用户名: 密码: 验证码:
新型烷基咪唑离子液体的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体作为一种新型的绿色材料,具有不挥发、不可燃、可重复利用、热稳定性好、物化性质可调等特点,已成功地用于有机合成、生物催化、分离提取、电化学等领域。现有的应用最为广泛的离子液体为烷基甲基咪唑盐,然而其设计性差、极性大、憎水性弱、有机性能低的缺陷限制了其在工业上的进一步应用。因此设计开发新型的、具有特殊功能的离子液体材料来满足不同的需求并丰富离子液体基础化学理论,具有重要意义。
     本文设计合成了13种未见报道的新型烷基咪唑离子液体,其结构和组成被红外、核磁、质谱分析所证实,阳离子为1,3-二烷基咪唑[D(R)Im],阴离子包括PF6-和NTf2-。改进后的程序升温法提高了离子液体的合成产率,离子液体粗品用丙酮稀释后,活性炭脱色制得无色离子液体,产品在400-800 nm范围内无明显吸收,合成机理研究发现中间体1,3-二烷基咪唑溴化盐的合成是关键的控速步骤。芘荧光探针测得新型离子液体极性小于传统丁基甲基咪唑盐。首次采用紫外吸收光谱法测定离子液体在水中的溶解度,发现新型离子液体本身含水量和水中溶解度均比传统甲基烷基咪唑类低1-2个数量级,具有更强的疏水性能。此外,测定了离子液体热稳定性、密度、粘度和表面张力等物理化学性质,并对离子液体结构和性质两者关系的规律性变化进行系统研究。结果表明:离子液体的性能是由阴、阳离子的结构和性质共同决定的。热稳定性、密度、粘度和溶解性主要受阴离子种类影响;随着咪唑阳离子取代基链长的规律性增加,离子液体的热稳定性、密度、极性、水含量和表面张力逐渐降低;首次考察了同分异构离子液体结构对性质的影响。热分解温度均高于320℃;密度介于1.1-1.3g.cm-3之间;表面张力高于传统有机溶剂正已烷,低于水的表面张力。
     考察了离子液体在香精香料酶法合成中的应用。以假单胞菌脂肪酶Pseudomonas cepacial lipase酶催化合成乙酸苯乙酯为模型反应,考察介质结构和性质对酶催化行为的影响。结果表明离子液体的极性、阴离子种类可显著影响脂肪酶的活性。同分异构离子液体介质中,酶在带有支链的介质中显示了高的催化特性;荧光光谱进一步揭示反应的初始反应速率和产率随介质的极性呈现规律性变化,极性越低,酶活性越高;阴离子为PF6-和NTf2-的疏水性离子液体中反应的初始反应速率和产率明显高于BF4-和C1-类水溶性离子液体中。筛选发现酶在离子液体在[D(2-mb)Im][PF6]中具有最高的催化活性,通过对影响产率的各种因素考察,得到合成乙酸苯乙酯的最佳反应条件(35℃,30 mg酶,1.0 g离子液体,48 h反应时间和1.44%含水量),在此条件下,乙酸苯乙酯的产率达92.3%,初始反应速率为0.0138μmol·h-1·mgprot-1,半衰期为522 h是正已烷中的7.4倍,脂肪酶重复使用10次后催化活性没有明显减少。
     考察离子液体在仲醇酶法拆分中的应用。以脂肪酶催化拆分1-苯乙醇为模型反应,分别考察介质、水含量和温度对拆分反应的影响。结果表明,在1,3-二异丁基咪唑六氟磷酸盐([D(i-C4)Im][PF6])离子液体介质中酶的活性和反应性明显高于其他离子液体和正已烷,因此,[D(i-C4)Im][PF6]被确定为反应介质。在最佳条件下,初始反应速率为1.93μmol.mg-1.min-1,1-苯乙醇的转化率达50%,对映体过量值eep>99%,酶的半衰期为348 h,酶重复使用10次后活性没有明显减少。此外,光学显微镜研究表明酶在离子液体中以天然的球形状态存在,具有好的活性和热力学稳定性;酶在不同介质中保温6天后的荧光光谱揭示,离子液体[D(i-C4)Im][PF6]介质中,酶结构中氨基酸残基的裸露程度略有增加,但其二级结构仍保持稳定,显示了比有机溶剂更好的结构稳定性;圆二色光谱指出酶蛋白二级结构中的p-折叠含量在酶维持活性构象中发挥了重要的作用。
     由于在离子液体中游离酶反应后不易回收,所以进行了自制固定化酶的研究并探讨了其在离子液体中的催化性能。在超顺磁球Fe304的基础上通过物理或化学修饰的手段建立了三种不同的脂肪酶固定化方法:Fe304共价结合法、Fe304/CS共价结合法和Fe304/CS吸附包埋法。考查了固定化酶应用于离子液体反应体系的特点,发现Fe304/CS吸附包埋法固定化酶催化的反应体系具有高的初始反应速率和转化率。在优化条件下1-苯乙醇转化率达到49.7%,对映体过量值eep>99%,固定化酶的半衰期达到373 h,酶重复利用15次活性没有明显减少,实现了离子液体中酶的快速分离及循环使用,并避免了有机溶剂萃取剂的使用。
     考察离子液体在萃取分离中的应用。以离子液体C4)Im] [PF6]、[D(n-C5)Im] [PF6]、[D(n-C8)Im][PF6]和[n-C4MIm][PF6]为溶剂,建立一种简便可靠的水样中超痕量铅的富集方法;优化了1000 mL水样中20μg铅的萃取和反萃条件:螯合剂双硫腙用量5.0 mL、20%的盐酸羟胺溶液加入量1.0mL、0.03 mol.L-1氨水2.0 mL、萃取时间4min、离子液体5.0 mL、铅的最大饱和吸附容量为25μg、1.0 mol.L-1硝酸溶液5.0 mL用于萃取液中铅的剥离反萃;三种新型疏水性离子液体都显示了很高的萃取率(>98.7%)和反萃率(>99.9%),这主要是由于离子液体憎水性性强的原因;建立离子液体萃取体系,方法线性范围是0-100 ng.L-1,检出限为1.0 ng.L-1;干扰试验结果显示大部分的正负离子均不会对检测产生干扰;样品检测回收率在97-102%;离子液体可重复利用5次。机理研究表明铅体系的萃取机理是水溶液中的离子对机理和有机极性分子的相似相溶原理的结合。
     综上,新型离子液体具有极性温和、憎水性强、有机性能增强等特点,在非水生物催化和液液萃取中展现出了良好的应用前景。除此之外,研究成果可应用于生物仿生合成、微反应器、生命大分子萃取分离等方面的研究。
Recently, ionic liquids research has become a new field of green chemistry. Due to their favorable properties such as negligible vapour pressure, non-inflammability, reusability, high thermal stability and favorable and easily tunable physical and chemical properties, ionic liquids technology has been successfully applied to many areas of organic synthesis, biocatalysis reaction, separation process, electrochemistry etc.. However, the select of ionic liquids for special application is also very limited now. At present, main ionic liquids used in various biocatalysis reactions are 1-alkyl-3-methylimidazolium hexafluorophosphate abbreviated as [Cxmim][PF6]. Howener, the defaults of strong polarity, hydrophobicity and poor organic property has limited its application. Herefore, with the development of ionic liquids, more and more ionic liquids with special function are required to satisfy the various demands and enrich the fundamental theory of ionic liquids.
     13 novel alkylimidazolium ionic liquids were designed and synthesized and the results of the IR,1H-NMR and ESI-MS analysis confirmed the structure and composition of the ionic liquids. The cations mainly consist of 1,3-dialkylimidazolium [D(R)Im], the anions mainly consist of PF6ˉand NTf2ˉ. The modified two-step method using temperature programmed technologies was developed for improving the synthetic yields. After the crude products were diluted by acetone, it was decolored with activated carbon and almost colorless ionic liquids were obtained. There was no obvious absorption peak in the wavelength range of 400~800 nm. Moreover, Mechanism study showed that synthesis of 1,3-dialkylimidazolium bromide was the key rate-determining step. Polarity of ionic liquid was determined by pyrene fluorescence probe and was smaller than traditional ionic liquid; We determined the solubility of ionic liquids in water by ultraviolet absorption spectrum method firstly. And found water content and solubility in water were lower than 1-2 orders of magnitude. Besides, the physical properties containing thermal stability, density, viscosity and surface tension were determined. The relationship between structures and properties of ionic liquids were also studied. The results showed the properties were decided by both cations and anions of ionic liquids and exhibited how melting point, viscosity, density and surface tension were affected by changes in alkyl chain length and configuration. In the series of ionic liquids studied here, changes in spatial configuration of the alkyl had a more dramatic effect on melting point and viscosity of ionic liquids than changes in alkyl chain length, while the latter change had a stronger influence on water content existed in dried ionic liquids, densities and surface tension of them. All these ionic liquids exhibited excellent thermal stability of 320℃; density was of 1.1~1.3g.cm-3; surface tension lower than water and higher than hexane.
     The application of ionic liquid in enzymatic synthesis of flavors and fragrances was examized. The synthesis of phenylethyl acetate catalyzed by Pseudomonas cepacial lipase was selected as mode reaction to investigate effect of different medium containing structure and property on catalysis performance of the lipase. It was found activity and reactivity of the lipase affected by configuration structure, polarity and anion species of ionic liquids. Among ionic liquid isomers medium, lipase exhibited higher catalysis activity in these ionic liquids containing branched chains. Fluorescence spectrum exhibited the lipase showed higher activity with the decreasing of polarity. Higher initial reaction rate and yield of the reaction were exhibited in ionic liquids containing PF6ˉand NTf2ˉthan BF4ˉand Clˉ. By investigating the influence of various factors on the yield of product, [D(2-mb)Im][PF6] was the best. The optimal conditions for synthesis of phenylethyl acetate were obtained. These were reaction temperature of 35℃, the amounts of lipase of 30 mg, the ionic liquid of 1.0 g, reaction time of 48 h and water content of 1.44%. Under the optimal conditions, the yield and initial reaction rate was up to 92.3% and 0.0138μmol·h-1·mgprot-1. Also, the stability of the lipase in the [D(2-mb)Im][PF6] medium were 522h and as same as 7.4-fold that in hexane. The lipase in the [D(2-mb)Im][PF6] medium was recycled 10 times without substantial diminution in activity.
     The application of ionic liquid in enzymatic resolution of secondary alcohol was examized. The resolution of (R,S)-1-phenylethanol by Pseudomonas cepacial lipase in six isomer ionic liquids was chosen as the model reaction to study on effects of the reaction medium, water content and temperature on the reaction. The results showed the activity of lipase in the ionic liquid 1,3-di-isobutylimidazolium hexafluorophosphate abbreviated as [D(i-C4)Im][PF6] had obviously better activity and reactivity than those in other ionic liquids and hexane. Accordingly, the ionic liquid [D(i-C4)Im][PF6] was chosen as the medium for the reaction. Under optimal condition, initial rate of lipase, the conversion of 1-phenylethanol, ee value of (R)-1-phenylethyl acetate and half life time of the lipase were 1.93μmol.mg-1.min-1, 50%,99% and 348 h, respectively. Moreover, optical microscope analysis demonstrated lipase existing as native ball enzyme conformation in ionic liquids, and having a higher activity and thermal stability. Fluorescence spectrum showed that after the incubation of lipase in the ionic liquid [D(i-C4)Im][PF6] for six days, the lipase exhibited an slightly increasing exposure level of amino-acid residue, however, its secondary structure is of excellent stability than hexane medium. Circular dichroism pointed the activity and stability was mainly influenced by the content of (3-sheet.
     Immobilization of lipase from PCLwas also investigated because of the difficulties in lipase recycle in ionic liquids. Superparamagnetic particles Fe3O4 were used as immobilization support both in physical and chemical modified methods:Fe3O4 covalent modification, Fe3O4/CS covalent modification and Fe3O4/CS coated with chitosan. Optically active of 1-phenylethanol was examined in ionic liquid using immobilized PCL as a biocatalyst. Fe3O4/CS coated with chitosan was chosen as the best due to its highest initioal reaction rate and conversion. Under optimal condition, the conversion of 1-phenylethanol, ee value of (R)-1-phenylethyl acetate and half life time of the lipase were 49.7%,99% and 373 h, respectively. The immobilized lipase in the [D(i-C4)Im][PF6] medium was recycled 15 times without substantial diminution in activity.
     The application of ionic liquid in extraction was examized. A simple and reliable procedure was developed for preconcentraion of ultratrace lead ion in water sample using room temperature ionic liquids [D(n-C4)Im][PF6]、[D(n-C5)Im][PF6]、[D(n-C8)Im][PF6] and [n-C4MIm][PF6] as novel solvents. Lead ion reacted with dithizone to form neutral lead-dithizone complex in 0.03 mol.L-1 ammonia solution, then the complex was extracted into the ionic liquid from aqueous phase and back-extracted with 5 ml of 1.0 mol.L-1 nitric acid rapidly, and the solution was directly used to determine lead concentration by graphite furnace atomic absorption spectrometry(GFAAS). It was found that [D(C4-8)Im][PF6] all gave an excellent solvent characterists in the extraction of ultratrace lead due to its good hydrophobic character and lower melting point and selected, its extraction and back-extraction efficiencies were 98.7 and 99.9% for 20μg standard lead ion in 1000 ml of water sample, respectively. The calibration graph using the preconcentration system for lead was linear with a correlation coefficient of 0.999 at levels near the detection limits up to at least 0.1μg 1-1. The detection limit, calculated using three times the standard error of estimate of the calibration graph, is 1.0 ng of lead per liter water sample. Proposed procedure allows the rapid lead determination at 100 ng.L"1 level in environmental water with satisfactory results. The interference study indicated the determination of lead was free from the interference of almost all positive and negative ions found in water. Lead recoveries between 97 and 102% for spiked samples proof the accuracy of the proposed method. Moreover, the reuse of ionic liquid was up to 5 times. The extraction mechanism of system was combination of ions pairs theory and similar dissolve mutually theory in aqueous solvent.
     On account of the kind polarity, strong hydrophobicity and favorable organic properties, this new class of ionic liquids has found a place as suitable alternatives to volatile organic solvents in nonaqueous biocatalysis and liquid/liquid extraction. Besides, the study will have wide application perspective in biomimetic synthesis, microreactor technology, biomacromolecule extraction and separation.
引文
1. Zaks A, Klibanov A M. Enzyme catalysis in organic media at 100 ℃. Science,1984,224(4654): 1249-1251.
    2. Klibanov A M. Enzymes that work in organic solvents. Chem Tech I,1986,6:354-359.
    3. Krishna S H. Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Advances,2002,20(3):239-267.
    4.李汝雄,王建基.绿色溶剂-离子液体的制备与应用[J].化工进展,2002,21(1): 43-48.
    5. Adams C J, Earle M J, Roberts R G. Friedel-Crafts reactions in room temperature ionic liquids. Chem Commun,1998, (19):2097-2098.
    6. Welton T. Room-temperature ionic liquids solvents for synthesis and catalysis. Chem Rev,1999,99(8): 2071-2088.
    7. Nara S J, Harjani J R, Salunkbe M M. Friedel-Crafis sulfonylation in 1-butyl-3-methylimidazolium chloroaluminate ionic liquids. J Org Chem,2001,66:8616-8619.
    8. Hardacre C, Katdare S P, Milroy D, et al. A catalytic and mechanistic study of the Friedel-Crafts benzoylation of anisole using zeolites in ionic liquids. Journal of Catalysis,2004,227(1):44-52.
    9. Elaiwi A, Hitchcock P B, Seddon K R, et al. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate ionic liquids. J Chem Soc Dalton Trans,1995: 3467-3472.
    10. Hirao M, Sugimoto H, Ohno H. Preparation of Novel Room Temperature Molten Salts by Neutralization of Amines. J Electro Chem Soc,2000,147:4168-4172.
    11. Suarez P A Z, Dullius J E L, Einloft S, et al. The use of new ionic liquids in two-phase catalytie hydrogenation reaction by Rhodium complexes. J Polyhedron,1996,15:1217-1219.
    12. Macfarlane D R, Golding J, Forsyth S, et al. Low viscosity ionic liquids based on organic salts of the dicyanamide. Chem Commun,2001, (16):1430-1431.
    13. Fuller J, Carlin R T, Osteryoung R A. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:electrochemical couplesand physical properies. J Electrochem Soc,1997,144: 3881-3885.
    14. Fuller J, Carlin R T, De Long H C, et al. Structure of 1-ethyl-3-methyl imidazolium hexafluoroph-ate:model for room temperature molten salts. J Chem Soc Chem Commun,1994,3:299-300.
    15. Dzyuba S V, Bartsch R A. Efficient synthesis of 1-atkyt(aralkyl)-3-methyl(ethyl) imidazolium halides:Precursors for room temperature ionic liquids. J Heterocyl Chem,2001,38:265-268.
    16. Huddleston J G, Visser A E, Reichert M W, et al. Characterization and comparision of hydrophilic and hydropphobic room temperature ionic liquids incorporating the imidazolium cation. Green chem,2001,3(4):156-164.
    17. Xu D Q, Liu B Y, Luo S P, et al. A novel and eco-friendly method for the preparation of ionic liquids. Synthesis,2003,17:2626-2628.
    18. Hasan M, Ozhevnikov I V, Siddiqui M R H, et al. Synthesis, structure and thermal properties of N,N-dialkylimidazolium tetrachloroaurate salts. Inor Chem,1999,38:5637-5641.
    19. Lall IS, Mancheno D, Castro S, et al. Polycations part X. L IPs, a new category of room tempera ture ionic liquid based on polyammonium salts. Chem Commun,2000,0(4):2413-2414.
    20. Varma R S, Namboodiri V V. Solvent-free preparation of ionic liquids using a household microwave oven. Pure Appl Chem,2001,73(8):1309-1313.
    21. Namboodiri V V, Varma R S. An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrah Lett,2002,43:5381-5383.
    22. Freyland W, Zell C A, Abedin S Z E, et al. Electrodeposition of metals and semiconductors from ionic liquids. Electrochim Acta,2003,48:3053-3061.
    23. Hirao M, Ito K, Nishina N, et al. Preparation and polymerization of new organic molten salts: N-alkylimidazolium salt derivatives. Electrochim Acta,2000,45:1291-1294.
    24. Brown R J C, Dyson P J, Ellis D J, Welton T. 1-Butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO4)]:a catalytically active organometallic ionic liquid. Chem Commun,2001: 1862-1863.
    25. Pernak J, Czepukowicz A, Pozniak R. New ionic liquids and their antielectrostatic properties. Ind Eng Chem Res,2001,40:2379-2383.
    26. Visser A E, Swatloski R P, Reichert W M, et al. Task-speific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+:synthesis, characterization and extraction studies. Environ Sci Technol,2002,36(11):2523-2529.
    27. Bates E D, Mayton R D, Ntai L, et al. CO2 capture by a task-specific ionic liquid. J Am Chem Soc, 2002,124:926-927.
    28. Huddleston J G, Willauer H D, Rogers R D, et al. Room temperatureionic liquids as novel media for 'clean' liquid-liquid extraction. Chem Commun,1998,16: 1765-1766.
    29. Ronald A C, Lowell A K, Richard E L, et al. Density, electric conductivity and viscosity of several n-alkylpyridinium halides and their Mixtures with aluminum chloride. J Am Chem Soc,1979,126 (10):1644-1650.
    30. Khadilkar B M, Rebeiro G. Microwave-assisted synthesis of room-temperature ionic liquid precursor inclosedvessel. Org Pro Res Dev,2002,6:826-828.
    31. Abbott A P, Davies D L. Preparation of novel moisture-stable, lewis-acidic ionic liquids containing quaternary alumunium salt with functional side chains. Chem Commun,2001,19:2010-2011.
    32. Sherif F G, Shyu L J, Lacroix P M, et al. Linear alxylbenzene formation using low temperature ionic liquid. United states patent,5824832,1998.
    33. Knifton J F. Syngas reactions:Part Ⅺ The ruthenium'melt' catalyzed oxonation of internal olefins. J Mol Catal,1987,43(1):65-77.
    34. Wasserscheid P, Bosmann A, Bolm C. Synthesis and properties of ionic liquids derived from the 'Chiral pool' Chem Commun,2002, (3):200-201.
    35. Levillain J, Dubant G, Abrunhosa I, et al. Synthesis and properties of thiazoline based ionic liquids derived from the chiral Pool. Chem Commun,2003, (23):2914-2915.
    36.石顺存,易平贵,曹晨忠等.新型离子液体的合成及其阳离子基团缓蚀性能[J].化工学报,2005,6:1112-1119.
    37.张青山,刘爱霞,郭炳南等.新型N-甲基-N-烯丙基吗啡啉季铵盐类离子液体的合成[J].高等学校化学学报,2005,2:340-342.
    38.段海峰,张所波,林英杰等.新型室温离子液体六烷基胍盐的制备及性质[J].高等学校化学学报,2003,11:2024-2026.
    39. Chauvin Y, Mussmann L, Olivier H. Novel class of versatile solvents for two-phase catalysis: Hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angewandte Chemie (International Edition in English),1996, 34(23-24):2698-2700.
    40. Einloft S, Dietrick F K, De Souza R F, et al. Selective two-phase catalytic ethylene dimerization by Ni complex/AlEtCl2 dissolved in organoaluminate ionic liquids. Polyhedron,1996,15(19):3257-3259.
    41. Wasserscheid P, Waffenschmidt H, Machnitzki P, et al. Cation phosphine ligands with phenylguanidinium modified xanthene moieties-a successful concept for highly regioselective, bisphasic hydroformylation of oct-1-ene in hexafluorophophate ionic liquids. Chem Commun,2001, (5):451-452.
    42. Favre F, Olivier-Bourbigou H, Commereuc D, et al. Hydroformylation of 1-hexene with rhodium in non-aqueous ionic liquids:how to design the solvent and the ligand to the reaction. Chem Commun, 2001, (15):1360-1361.
    43. Visser A E, Swatloski R P, Rogers R D. pH-dependent partitioning in room temperature ionic liquids provided in a link to tranditional solvent extraction behavior. Green Chem,2000,2(1):1-4.
    44. Armstrong D W, HeLF, Liu Y S. Examination of ionic liquids and interaction with molecules, when used as stationary phase in gas chromatography. Anal Chem,1999,71(17):3873-3876.
    45. Cull S G, Holbery J D, Vargas-Mora V, et al. Room temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operation. Biotechnol Bioeng,2000,69(2):227-233.
    46. Alvanipour A, Atwood J L, Bott S G, et al. Some crown ether chemistry of Ti, Zr, and Hf derived from liquid clathrate media. J Chem Soc Dalton,1998, (7):1223-1228.
    47. Selvan M S, Mckinley M D, Dubois R H, et al. Liquid-liquid equilibria for toluene plus hephane+l-ethyl-3-methylimidazolium triodide and toluene plus heotanel-butyl-3-methylimidazolium triodide. Journal of Chemical and Engineering Data,2000,45(5):841-845.
    48. Swatloski R P, Visser A E, Reichert W M. et al. Solvent of 1-butyl-3-methylimidazolium hexafluorophosphate in aqueous ethanol-a green solution for dissolving "hydrophobic" ionic liquids, Chem Commun,2001, (20):2070-2071.
    49. Swatloski R P, Visser A E, Reichert W M, et al. On the solubilization of water with ethanol in hydrophobic hexefluorophosphate ionic liquids. Green Chem,2002,4(2):81-87.
    50. Blanchard L A, Brennecke J F. Recovery of organic products from ionic liquids using supercritical carbon dioxide. Industrical and Engineering Chemistry Research,2001,40:289-297.
    51. Anthony J L, Maginn E J, Brennecke J F. Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys Chem B,2001,105(44):10942-10949.
    52. McEwen A B, Ngo H L, LeCompte K, et al. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electro Soc,1999,146(5):1687-1695.
    53. Anthony J L, Maginn E J, Brennecke J F. Solubilities and thermodynamic prpperties of gases in the ionic liquid l-n-butyl-3-methylimidazolium hexefluorophosphate. J Phys Chem B,2002,106(29): 7315-7320.
    54. Swatloski R P, Spear S K, Holbery J D. Dissolution of cellose with ionic liquids. J Am Chem, Soc, 2001,124(18):4974-4975.
    55. Anderson J L, Ding J, Welton T, et al. Characterizing ionic liquids on the basis of multiple salvation interactions. J Am Chem Soc,2002,124(47):14247-14254.
    56. Heinze T, Schwikal k, Barthel S. Ionic liquids as rection medium in cellulose fictionalization. Macromol Biosic,2005,5(6):520-525.
    57. Philips D M, Drummy L F, Conrady D G, et al. Dissolution and regeneration of Bombyx mori Sick fibroin using ionic liquid. J Am Chem Soc,2004,126:14350-14351.
    58.任强,武进,张军等.1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J].高分子学报,2003,3:448-451.
    59. Dawsey T R, McCoemick C L. Lithium chloride/dimethylacetamide solvent for cellulose. A literature review, J Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1990, C30(3-4):405-440.
    60.张军,武进,张昊.纤维素在离子液体中俄溶解与功能化[J].高分子学术论文报告会,北京,2005,p10.
    61. Laane C, Boeren S, Vos K. Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioengl,,1987,30:81-87.
    62. Yang Z, Russell A J, Koskinen A M P, et al. Enzymatic reactions in organic media. Blackie Academic, London,1996,43-69.
    63. Park S, Viklund F, Hult K, et al. onic liquids as green solvents:Progress & Prospects. ACS symposium Series,2003,856:225-238.
    64. Lozano P, De Diego T, Carrie D, et al. Enzymatic ester synthesis in ionic liquids. J Moie Catal B:Enzymatic, 2003,21(1-2):9-13.
    65. Nakashima K, Okada J, Maruyama T, et al. Activation of lipase in ionic liquids by modification with comb-shaped poly(ethylene glycol). Science and Technology of Advanced Material,2006,7(7): 692-698.
    66. de Diego T, Lozano P, Abad M A, et al. On the nature of ionic liquid and their effects on lipase that catalyze ester synthesis. J Biotech,2009,140:234-241.
    67. Hernandez F J, de los RiosA P, Gomez D, et al A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Applied Catalysis B: Environmental,2006,67(1-2):121-126.
    68. Hernandez-Fernandez F J, de los Rios A P, Rubio M, et al. Enhancement of activity and selectivity in lipase-catalyzed transesterification in ionic liquids by the use of additives. Journal of Chemical Technology and Biotechnology,2007,82(10):882-887.
    69. Shan H X, LiZJ, Li M, et al. Improved activity and stability of pseudomonas capaci lipase in a novel biocompatible ionic liquid,1 isobutyl-3-methylimidazolium hexafluorophosphate. Journal of Chemical Technology and Biotechnology,2008,83(6):886-891.
    70. Lee J K, Kim M J. Ionic liquid-coated enzyme for biocatalysis in organic solvent. Journal of Organic Chemistry,2002,67(19):6845-6847.
    71. Itoh T, Nishimura Y, Ouchi N, et al. 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate:The most desirable ionic liquid solvent for recycling use of enzyme in lipase-catalyzed transesterification using vinyl acetate as acyl donor. J Mole Catal B:Enzymatic,2003,26(1-2):41-45.
    72. Persson M, Bornscheuer U T. Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. J Mole Catal B:Enzymatic,2003,22(1-2):21-27.
    73. Lozano P, De Diego T, Carrie D, et al. Lipase catalysis in ionic liquids and supercritical carbon dioxide at 150℃. Biotechnology Progress,2003,19(2):380-382.
    74. Van R F, Lau R M, Sheldon R A. Biocatalytic transformations in ionic liquids. Trends in Biotechnology,2003,21(3):131-138.
    75. Kaftzik N, Kroutil W, Faber K, et al. Mandelate racemase activity in ionic liquids:Scopes and limitations. Journal of Molecular Catalysis A:Chemical,2004,214(1):107-112.
    76. Itoh T, Matsushita Y, Abe Y, et al. Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-Alkyl sulfate ionic liquid. Chemistry-A European Journal,2006,12(36):9228-9237.
    77. Lozano P, De Diego T, Larnicol M, et al Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids/supercritical carbon dioxide systems. Biotechnology Letter,2006,28(19):1559-1565.
    78. Lozano P O, De Diego T, Sauer T, et al On the importance of the supporting material for activity of immobilized Candida antarctica lipase B in ionic liquid/hexane and ionic liquid/supercritical carbon dioxide biphasic media. Journal of Supercritical Fluids,2007,40(1):93-100.
    79. Toral A R, de los Rios A P, Hernandez F J, et al Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme and Microbial Technology,2007,40(5):1095-1099.
    80. Lozano P, De Diego T, Gmouh S, et al A continuous reactor for the (chemo)enzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquid/supercritical carbon dioxide biphasic systems. International Journal of Chemical Reactor Engineering,2007,5:A53.
    81. Hernandez-Fernandez F J, de los Rios A P, Tomas-Alonso F. Integrated reaction/separation processes for the kinetic resolution of rac-1-phenylethanol using supported liquid membranes based on ionic liquids. Chemical Engineering and Processing,2007,46(9):818-824.
    82. Hernandez-Fernandez F J.de los Rios A P, Tomas-Alonso F, et al On the development of an integrated membrane process with ionic liquids for the kinetic resolution of rac-2-pentanol. Journal of Membrane Science,2008,314(1-2):238-246.
    83. Sheldon R A, Lau R M, Sorgedrager M J, et al. Biocatalysis in ionic liquids. Green Chemistry,2002, 4:147.
    84. Park S, Kazlauskas R J. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations. Journal of Organic chemistry,2001,66(25):8395-8401.
    85. Chen Z G, Zong M H, Li G J. Lipase-catalyzed acylation of konjac glucomannan in ionic liquids. Journal of Chemical Technology and Biotechnology,2006,81(7):1225-1231.
    86. Katsoura M H, Polydera A C, Tsironis L, et al Use of ionic liquids as media for the biocatalytic preparation of flavonoid derivatives with antioxidant potency. Journal of Biotechnology,2006, 123(4):491-503.
    87. Lee S H, HaS H, Hiep N M, et al Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures. Journal of Biotechnology,2008,133(4):486-489.
    88. Sang H L, Dung T D, Sung H H, et al. Lipase-catalyzed synthesis of fatty acid sugar ester using extremely supersaturated sugar solution in ionic liquids. Biotechnology and Bioengineering,2008, 99(1):1-8.
    89. Li N, Ma D, Zong M H. Enhancing the activity and regioselectivity of lipases for 3 prime-benzoylation of floxuridine and its analogs by using ionic liquid-containing systems. Journal of Biotechnology, 2008,133(1):103-109.
    90. Lee S H, Nguyen H M, Koo Y M, et al. Ultrasound-enhanced lipase activity in the synthesis of sugar ester using ionic liquids. Process Biochemistry,2008,43(9):1009-1012.
    91. Mohile S S, Potdar M K, Harjani J R, et al. Efficient additives for Candida rugosa lipase-catalysed enantioselective hydrolysis of butyl-2-(4-chlorophenoxy)propionate. Journal of Molecular Catalysis B:Enzymatic,2004,30(5-6):185-188.
    92. Xin J Y, Zhao Y J, Shi Y G, et al. Lipase-catalyzed naproxen methyl ester hydrolysis in water-saturated ionic liquid:Significantly enhanced enantioselectivity and stability. World Journal of Microbiology and Biotechnology,2005,21(2):193-199.
    93. XinJY, Zhao Y J, Zhao G L, et al. Enzymatic resolution of (R,S)-Naproxen in water-saturated ionic liquid. Biocatalysis and Biotransformation,2005,23(5):353-361.
    94. Lou W Y, Zong M H.Wu H. Enzymic asymmetric hydrolysis of D, L-p-hydroxyphenylglycine methyl ester in aqueous ionic liquid co-solvent mixtures. Biotechnology and Applied Biochemistry,2005, 41(2):151-156.
    95. Lou W Y, Zong M H, Liu Y Y, et al. Efficient enantioselective hydrolysis of d,1-phenylglycine methyl ester catalyzed by immobilized Candida Antarctica lipase B in ionic liquid containing systems. Journal of Biotechnology,2006,125(1):64-74.
    96. Lee S H, Doan T T N, HaSH, et al. Influence of ionic liquids as additives on sol-gel immobilized lipase. Journal of Molecular Catalysis B:Enzymatic,2007,47(3-4):129-134.
    97. Naik P U, Nara S J, Harjani J R, et al. Ionic liquid anchored substrate for enzyme catalysed kinetic resolution. Journal of Molecular Catalysis B:Enzymatic,2007,44(3-4):93-98.
    98. Maruyama T, Yamamura H, Kotani T, et al. Poly(ethylene glycol)-lipase complexes that are highly active and enantioselective in ionic liquids. Organic and Biomolecular Chemistry,2004,2(8): 1239-1244.
    99. Li N, Ma D, Zong M H. Enhancing the activity and regioselectivity of lipases for 3 prime-benzoylation of floxuridine and its analogs by using ionic liquid-containing systems. Journal of Biotechnology, 2008,133(1):103-109.
    100. Lozano P, de Diego T, Gmouh S, et al. Dynamic structure-function relationships in enzyme stabilization by ionic liquids. Biocatalysis and Biotransformation,2005,23(3-4):169-176.
    101. Ulbert O, Belafi-Bako K, Tonova K, et al. Thermal stability enhancement of Candida rugosa lipase using ionic liquids. Biocatalysis and Biotransformation,2005,23:177-183.
    102. De Diego T, Lozano P, Gmouh S, et al. Understanding structure-Stability relationships of Candida antartica lipase B in ionic liquids. Biomacromolecules,2005,6(3):1457-1464.
    103. Takaya S, Masuda G, Takagi K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta,2004,49:3603-3611.
    104. Sesto R E D, Corley C, Robertson A, et al. Tetraalkylphosphonium based ionic lquids. J Organomet Chem,2005,690:2536-2542.
    105. Gao Y, Arritt S W, TwamLey B, et al. Guanidinium-based ionic liquid. Inorg Chem,2005,44: 1704-1712.
    106. Patrascu C, Sugisaki C, Mingotaud C, et al. New pyridinium chiral ionic liquids. Heterocycles, 2004,63:2033-2041.
    107. Sheldon R. Catalytic reactions in ionic liquids. Chem Commum,2001,23:2399-2407.
    108. Maggel D, Seddon K R. Improved preparation of Ionic liquids using microwave irradiation. Green chem,2003,3:181-186.
    109.李长多,张学俊.1,3-二烷基咪唑类离子液体的合成研究[J].化工中间体,2008,11:62-66.
    110. Paul A, Mandal P K, Samanta A. How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate. Chem Phys Let,2005,402:375-379.
    111.王仲妮,王洁莹,司友华等.咪唑类离子液体的研究进展[J].化学进展,2008,20(7-8):1057-1063.
    112.刘红霞,徐群.烷基咪唑类离子液体的合成及应用[J].中国医药工业杂质,2006,37(9):644-648.
    113. Tokuda H, Hayamzzu K, Ishiik, et al. Physicochemical properties and structures of room temperature ionic Liquid.1. variation of anionic species. J phys chem B,2004,1085(16):593-600.
    114.王勇,李浩然,吴韬等.烷基咪唑型卤盐类离子液体的合成机理研究[J].物理化学学报,2005,21(5):517-522.
    115. Ngo H L, LeCompte K, Hargens L, et al. Thermal properties of imidazolium ionic liquids. Thermochim Acta,2000,357:97-102.
    116. Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-aklyl-3-methyl-limidazolium tetrafluoroborate for electrolyte. J fluorine Chem,2003,120(2):135-141.
    117. Suarez P A Z, Einloft S, Dullius J E L, et al. Synthesis and physical-chemical properties of ionic liquids based on 1-n-buty 1-3-methylimidazolium cation. J Chim Phys,1998,95:1626.
    118. Law G, Watson P R. Surface tension measurement of N-alkylimidazolium ionic liquids. Langmuir, 2001,17(20):6138-6141.
    119. Perry R L, Jones K M, Scott W D, et al. Densities, viscosity and conductivities of mixtures of selected organic cosolvents with the Lewis basic aluminum chloride+ 1-methyl-3-ethylimidazolium chloride molten salt. J Chem Eng Data,1995,40(3):615-619.
    120. Dzyuba S, Bartsch R A. Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifiuoromethyl-sulfonyl)imides on physical properties of the oonic liquids. Chem Phys Chem,2002,3:161-170.
    121. Fletcher K A, Storey I A, Hendricks A E, et al. Behavior of the solvatochromic probes Reichardt's dye, pyrene, dansylamide, Nile Red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid bmimPF6. Green Chem,2001,3:210.
    122. Seddon K R. Ionic liquid for clean technology. J Chem Technol Biotech,1997,68(4):351-356.
    123. Wasserscheid P, Keim W. Ionic liquids—New "solutionin" for transition metal catalysis. Angew Chem Int Ed,2000,39(21):3772-3789.
    124. Wakai C, Oleinkova A, Ott M, et al. How polar are ionic liquids? Determination od the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J Chem Phys B.2005,109:17028-17030.
    125. Reichardt C. Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem,2005,7(5):339-351.
    126. Aki S N K, Brennecke J F, Samanta A. How polar are room-temperature ionic liquids? Chem Commun,2001,5:413-414.
    127. Seddon K R, Stark A, Torres M J, et al. Influence of chloride, water, and organ solvents on the physical properties of ionic liquids. Pure Appl Chem,2000,72:2275.
    128. Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow. Nature,2001, 409(6818):58-268.
    129. Klibanov A M. Improving enzymes by using them in organic solvents. Nature,2001,409(6818): 241-246.
    130.刘树文.合成香料技术手册[M].中国轻工业出版,北京,2000,511.
    131. Rumbau V, Marcilla R, Pomposo J A, et al. Ionic liquid Immobilized enzyme for biocatalytic synthesis of conducting polyaniline. Macromolecules,2006,39(25):8547-8549.
    132. Lu X, Hu J, Yao X, Wang Z, et al. Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Biomacromolecules,2006,7(3):975-980.
    133. Zhao F, Wu X, WangM, et al. Preparation of the glucose sensor based on three-dimensional ordered macroporous gold film and room temperature ionic liquid. Anal Chem,2004,76(17):4960-4967.
    134. Lozano P, de Diego T, Gmouh S, et al. Toward green processes for fine chemicals synthesis: biocatalysis in ionic liquid-supercritical carbon dioxide biphasic systems. Biotechnol Prog,2004, 20(3):661-669.
    135. Berberich J A, Kaar J L, Russell A J. Importance of the ionic nature of ionic liquids in affecting enzyme performance. Biotechnol Prog,2003,19(3):1029-1032.
    136. Zhao H, Luo R G, Malhotra S V. oward green processes for fine chemicals synthesis:biocatalysis in ionic liquid-supercritical carbon dioxide biphasic systems. Biotechnol Prog,2003,19(3):1016-1018.
    137. Kaar J L, Jesionowski A M, Berberich J A, et al. Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc,2003,125(14):4125-4131.
    138.王永泽,梅乐和,钟春龙等.有机相中利用脂肪酶催化的醇解反应拆分炔丙醇酮乙酸酯[J].催化学报,2006,27(9):799-804.
    139.王永泽,梅乐和,钟春龙等.脂肪预处理发酵联产氢气和甲烷的研究[J].浙江大学学报(工学版),2006,40(7):1253-1256.
    140.石贤爱,宗敏华,孟春等.含离子液体[bmim]Cl的反应介质中马肝醇脱氢酶的催化[J].催化学报,2005,26(11):982-986.
    141. Wang Y Z, Mei L H, Zhong Ch L, et al. A novel temperature-controlled ionic liquid as the medium for phenylethyl acetate synthesis catalyzed by lipase. Chin J Catal,2006,27(9):799-804.
    142. Chen Z G, Zong M H, Gu Z X. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. Chinese J Org Chem,2009,29:673-681.
    143. Pavlidis I V, Gournis D, Papadopoulos G K, et al. Functionalized multi-wall carbon nanotubes for lipase immobilization. J Mol Catal B-Enzym,2009,60(1-2):50-56.
    144. Yang Z, Pan W B. Ionic liquids:Green solvents for nonaqueous biocatalysis. Enzyme Microb Tech, 2005,37(1):19-28.
    145. Xia Y M, Fang Y, Zhang K C. Enzymatic synthesis of partial glycerol caprate in solvent-free media. J Mol Catal B:Enzym,2003,23(1):3-8.
    146. Oumanou M M, Bornscheuer U T. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology,2003,33:97-103.
    147.杨缜,计亮年.低水有机介质中的酶催化[J].生物化学与生物物理进展,1994,21(2):98-104.
    148.徐小龙,刘清亮.荧光光谱在蛋白质分子构象研究中的应用[J].化学进展,2001,13(4):257-260.
    149. Erbelding M, Mesian A J, Russell A J. Enzymatic catalysis of formation of Z-aspartane in ionic liquid—an alternative to enzymatic catalysis in organic solvent. Biotechnol Prog,2000,16: 1129-1131.
    150. Zhao hua. Effect if ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquid. J Mol Cat B:Enzym,2005,37(1):16-25.
    151. Anirban G, Rajiv K. Nature of the Active Sites in ethylene oligomerization catalyzed by Ni-containing molecular Sieves:chemical and IR spectral investigation. J Catal.2004,228(2):386-396.
    152. Vetere V, Faraonim B, Santori G F, et al. Transition metal-based bimetallic catalysts for the chemoselective hydrogenation of furfuraldehyde. J Catal,2004,226(2):457-461.
    153. Kragl U, Eckstein M, Kaftzik N. Enzyme catalysis in ionic liquid. Enzyme Curr Opin Biotech, 2002,13:565-571.
    154.陈志刚,宗敏华,顾振新.离子液体毒性、生物降解性及绿色离子液体的设计与合成[J].有机化学,2009,5:673-681.
    155. Ioannis V P, Dimitrios G, George K P, et al. Toxicity, biodegradability and design and synthesis of green ionic liquids. J Mol Catal B-enzym,2009,60(1-2):50-56.
    156. Seongsoon P, Romas J K. Biocatalysis in ionic liquids-advantages beyond green technology. Current Opinion in biotechnology,2003,14(4),432-437.
    157. Yuan Y, Bai S, Sun Y. pH memory of immobilized lipase for (±)-menthol resolution in ionic liquid. Food Chem,2008,56(7),2388-2391.
    158.辛嘉英,赵永杰, 石彦国等.酯酶和脂肪酶对映选择性的改进技术[J].催化学报,2005,26:118-122.
    159.李明,方银军,李在均等.新型对称烷基咪唑离子液体介质中酶催化合成1-乙酸薄荷酯[J].化学学报.2009,67(11):1252-1255.
    160. Schrag J D, LiYG, Cygler M, et al. The open conformation of a Pseudomonas lipase. Structure, 1997,5(2):187-202.
    161. Brandon Y, Mitsufumi M, Tadashi M. DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotech,2002,94:217-224.
    162. Fuentes M, Mateo C, Guisan J M, et al. Arginine-to-lysine substitutions influence recombinant horseradish peroxidase stability and immobilisation effectiveness. Biosensors and Bioelectronics, 2005,20:1380-1387.
    163. Lorena B, Manuel F, Gisella D. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. Mol Catal B-enzym,2005,32(30: 97-101.
    164.邓勇辉.功能性磁性聚合物微球的制备、表征及初步应用[D]:[博士学位论文].上海:复旦大学高分子科学系,2005.
    165. L iane M R, Ashley D Q, Zeev R. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal B ioanal Chem,2004,380:606-613.
    166. Timko M, Koneraeka M, Kopcansky P, et al. Application of magnetizable complex systems in biomedicine. Journal of Physics,2004,54:599-606.
    167. Yakup A M, Handan Y, Siileyman P, et al. Immobilization of glueoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres:characterization and application to a continuous flow reactor, J molecular Catal B:Enzym,2000,11:127-138.
    168.邱广亮,邱广明,李咏兰等.磁性淀粉微球固定化乙酰乳酸脱羧酶及应用[J].广州化工,2000,28(4):24-27
    169.邱广亮,李咏兰.纳米级磁性微粒的制备及固定化纤维酶的研究[J].药物生物技术,2001,8(4):197-199.
    170.高道江,王建华.Fe304超微磁性的制备[J].四川师范大学学报(自然科学版),1997,20(6):94-97.
    171.王全胜,刘颖.沉淀氧化法制备Fe304的影响因素研究[J].北京理工大学学报,1994,14(2):200-205.
    172.陈兴,邓兆祥.水热法制备超顺磁性铁氧体纳米微粒[J].无机化学学报,2002,18(5):460-464.
    173.伏卫霞,张迈生.微波作用下纳米球形的Fe304快速合成[J].中国化学会2003年中西部十五省(区)、市无机化学化工学术交流会会议论文集,广西桂林,P157.
    174. Bull K M. Chem Soc. Jpn,1978,51:134.
    175.余加祐.Fe304超细粒子催化剂的制备[J].大连轻工业学院学报,2000,19(1):17.
    176. Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc,2002,124: 8204.
    177.曾京辉.氧化铁微粒子的合成[J].化学世界,1995,(7):353-355.
    178.丁明,孙虹.Fe3O4壳聚糖核壳磁性微球的制备及特性[J].磁性材料及器件,2001,32(6):1-3.
    179.施卫贤,杨俊,王亭杰等.磁性Fe3O4微粒表面有机改性[J].物理化学学报,2001,17(6):507-510.
    180.徐智中.磁性聚合物微球的制备[D]:[博士学位论文].上海:复旦大学高分子科学系,2005.
    181.丁明,曾桓兴.中和沉淀法Fe3O4的生成研究[J].无机材料学报.1998,13(4):619-624.
    182.沈钟.气体在活性炭表面吸附作用[J].胶体与表面化学.化学工业出版社,11-13.
    183.于澄洁,王大伟.室温离子液体及其在绿色化学中的应用[J].西安石油学院学报:自然科学版,2002,17(5):59-65.
    184.丁琪,乐长高.室温离子液体在萃取中的应用[J].化工时刊,2006,20(7):64-67.
    185.邵媛,邓宇.离子液体的合成及其在萃取分离中的应用[J].精细石油化工进展,2005,6(11):48-52.
    186.刘晓庚,陈梅梅,刘长鹏等.室温离子液体在化学合成和萃取分离中的应用[J].化学世界,2006,(10):629-635.
    187.张春红,乐长高.离子液体在萃取中的应用研究[J].江西化工,2007,(2):12-12.
    188.王良,闫永胜,侯延民等.离子液体在萃取中的应用研究[J].冶金分析,2007,27(12):21-27.
    189. Alonso L, Alberto A, Francisco M, et al. Solvent extraction of thiophene from n-alkanes (C7, C12 and C16) using the ionic liquid [C8mim][BF4]. The Journal of Chemical Thermodynamics,2008, 40(6):966-972.
    190. Chen P Y. The assessment of removing strontium and cesium cations from aqueous solutions based on the combined methods of ionic liquid extraction and electrodeposition. Electrochimica Acta,2007, 52(17):5484-5492.
    191. Wang J L, Zhao D S, Zhou E P, et al. Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids. Journal of Fuel Chemistry and Technology,2007,35(3):293-296.
    192.沈兴海,徐超,刘新起等.离子液体在金属离子萃取分离中的应用[J].核化学与放射化学,2006,28(3):129-138.
    193.吕江平,王九思,来风习等.离子液体的特点及在液-液萃取中的应用研究[J].甘肃联夸大学学报(自然科学版),2007,21(1):70-75.
    194. LiZJ, LuNP, Zhou X, et al. Extraction spectrophotometric determination of aluminum in dialysis concentrates with 3,5-ditertbutylsalicylfluorone and ionic liquid1-butyl-3-trimethylsilylimidazolium hexafluorophosphate. Journal of Pharmaceutical and Biomedical Analysis,2007,43(5):1609-1614.
    195.范旭,李在均.新型离子液体作为溶剂萃取光度法测定环境水中超痕量钼[J].分析试验室,2008,27(3):17-20.
    196. Chen J G, Xiao S M, W X H, et al. Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Talanta,2005,67(5),992-996.
    197. Moreira F, Rborges R, Moreire FC. Comparison of two digestion procedures for the determination of lead in lichens by electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy,2005,60(5):755-758.
    198. Petrov P K, wibetoe G, Tsalev D L. Comparison between hydride generation and nebulization for sample introduction in the determination of lead in plants and water samples by inductively coupled plasma mass spectrometry, using external calibration and isotope dilution. Spectrochimica Acta Part B: Atomic Spectroscopy,2006,61(1):50-70.
    199. Dias L F, Miranda G R, Saint'Pierre T D, et al. Method development for the determination of cadmium, copper, lead, selenium and thallium in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution calibration. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(1):117-124.
    200. Ndung'u K, Hibdon S, Flegai A R. Determination of lead in vinegar by ICP-MS and GFAAS: evaluation of different sample preparation procedures. Talanta,2004,64(1):258-263.
    201. Li Z J, Tang J, Pan J M. The determination of lead in preserved food by spectrophotometry with dibromohydroxyphenylporphyrin. Food Control,2004,15(7):565-570.
    202. Di N, MarAAAAa S, Palomeque M E, et al. A sensitive spectrophotometric method for lead determination by flow injection analysis with on-line preconcentration. Talanta,2004,63(2): 405-409.
    203.肖珊美,陈建荣,沈玉勤.双硫腙浊点萃取-石墨炉原子吸收光谱法测定环境水样中痕量铅的研究[J].光谱学与光谱分析.2006,26(5):955-958.
    204. Hirayama N, Deguchi M, Kawasumi H, et al. Use of 1-alkyl-3-methylimidazolium hexafluor-ophosphate room temperature ionic liquids as chelate extraction solvent with 4,4,4-trifluoro-l-(2-thienyl)-l,3-butanedione. Talanta,2005,65(1):255-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700