lou W.Y., Chen L., Zhang B.B., et al. Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M 203011 cells [J]. BMC Biotechnology,2009, 9 (1): 90-94
    [64] Lou W.Y., Wang W., Li R.F., et al. Efficient enantioselective reduction of 4'-methoxyacetophenone with immobilized Rhodotorula sp. AS2. 2241 cells in a hydrophilic ionic liquid-containing co-solvent system [J]. Journal of Biotechnology, 2009, 143 (3): 190-197
    [65] Zong M.H., Fukui T., Kawamoto T., et al. Bioconversion of organosilicon compounds by horse liver alcohol dehydrogenase [J]. Applied Microbiology and Biotechnology, 1991, 36 (1): 40-43
    [66] Sonomoto K., Oiki H., Kato Y. Enzymatic conversion of artificial organosilicon compounds by alcohol dehydrogenase [J]. Enzyme and Microbial Technology, 1992, 14 (8): 640-643
    [67] Uejima A., Fukui T., Fukusaki E., et al. Efficient kinetic resolution of organosilicon compounds by stereoselective esterification with hydrolases in organic solvent [J]. Applied Microbiology and Biotechnology, 1993, 38 (4): 482-486
    [68] Abdel H.D., Blanco L. Synthesis of optically active 2-sila-1,3-propanediols derivatives by enzymatic transesterification [J]. Tetrahedron Letters, 1991, 32 (44): 6325-6326
    [69] Li N., Zong M.H., Liu C., et al. (R)-Oxynitrilase-catalysed synthesis of chiral silicon-containing aliphatic (R)-ketone-cyanohydrins [J]. Biotechnology Letters, 2003, 25 (3): 219-222
    [70] Xu R., Zong M.H., Liu Y.Y., et al. Enzymatic enantioselective transcyanation of silicon containing aliphatic ketone with (S)-hydroxynitrile lyase from Manihot esculenta [J]. Applied Microbiology and Biotechnology, 2004, 66:27-33
    [71] Peng H.S., Zong M.H., Wang J.F., et al. Lipase-catalyzed ammonolysis of trimethylsilylmethyl acetate in organic solvent [J]. Biocatalysis and Biotransformation, 2004, 22 (3): 183-187
    [72] Luo D.H., Zong M.H., Xu J.H. Biocatalytic synthesis of (-)-1-trimethylsilyl-ethanol by asymmetric reduction of acetyltrimethylsilane with a new isolate Rhodotorula sp. AS2.2241. [J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 24 (5): 83-88
    [73]宗敏华,程潜,林影.有机相中酶促有机硅烷醇的转酯[J].生物化学与生物物理进展, 1999, 26 (3): 259-261
    [74] Zani P. Biotransformations of organosilicon compounds: enantioselective reduction of acyl silanes by means of baker's yeast [J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 279-285
    [75] Tacke R., Zilch H. Sila-substitution - a useful strategy for drug design? [J]. Endeavour, 1986, 10 (4): 191-197
    [76] Zhang B.B., Lou W.Y., Zong M.H., et al. Efficient synthesis of enantiopure (S)-4-(trimethylsilyl)-3-butyn-2-ol via asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one with immobilized Candida parapsilosis CCTCC M203011 cells [J]. Journal of Molecular Catalysis B: Enzymatic, 2008, 54 (4): 122-129
    [77] Lou W.Y., Zong M.H., Fan X.D. Asymmetric synthesis of (-)-1-trimethylsilyl-ethanol with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system [J]. Chinese Journal of Chemical Engineering, 2003, 11 (2): 136-140
    [78] Fukui T., Zong M.H., Kawamoto T., et al. Kinetic resolution of organosilicon compounds by stereoselective dehydrogenation horse liver alcohol dehydrogenase [J]. Applied Microbiology and Biotechnology, 1992, 38 (2): 209-213
    [79] Tsai S., Wei H. Kinetics of enantioselective esterification of naproxen by lipase in organic solvents [J]. Biocatalysis and Biotransformation, 1994, 11 (1): 33-45
    [80] Fritsche K., Syldatk C., Wagner F., et al. Enzymatic resolution of rac-1, 1-dimethyl-1-sila-cyclohexan-2-ol by ester hydrolysis or transesterification using a crude lipase preparation of Candida cylindracea [J]. Applied Microbiology and Biotechnology, 1989, 31 (2): 107-111
    [81] Tsuji Y., Yamanaka H., Fukui T., et al. Enzymatic preparation of D-p-trimethylsilylphenylalanine [J]. Applied Microbiology and Biotechnology, 1997, 47 (2): 114-119
    [82] Li N., Zong M.H., Liu C., et al. (R)-Oxynitrilase-catalysed synthesis of chiral silicon-containing aliphatic (R)-ketone-cyanohydrins [J]. Biotechnology Letters, 2003, 25 (3): 219-222
    [83] Kolasa T., Stewart A.O., Brooks C.D.W. Asymmetric synthesis of(R)-N-3-butyn-2-yl-N-hydroxyurea, a key intermediate for 5-lipoxygenase inhibitors [J]. Tetrahedron: Asymmetry, 1996, 7 (3): 729-736
    [84] Fu X., Yin J., Thiruvengadam T., et al. Improved large-scale synthesis of (R)-benzyl 4-hydroxyl-2-pentynoate from (R)-3-butyn-2-ol [J]. Organic Process Research and Development, 2002, 6 (3): 308-310
    [85] Marshall J., Ellis K. Applications of chiral allenylzinc additions and noyori asymmetric reductions to an enantioselective synthesis of a C3–C13 precursor of the polyketide phosphatase inhibitor cytostatin [J]. Tetrahedron Letters, 2004, 45 (7): 1351-1353
    [86] Bradshaw C., Hummel W., Wong C. Lactobacillus kefir alcohol dehydrogenase: a useful catalyst for synthesis [J]. Journal of Organic Chemistry, 1992, 57 (5): 1532-1536
    [87] Amidjojo M., Franco-Lara E., Nowak A., et al. Asymmetric synthesis of tert-butyl (3R, 5S) 6-chloro-dihydroxyhexanoate with Lactobacillus kefir [J]. Applied Microbiology and Biotechnology, 2005, 69 (1): 9-15
    [88] Martínez F., Carmen D.C., Sinisterra J. V., et al. Preparation of halohydrinβ-blocker precursors using yeast-catalysed reduction [J]. Tetrahedron: Asymmetry, 2000, 11 (11): 4651–4660
    [89]林国强,李祖义.反-Prelog还原体系、微水相羟氰化酶工作体系的发现及光学活性化合物的合成[J].有机化学, 2001, 21 (11): 993-996
    [90]张玉彬.生物催化的手性合成[M].北京:化学工业出版社, 2002: 176-177
    [91] Andrade L.H., Omoriá.T., Porto A.L., et al. Asymmetric synthesis of aryselenoalcohols by means of the reduction of organoselenoacetophenones by whole fungal cells [J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 29 (1): 47-54
    [92] Meng F., Xu Y. Improved producton of (R)-2-octanol via asymmetric reduction of 2-octanone by Oenococcus oeni CECT4730 in a biphasic system [J]. Biotechnology Letters, 2010, 28 (2): 144-149
    [93] Zhu D.M., Yang Y., Hua L. Stereoselective enzymatic synthesis of chiral alcohols with the use of a carbonyl reductase from Candida magnoliae with anti-Prelog enantioselectivity [J]. Journal of Organic Chemistry, 2006, 71 (11): 4202-4205
    [94] Nie Y., Xu Y., Mu X.Q., et al. Purification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-prelog stereospecificity from Candida parapsilosis [J]. Applied and Environmental Microbiology, 2007, 73 (11): 3759-3764
    [95] Schubert T., Hummel W., Kula M.R., et al. Enantioselective synthesis of both enantiomers of various propargylic alcohols by use of two oxidoreductases [J]. European Journal of Organic Chemistry, 2001, (22): 4181-4187
    [96]赵玉平,杜连祥,刘丽丽等.降解山楂汁中柠檬酸酵母菌的筛选及其降酸特性研究[J].微生物学报, 2004, 44 (2): 235-239
    [97]凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[M].中国轻工业出版社, 1999: 4-37
    [98]巴尼特J.,佩恩R.,亚罗D.等.酵母菌的特征与鉴定手册[M].青岛海洋大学出版社, 1991: 25-45
    [99]诸葛健,王正祥.工业微生物实验技术手册[M].中国轻工业出版社, 1993: 204-229
    [100] Sambrook J., Fritsch E., Maniatis T.分子克隆实验指南[J]. 1992: 16-28
    [101] Heilig H., Zoetendal E., Vaughan E., et al. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA [J]. Applied and Environmental Microbiology, 2002, 68 (1): 114-123
    [102] Engelking H., Pfaller R., Wich G., et al. Stereoselective reduction of ethyl 4-chloro acetoacetate with recombinant Pichia pastoris [J]. Tetrahedron: Asymmetry, 2004, 15 (22): 3591-3593
    [103]杨希娟,师俊玲,樊明涛.西藏灵菇牛乳发酵液中的菌相与物质变化[J].中国食品学报, 2007, 7 (4): 42-46
    [104]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].科学出版社, 2001. 242-244, 259-266,
    [105]杨洁彬,郭兴华,张篪.乳酸菌-生物学基础及应用[M].中国轻工业出版社, 1996, 98-112
    [106] Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap [J].Evolution, 1985, 39(4): 783-791
    [107] Page R. Treeview: an application to display phylogenetic trees on personal computers [J]. Applied Bioscience, 1996, 12: 357-358
    [108] Kurtzman C., Robnett C. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences [J]. Antonie van Leeuwenhoek, 1998, 73 (4): 331-371
    [109] Nelson T.D., LeBlond C.R., Frantz D.E., et al. Stereoselective synthesis of a potent thrombin inhibitor by a novel P2-P3 lactone ring opening [J]. Journal of Organic Chemistry, 2004, 69 (11): 3620-3627
    [110] Mellon C., Aspiotis R., Black C.W., et al. Lipophilic versus hydrogen-bonding effect in P3 on potency and selectivity of valine aspartyl ketones as caspase 3 inhibitors [J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15 (17): 3886-3890
    [111] Hsin L. W., Dersch C.M., Baumann M.H., et al. Development of long-acting dopamine transporter ligands as potential cocaine-abuse therapeutic agents: chiral hydroxyl-containing derivatives of 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine and 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine [J]. Journal of Medicinal Chemistry, 2002, 45 (6): 1321-1329
    [112] Tagat J.R., Steensma R.W., McCombie S.W., et al. Piperazine-based CCR5 antagonists as HIV-1 Inhibitors. II. discovery of 1-[(2,4-dimethyl-3-pyridinyl)carbonyl]-4- methyl-4-[3(S)-methyl-4-[1(S)-[4-(trifluoro- methyl)phenyl]ethyl]-1-piperazinyl]- piperidine N1-oxide (sch-350634), an orally bioavailable, potent CCR5 antagonist [J]. Journal of Medicinal Chemistry, 2001, 44 (21): 3343-3346
    [113] Nakamura K., Kondo S., Kawai Y., et al. Asymmetric reduction of ketopantolactone by bakers yeast [J]. Tetrahedron: Asymmetry, 1993, 4 (6): 1253-1254
    [114]张薄博.固定化酵母细胞催化4-三甲基硅基-3-丁炔-2-酮不对称还原反应的研究[D].广州:华南理工大学, 2008
    [115] Nakamura K., Kitano K., Matsuda T., et al. Asymmetric reduction of ketones by the acetone powder of Geotrichum candidum [J]. Tetrahedron Letters, 1996, 37 (10):1629-1632
    [116] Shen D., Xu J., Wu H., et al. Significantly improved esterase activity of Trichosporon brassicae cells for ketoprofen resolution by 2-propanol treatment [J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 18 (4): 219-224
    [117] Hillier M.C., Marcoux J.F., Zhao D.L., et al. Stereoselective formation of carbon-carbon bonds via SN2-displacement: Synthesis of substituted cycloalkyl[b]indoles [J]. Journal of Organic Chemistry, 2005, 70 (21): 8385-8394
    [118] Mukaiyama T., Nagata Y., Ikegai K. Stereoselective carbon-carbon bond forming reactions between various chiral alkyl aryl carbinols and triethyl methanetricarboxylate by oxidation-reduction condensation using alkyl diphenylphosphinites [J]. Chemistry Letter, 2005, 34 (12): 1676-1677
    [119] Yang W., Xu J.H., Xie Y., et al. Asymmetric reduction of ketones by employing Rhodotorula sp. AS2.2241 and synthesis of theβ-blocker (R)-nifenalol [J]. Tetrahedron: Asymmetry, 2006, 17 (12): 1769-1774
    [120] Ni Y., Chen R. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier [J]. Biotechnology and Bioengineering, 2004, 87 (6):804-811
    [121]朱彤波,陈军,张益棻等.提高三角酵母细胞DAO表观活力的透性化研究[J].生物工程学报, 2001, 17 (1): 73-77
    [122]于明安,朱晓冰,祁巍等. CTAB透性化酵母细胞生物催化合成(S)-(+)-3-羟基丁酸乙酯[J].催化学报, 2005, 26 (7): 609-613
    [123]魏娜,李柏林,欧杰.细胞膜通透性调节在发酵代谢中的重要性[J].食品科技, 2006, 31 (9): 14-17
    [124]韦档,张淑荣,刘春巧等.添加表面活性剂对α-熊果苷发酵的影响[J].化工学报, 2007, 58 (9): 2352-2356
    [125] Garcia M.T., Gathergood N., Scammells P.J. Biodegradable ionic liquids Part II: Effect of the anion and toxicology [J]. Green Chemistry, 2005, 7 (1): 9-14
    [126] Jiang Q., Yao S.J., Mei L.H. Tolerance of immobilized baker’s yeast in organic solvents [J]. Enzyme and Microbial Technology, 2002, 30 (6): 721-725
    [127] Miller G. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Analytical Chemistry, 1959, 31 (3): 426-428
    [128] Dang D.T., Ha S.H., Lee S.M., et al. Enhanced activity and stability of ionic liquid-pretreated lipase [J]. Journal of Molecular Catalysis B: Enzymatic, 2007, 45 (3-4): 118-121
    [129] Gordon C.M. New developments in catalysis using ionic liquids [J]. Applied Catalysis, A: General, 2001, 222 (2): 101-117
    [130] Gangu S., Weatherley L., Scurto A. Whole-cell biocatalysis with ionic liquids [J]. Current Organic Chemistry, 2009, 13 (13): 1242-1258
    [131] Park S., Kazlauskas R.J. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations [J]. Journal of Organic Chemistry, 2001, 66 (25): 8395-8401
    [132]黄敏.含离子液体介质中固定化酵母细胞催化三甲基硅乙酮不对称还原反应的研究[D].广州:华南理工大学, 2006
    [133] Matsuda T., Yamagishi Y., Koguchi S., et al. An effective method to use ionic liquids as reaction media for asymmetric reduction by Geotrichum candidum [J]. Tetrahedron Letters, 2006, 47 (27): 4619-4622
    [134]石贤爱.生物催化不对称反应制备对映体纯2-辛醇的研究[D].广州:华南理工大学, 2009
    [135]王海涛,石姗姗,李银霞等.染料木素的抑菌活性及其机制的研究[J].营养学报, 2008, 30 (4): 403-406
    [136] Hoefel D., Grooby W., Monis P., et al. Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques [J]. Journal of Microbiological Methods, 2003, 55 (3): 585-597
    [137] Wouters P., Bos A., Ueckert J. Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields [J]. Applied and Environmental Microbiology, 2001, 67 (7): 3092-3101
    [138] Howarth J., James P., Dai J.F. Immobilized baker's yeast reduction of ketones in an ionic liquid, [C4MIM]PF6 and water mix [J]. Tetrahedron Letters, 2001, 42 (42): 7517-7519
    [139] van Pouderoyen G., Eggert T., Jaeger K.E., et al. The crystal structure of Bacillus subtilis lipase: A minimal a/βhydrolase fold enzyme [J]. Journal of Molecular Biology,2001, 309 (1): 215-226
    [140] Agrawal Y.K., Patel R. High performance liquid chromatography (HPLC) for the separation of chiral drugs [J]. Reviews in Analytical Chemistry, 2002, 21 (4): 285-316
    [141] Yang Z., Yao S., Lin D. Improving the stereoselectivity of asymmetric reduction of 3-oxo ester to 3-hydroxy ester with pretreatments on bakers' yeast [J]. Industrial & Engineering Chemistry Research, 2004, 43 (16): 4871-4875
    [142] Karra-Chaabouni M., Pulvin S., Meziani A., et al. Biooxidation of n-hexanol by alcohol oxidase and catalase in biphasic and micellar systems without solvent [J]. Biotechnology and Bioengineering, 2003, 81 (1): 27-32
    [143] Ganske F., Bornscheuer U. Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids [BMIM][BF4] and [BMIM][PF6] and organic solvents [J]. Biotechnology Letters, 2006, 28 (7): 465-469
    [144] Sandford V., Breuer M., Hauer B., et al. (R)-Phenylacetylcarbinol production in aqueous/organic two-phase systems using partially purified pyruvate decarboxylase from Candida utilis [J]. Biotechnology and Bioengineering, 2005, 91 (2):190-198
    [145]娄文勇.生物催化有机硅酮不对称还原反应的研究[D].广州:华南理工大学, 2002
    [146] Ben-Amotz A. New mode of dunaliella biotechnology: Two-phase growth for beta-carotene production [J]. Journal of Applied Phycology, 1995, 7: 65-68
    [147] Molinari F., Bertolini C., Aragozzini F. Microbial biotransformations in biphasic systems: Formation of (R)-2-alkanols by methylketone reduction [J]. Biocatalysis and Biotransformation, 1998, 16 (1): 87-94
    [148] Ghosh P.K., Vasanji A., Murugesan G., et al. Membrane microviscosity regulates endothelial cell motility [J]. Nature Cell Biology, 2002, 4 (11): 894-900
    [149]吴培,张毅,许喜林.有机溶剂对酵母细胞膜完整性的作用机制研究[J].食品工业科技,2008,29(1):301-303
    [150] Sikkema J., Weber F., Heipieper H., et al. Cellular toxicity of lipophilic compounds: Mechanisms, implications, and adaptations [J]. Biocatalysis and Biotransformation, 1994, 10 (1): 113-122
    [151] Bassetti L., Hagendoon M., Tramper J. Surfactant-induced nonlethal release ofanthraquinones from suspension cultures of Morinda citrifolia [J]. Journal of Biotechnology, 1995, 39 (2): 149-155
    [152]蒋群,姚善泾.固定化酵母在有机溶剂中的耐受性研究[J].浙江化工, 2001, 32 (10): 16-19
    [153] de Smet M., Kingma J., Witholt B. The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli [J]. Biochimica et biophysica acta, 1978, 506 (1): 64-80
    [154] Minier M., Goma G. Production of ethanol by coupling fermentation and solvent extraction [J]. Biotechnology Letters, 1981, 3 (8): 405-408
    [155] Woodley J., Brazier A., Lilly M. Lewis cell studies to determine reactor design data for two-liquid-phase bacterial and enzymic reactions [J]. Biotechnology and Bioengineering, 1991, 37 (2): 133-140
    [156] Liu W.H., Houng W.C., Tsai M.S. Bioconversion of cholesterol to cholestenone in aqueous/organic two-phase reactors [J]. Enzyme and Microbial Technology, 1996, 18 (3): 184-189
    [157] Kim M.K., Rhee J.S. Lipid hydrolysis by Pseudomonas putida 3SK cultured in organic-aqueous two-phase system [J]. Enzyme and Microbial Technology, 1993, 15 (7): 612-616
    [158] Lou W.Y., Zong M.H., Smith T.J. Use of ionic liquids to impove whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol [J]. Green Chemistry, 2006, 8 (2): 147-155
    [159] Park S., Kazlauskas R.J. Biocatalysis in ionic liquids - advantages beyond green technology [J]. Current Opinion in Biotechnology, 2003, 14 (4): 432-437
    [160] Sudhir N.V., Aki K., Brennecke J.F. How polar are room-temperature ionic liquids [J]. Chemical Communications, 2001, (5): 413-414
    [161] Kragl U., Eckstein M., Kaftzik N. Enzyme catalysis in ionic liquids [J]. Current Opinion in Biotechnology, 2002, 13 (6): 565-571
    [162] Sheldon R.A., Lau R.M., Sorgedrager M.J.e.a. Biocatalysis in ionic liquids [J]. Green Chemistry, 2002, 4 (2): 147-151
    [163] Br?utigam S., Bringer-Meyer S., Weuster-Botz D. Asymmetric whole cellbiotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration [J]. Tetrahedron: Asymmetry, 2007, 18 (16): 1883-1887
    [164] Pfruender H., Jones R., Weuster-Botz D. Water immiscible ionic liquids as solvents for whole cell biocatalysis [J]. Journal of biotechnology, 2006, 124 (1): 182-190
    [165] Weuster-Botz D. Process intensification of whole-cell biocatalysis with ionic liquids [J]. The Chemical Record, 2007, 7 (6): 334-40
    [166] Pernak J., Sobaszkiewicz K., Mirska I. Anti-microbial activities of ionic liquids [J]. Green Chemistry, 2003, 5 (1): 52-56
    [167] Docherty K.M., Kulpa C.F. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids [J]. Green Chemistry, 2005, 7 (4): 185-189
    [168] Shi X.A., Zong M.H., Lou W.Y. Effect of ionic liquids on catalytic characteristics of horse liver alcohol dehydrogenase [J]. Chinese Journal of Chemistry, 2006, 24 (11): 1643-1647
    [169] Maquelin K., Dijkshoorn L., van der Reijden T., et al. Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy [J]. Journal of Microbiological Methods, 2006, 64 (1): 126-131
    [170] Maquelin K., Kirschner C., Choo-Smith L., et al. Identification of medically relevant microorganisms by vibrational spectroscopy [J]. Journal of Microbiological Methods, 2002, 51 (3): 255-271
    [171] Johnson H., Broadhurst D., Kell D., et al. High-throughput metabolic fingerprinting of legume silage fermentations via Fourier transform infrared spectroscopy and chemometrics [J]. Applied and Environmental Microbiology, 2004, 70 (3): 1583-1592
    [172] Cornmell R., Winder C., Tiddy G., et al. Accumulation of ionic liquids in Escherichia coli cells [J]. Green Chemistry, 2008, 10 (8): 836-841

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700