用户名: 密码: 验证码:
基于[2.2]环仿的面手性氮杂环卡宾前体的合成及不对称催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪九十年代后期[2.2]环仿类平面手性化合物作为一类崭新的手性配体结构在不对称催化反应中的应用正引起化学家们越来越多的关注,面手性[2.2]环仿类化合物作为手性配体应用于不对称催化反应的研究报道口益增多,面手性在现代有机金属化学中正扮演着越来越重要的角色。催化不对称C-C键的形成是近二十年有机化学研究的热点,其中,芳基有机金属试剂对醛的不对称加成反应是这一领域中极具吸引力的课题,因为手性二芳基甲醇是合成在生物学及医药学上活性化合物的重要中间体及关键结构单元。自从1998年Miyaura第一次报道了铑催化的芳基硼酸对醛的1,2-加成以来,山于硼酸对空气的稳定性、低毒性以及易操作性的特点,使芳基硼酸对醛的1,2-加成反应成为了近年来研究的热点。氮杂环卡宾是膦配体的有效替代品,在许多反应中表现出了相当或者更好的催化效果。继膦配体在催化芳基硼酸对醛的加成反应取得一定成果之后,氮杂环卡宾用于催化该反应的研究也相继展开。
     基于以上原因,以及我们一直以来对于[2.2]环仿化学和催化不对称C-C键形成的研究兴趣,我们设计并合成了一系列基于[2.2]环仿的面手性咪唑及咪唑啉盐,并以之作为氮杂环卡宾前体应用在催化芳基硼酸对芳香醛的不对称加成反应中。
     本论文的内容主要有以下几个方面:
     第一章,对面手性[2.2]环仿衍生物的合成及在不对称催化中的应用进行了总结归纳,为课题的设计提供思路及文献方面的准备。
     以[2.2]环仿为骨架的面手性配体拥有刚性的[2.2]环仿结构单元,这一多功能的骨架为设计不同类型的手性配体提供了可能。到目前为止,已报道的以[2.2]环仿为骨架的配体有噁唑啉-膦、咪唑、咪唑啉、噁唑啉、亚胺以及二膦配体等,已广泛应用在不对称氢化反应、不对称硅氰化反应、不对称环氧化以及不对称环丙化等反应中。
     第二章,设计并合成了一系列基于[2.2]环仿的面手性咪唑三氟甲磺酸及咪唑氯化盐,对其进行了鉴定和表征。
     在我们合的目标化合物中,Sp-4-氨基-1 2-溴[2.2]环仿和(4Rp,1 3Sp)-4-氨基-13-溴[2.2]环仿是重要的结构单元,也是合成目标化合物的关键中间体。对十这两个化合物的合成我们基本采用了文献的方法,但是在许多合成方法上我们做了优化和改进,特别是在拆分方法上有所创新,使原有的路线更合理,操作史简单,产率更高。Sp-4-氨基-12-溴-[2.2]环仿和(4Rp,13Sp)-4-氨基-13-溴[2.2]环仿的一个重要特点是其空间结构可以较容易地加以修饰。在Pd-dppf催化下,通过和不同的芳基硼酸发生Suzuki-Miyaura反应可以得到较大空间阻碍的氨基[2.2]环仿衍生物。在室温条件下,在四氢呋喃中,这些具有不同取代基的氨基[2.2]环仿衍生物和乙二醛水溶液反应,得到相应的二亚胺。对于二亚胺进一步关环合成咪唑盐我们尝试了多聚甲醛、氯甲基乙基醚等关环试剂发现效果都不理想。最后我们用三氟甲磺酸银和氯甲基特戊酸酯进行关环得到了大部分目标化合物,合成了一系列基于[2.2]环仿的咪唑三氟甲磺酸盐,为卡宾应用于不对称催化反应提供了一类新颖的手性卡宾配体。
     第三章,将已合成的咪唑盐应用于芳基硼酸对芳香醛的不对称加成中,显示了优异的催化活性和中等程度的立体选择性。
     不对称催化芳基硼酸对醛的加成是合成医药关键中间体手性醇的有效方法,但是自98年首次报道以来,研究并未获得突破性进展,仍有必要进行深入、系统的工作。因此我们利用合成的咪唑盐作为卡宾前体和金属铑配位生成卡宾配合物之后催化该加成反应,以期取得突破。我们采用现场制备配合物的方法(原位法),以α-萘甲醛和苯硼酸为反应底物,筛选了溶剂、温度、配体、铑源等影响因素,确定了最佳催化条件。在该优化的条件下,我们合成的一系列咪唑盐都显示了优异的催化活性以及不同程度的立体化学选择性。鉴于该配体的高催化活性,我们对催化剂的用量进行了研究,发现只需要0.3mol%的催化剂量就能在2小时内实现99%的产率及41%ee。甚至在0.01mol%的催化剂量下依然能达到90%以上的产率
     第四章,设计并合成了几种改进型的配体,通过卡宾银配合物转化成卡宾铑配合物,然后应用于芳基硼酸对芳香醛的不对称加成反应中。
     我们合成的咪唑盐在芳基硼酸对芳香醛的加成反应中显示了优异的催化活性,但是立体选择性并不理想,因此在本章中我们又合成了一类新的冠醚类咪唑盐。该类咪唑盐通过醚键将两个环仿连接起来,使其旋转受到较大的限制,以期增加催化反应的立体选择性。但实验证实该冠醚类咪唑盐在原有的催化条件下催化活性非常低,因此我们又通过先生成卡宾银配合物再转化成卡宾铑配合物,然后催化该加成反应。对于卡宾银的合成我们采用了两种方法,然后和不同的铑源交换可以得到相应的卡宾铑配合物,再应用到芳基硼酸对芳香醛的加成反应中。我们对铑源、碱、金属/配体比例等进行了重新筛选,得出了适合该催化方法的最佳条件。相比第三章中我们的催化效果,在该最佳条件下,同一个配体催化该加成反应能达到相当的催化活性以及较高的立体选择性。
     第五章,设计合成了以[2.2]环仿为骨架的面手性双官能团硫脲衍生物,并将之用于不对称催化Michael加成反应和Henry反应。
     手性硫脲衍生物具有催化活性高、对映选择性和功能基相容性好、易于制备和修饰、适用范围广等优点,成为近年来研究较多的不对称反应的有机催化剂。基于[2.2]环仿的面手性硫脲衍生物的合成及应用并未有报道。本文首次合成了一系列以[2.2]环仿为骨架的面手性双官能团硫脲衍生物,并将之用于不对称催化反应中。通过具有不同取代基的手性氨基[2.2]环仿化合物和3,5-三氟甲基苯-异硫氰酸酯反应可合成相应的硫脲衍生物。我们尝试用该类硫脲衍生物催化Michael加成反应以及Henry反应,发现对于以硝基苯乙烯和丙二酸酯为底物的Michael加成反应有一定的催化活性。
     第六章,设计合成了以[2.2]环仿为骨架的面手性磺酰胺类配体,并用于小对称转移氢化反应中。
     酮的不对称加氢反应是制备光活性仲醇最重要的途径。不对称转移氢化,作为不对称合成的分支之一,与传统的加氢氢化相比,具有安全、易操作等优点。在近些年来的不对称转移氢化研究中,最重要的进展当属Noyori等对于磺酰化二胺配体的合成和应用。基于此,我们设计并合成了一系列基于[2.2]环仿的磺酰胺类配体,并研究了其在不对称转移氢化反应中的应用。以甲酸-三乙胺(甲酸/三乙胺=5:2)为氢供体,以β-荼乙酮为底物的反应中,我们设计合成的配体显示了一定的催化活性。本论文的创新点主要有以下几点:
     1.首次合成了一系列基于[2.2]环仿的面手性咪唑三氟甲磺酸盐,这类新颖的氮杂环卡宾前体为不对称催化反应提供了更多的配体选择。
     2.开发了卡宾铑催化芳基硼酸对芳香醛不对称加成反应的新体系,该系统显示了优异的催化活性以及中等程度的立体选择性。
     3.成功地完成了咪唑三氟甲磺酸盐到咪唑氯化盐的转化,并相继合成了卡宾银及卡宾铑配合物,同时筛选出了适合该配合物催化芳基硼酸对芳香醛不对称加成反应的条件。
     4.设计合成了以[2.2]环仿为骨架的面手性硫脲衍生物以及磺酰胺类衍生物,并用于不对称催化反应中。
The element of planar chirality plays an increasingly important role in modern organometallic chemistry. The field of [2.2]paracyclophane chemistry has developed considerably since these compounds first attracted the interest of chemists in the middle of the last century. Recently, there has been notable progress, especially regarding the synthesis of new derivatives and their applications in asymmetric catalysis. The asymmetric arylation of aldehydes has recently received considerable attention because chiral diarylmethanols are key structural elements in an array of pharmacologically active compounds and are, for that reason, important synthetic targets. Complexes with N-heterocyclic carbenes (NHCs) have, during the years, gathered considerable interest from the organic chemistry community and have been widely used in homogeneous metal catalysis. The Rh-NHC-catalyzed addition of arylboronic acid derivatives to aldehydes deserves particular mention because these methods present high efficiency with a reasonable tolerance towards polar substituents in the substrates.
     The above findings and our interests in [2.2]paracyclophane chemistry and C-C formation reactions triggered our efforts to develop new planar chiral imidazolium salts as NHC precursors based on [2.2]paracyclophane for application in homogeneous catalysis. We herein report the synthesis of a new family of planar chiral imidazolium salts based on [2.2]paracyclophane and their application in the asymmetric rhodium-catalyzed 1,2-addition of arylboronic acids to aldehydes.
     The main content of the thesis was shown as follows:
     1. Review of the synthesis and application of the chiral ligands based on [2.2]paracyclophane.
     Planar chiral [2.2]paracyclophane-based ligand possesses a rigid [2.2]paracyclophanyl unit, and such a versatile backbone structure opens the possibility of designing different types of chiral ligands. The thus far reported [2.2]paracyclophane-based ligands include oxazoline-phosphanes, imidazoliums, oxazoline-alcohols, imine, diphosphanes ligands and so on. In addition, the ligands based on [2.2]paracyclophane have demonstrated catalytic activity for a series of reactions such as hydrosilylation, hydrogenation, allylic substitution, arylamination and organozinc addition reactions etc.
     2. A new family of planar chiral imidazolium salts based on [2.2]paracyclophane was synthesized.
     In our synthetic pathway to the planar chiral imidazolium salts, the compounds Sp-4-amino-12-bromo[2.2]paracyclophane 1a and (4Rp,13Sp)-amino-13-bromo[2.2] paracyclophane 2a are the key structural elements. Following the literature methods, we got the two intermediates and we improved the reaction conditions in many ways. One of the important characteristics of 1a and 2a is the fact that they are easily tunable in their steric profile. Suzuki-Miyaura coupling with arylboronic acids under Pd-dppf catalysis gave the sterically hindered amino[2.2]paracyclophanes in good to excellent yields (85-99%). Treatment of the substituted amino[2.2] paracyclophanes with aqueous glyoxal in THF at room temperature gave corresponding diimines in essentially quantitative yield. We were pleased to find that a reagent formed from equal amounts of silver triflate and chloromethyl pivalate resulted in the formation of the desired imidazolium triflates in moderate to good yields (54-91%).
     3. The application of the synthesized planar chiral imidazolium salts as NHC precursors in the rhodium-catalyzed 1,2-addition of arylboronic acids to aldehydes.
     Imidazolium salts thus obtained were then used as precursors for rhodium-NHC complexes, which were applied in the catalytic addition of arylboronic acids to aromatic aldehydes. We began by optimizing the reaction conditions with one ligand, a number of parameters were varied using phenylboronic acid and 1-naphthaldehyde as model substrates. These ligands reveal high activity in the rhodium-catalyzed asymmetric additions of arylboronic acids to aromatic aldehydes. Even with 0.03 mol % of the catalyst, the reactions were carried out rapidly and gave the chiral diarylmethanols in excellent yields. The optimized protocol was tested in the asymmetric arylation of aldchydes with different steric and electronic properties. In most cases, the reaction can proceed with notable efficiency (up to 99% isolated yield) and moderate enantioselectivity (up to 52%) with only 0.3 mol% catalyst.
     4. Silver N-Heterocyclic Carbene Complexes were synthesized successfully and their application in the synthesis of carbene-Rh complexes was studied.
     Silver NHC complexes have proven themselves to be very adept at transferring to a variety of other metals. Transmetalation reactions can be carried out under aerobic conditions and in the presence of water. Three novel planar chiral crown ether-based imidazolium salts were synthesized. And then we transferred the synthesized imidazolium triflates into the corresponding imidazolium chloride. Treatment of the imidazolium chloride with silver oxide gave the desired silver NHC complexes. The silver NHC complexes reacted with rhodium precatalyst to form the desired product rhodium-NHC complexes. Then the synthesized Rh-NHC complexes were applied in the catalytic addition of arylboronic acids to aromatic aldehydes. For some ligand, the complexes revealed almost the same activity with the optimized protocol in the part three and a slight superior enantioselectivity.
     5. Chrial thiourea derivatives based on the [2.2]paracyclophane were synthesized and their application in homogeneous catalysis was reported.
     Over the last decade the potential for N,N-dialkyl thiourea derivatives to serve as active metal free organocatalysts for a wide range of synthetically useful reactions susceptible to the influence of general acid catalysis has begun to be realised. In this part, we synthesized a new class of bifunctional catalysts bearing a thiourea moiety and an amino group on a chiral [2.2]paracyclophanes scaffold. Among them, thiourea bearing 3,5-bis(trifluoromethyl)benzene and dimethylamino groups was revealed to be efficient for the asymmetric Michael reaction of 1,3-dicarbonyl compounds to nitroolefins.
     6. Chiral diamine ligands based on the [2.2]paracyclophane were synthesized and their application in enantioselective transfer hydrogenation was studied.
     Asymmetric transfer hydrogenation of ketone is an intriguing and useful synthetic methodology to yield chiral alcohols. Chiral diamine ligands have been utilized as catalysts for this purpose and exhibit excellent activity and enantioselectivity. In this thesis, a series of new chiral ligands based on the [2.2]paracyclophanes was synthesized and show certain activity in the asymmetric transfer hydrogenation of ketone.
     The main innovation of this thesis is the synthesis of the planar chiral imidazolium triflates and their applicability in rhodium-catalyzed asymmetric additions of arylboronic acids to aromatic aldehydes. Another innovation of this thesis is the synthesis of the silver NHC complexes and Rh- NHC complexes from silver NHC complexes. The Rh- NHC complexes were successfully applied in the catalytic addition of arylboronic acids to aromatic aldehydes.
引文
1. Cram, D. J.; Cram, J. M.Acc. Chem. Res.1971,4,204-213.
    2. Reich, H. J.; Cram, D. J. J. Am. Chem. Soc.1969,91,3517-3526.
    3. Rozenberg, V.; Sergeeva, E.; Hopf, H. In Modern Cyclophane Chemistry; Gleiter, R.; Hopf, H., Eds.; Wiley-VCH:Weinheim, Germany,2004; p 435.
    4. Popova, E. L.; Rozenberg, V. I.; Staikova, Z. A.; Hopf, H. Angew. Chem. Int. Ed. 2002,41,3411-3414.
    5. (a).Brown, C. J.; Farthing, A. C. Nature 1949,164,915-916.
    (b).Cram, D. J.; Steinberg, H. J. Am. Chem. Soc.1951,73,5691-5704.
    6. (a) Reich, H. J.; Cram, D. J.J. Am. Chem. Soc.1969,91,3517-3526.
    (b)Cipiciani, A.; Fringuelli, F.; Mancini, V.; Piermatti. O.; Scrappini, A. M. Tetrahedron 1997,34,11853-11858.
    7. (a). Lahann, J.; Hocker, H.; Langer, R. Angew. Chem. Int. Ed.2001,40,726-728.
    (b). Pye, P. J.; Rossen, K.;Reamer, R. A.; Volante, R. P.; Reider. P. J. Tetrahedron Lett.1998,39,4441-4443. (c) Dominguez, B.; Zanotti-Gerosa, A.; Hems, W. Org. Lett.2004,6,1927-1930.
    8. (a) Rozenberg, V.; Kharitonov, V.; Antonov, D.; Sergeeva, E.; Aleshkin, A. Ikonnikov, N.; Orlova, S.; Belokon, Y. Angew. Chem. Int. Ed.1994,33,91-92.
    (b)Braddock, C. D.; MacGilp, I. D.; Perry, B. G. J. Org. Chem.2002,67, 8679-8681.
    (c)Song, C.; Ma, C. Q.; Ma. Y. D.; Feng, W. H.; Ma, S. T.; Chai, Q.; Andrus, M. B. Tetrahedron Lett.2005,46,3241-3244.
    9. (a) Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc.1997,119,6207-6208.
    (b)Vetter, A. H.; Berkessel, A. Tetrahedron Lett.1998,39,1741-1744.
    (c)Hou, X. L.; Wu, X. W.; Dai, L. X.; Cao, B. X.; Sun, J. Chem. Commun.2000, 1195-1196.
    (d)Duan, W. Z.; Ma, Y. D.:Xia, H. Q.; Liu, X. Y.; Ma, Q. S.; Sun, J. J. Org. Chem. 2008,73,4330-4333.
    (e)Ma, Y. D.; Song, C.; Ma. C. Q.; Sun, Z. J.; Chai, Q.; Andrus, M. B. Angew. Chem. Int. Ed.2003,42,5871-5874.
    10. (a) Tye, H.; Comina, P. J. J. Chem. Soc. Perkin Trans.2001,1729-1747;
    (b)Deng, W. P.; You, S. L.; Hou, X. L.; Dai, L. X.; Yu, Y. H.; Xia, W.; Sun, J. J. Am. Chem. Soc.2001,123,6508-6519;
    (c)Farrell, A.; Goddard, R.; Guiry. P. J. J. Org. Chem.2002,67,4209-4217;
    (d)S. L.; Hou, X. L.; Dai. L. X.; Yu, Y. H.; Xia, W. J. Org. Chem.2002,67, 4684-4695.
    11. (a) Gibson, S. E.;Ibrahim. H. Chem. Commun.2002,21,2465-2466.
    (b)Bolm, C.; Muniz. K. Chem. Soc. Rev.1999,28,51-59.
    12. (a) Noyori, R.; Ohkuma. T. Angew. Chem. Int. Ed.2001,40,40-73;
    (b)Kitamura, M.:Tsukamoto, M.; Bessho. Y.;Yoshimura, M.; Kobs, U.; Widhalm, M.; Noyori, R. J. Am. Chem. Soc.2002.124,6649-6667;
    (c)C. Reyes. A. Prock and W. P. Giering, Organometallics 2002,21,546-560.
    13. (a) Cram, D. J.; Allinger, N. J. Am. Chem. Soc.,1955,77,6289-6294.
    (b)Rozenberg, V.; Kharitonov, V.; Antonov, D.; Sergeeva, E.; Aleshkin, A.; Ikonnikov, N.; Orlova, S.; Belokon, Y. Angew. Chem. Int. Engl.1994,33,91-92.
    14. Tanji, S.; Ohno, A.; Sato, I.; Soai, K. Org. Lett.,2001,3,287-289.
    15. Gibson, S. E.; Knight, J. D. Org. Biomol. Chem.2003,1,1256-1269.
    16. Cram, D. J.; Allinger, N. J. Am. Chem. Soc.1955,77,6289-6294.
    17. Tanji, S. Ohno, A.; Sato,I.; Soai, K. Org. Lett.2001,3,287-290;
    18. Minuti, L.; Taticchi, A.; Marrocchi, A. Tetrahedron:Asymmetry 2000,11, 4221-4225.
    19. Banfi, S.; Manfredi, A.; Montanari, F.; Pozzi, G.; Quici, S. J. Mol. Cat. A:Chem. 1996,113,77-86.
    20. Reich, H. J.; Cram, D. J. J. Am. Chem. Soc.1969,91,3534-3543.
    21. Marshall, J. L.; Hall, L. Tetrahedron 1981,37,1271-1275.
    22. Rozenberg, V.; Dubrovina, N.; Sergeeva, E.; Antonov, D.; Belokon, Y. Tetrahedron:Asymmetry 1998,9,653-656.
    23. Sato, J.; Ohno, A.; Aoyama, Y.; Kasahara, T.; Soai, K. Org. Biomol. Chem.2003, 244-246.
    24. Masterson, D. S.; Hobbs, T. L.; Glatzhofer, D. T. J. Mol. Cat. A:Chem.1999,145, 75-81.
    25. Bolm, C.; Kuhn, T. Synlett.2000,6,899-901.
    26. Michaelson, R. C.; Palermo, R. E.; Sharpless, K. B. J. Am. Chem. Soc.1977,99, 1990-1991.
    27. Murase, N.; Hoshino, Y.; Oishi, M.; Yamamoto, H. J. Org. Chem.1999,64, 338-339.
    28. Cipiciani. A.; Fringuelli, F.; Mancini. V.; Piermatti, O.; Pizzo, F.; Ruzziconi, A. J. Org. Chem.1997,62,3744-3749.
    29. (a). Rozenberg, V.; Kharitonov, V.; Antonov, D.; Sergeeva, E.; Aleshkin, A.; Ikonnikov, N.; Orlova, S.; Belokon, Y. Angew. Chem.1994,106,106-107;
    (b). Rozenberg, V.; Kharitonov, V.; Antonov, D.; Sergeeva, E.:Aleshkin, A.: Ikonnikov, N.; Orlova, S.; Belokon, Y. Angew. Chem. Int. Ed. Engl.1994,33, 91-92.
    30. Dahmen. S.; Brase, S. Org. Lett.2001,25,4119-4122.
    31. Oppolzer, W.; Radinov, R. N.; Sayed, E. E. J. Org. Chem.2001,66,4766-4770.
    32. Rozenberg, V. I.; Antonov, D. Y.; Zhuravsky, R. P.; Vorontsov, E. V.; Khrustalev, V. N.; Ikonnikov, N. S.; Belokon, Y. N. Tetrahedron:Asymmetry 2000,11, 2683-2693.
    33. (a) Cahn, R. S.;Ingold. C. K.; Prelog, V. Experimentia 1956,12,81-124;
    (b)Cahn, R. S.; Ingold. C. K.; Prelog, V. Angew. Chem. Int. Ed. Engl.1966,5, 385-415;
    (c)Eliel, E. L.; Wilen. S. H. Stereochemistry of Organic Compounds, Wiley, New York,1994, p.1121.
    34. Wu, X. W.; Hou, X. L.; Dai, L. X.; Tao, J.; Cao, B. X.; Sun, J. Tetrahedron: Asymmetry 2001,12,529-532.
    35. Pye, P. J.; Rossen, K.; Reamer. R. A.; Volante, R. P.; Reider, P. J. Tetrahedron Lett.1998,39,4441-4444.
    36. Xin, D. Y.; Ma, Y. D.; He, F. Y. Tetrahedron:Asymmetry 2010,21,333-338.
    1. Trnka, TM; Grubbs, R. H. Acc. Chem. Res.2001,34,18-29.
    2. Ofele, K. J. Organomet. Chem.1968,12,42-43.
    3. Wanzlick, H. W.; Schonherr, H.J. Angew. Chem. Int. Ed. Engl.1968,7.141-142.
    4. Arduengo Ⅲ, A. J.; Kline, M.J. Am. Chem. Soc.1991,113,361-363.
    5. W.Bohm, V. P.; Herrmann, W. A. Angew.Chem. Int. Ed.2000,39,4036-4038.
    6. Herrmann, W. A.; Kocher. C. Angew. Chem. Int. Ed. Engl.1997,36,2162-2187.
    7. Herrmann, W. A. Angew. Chem., Int. Ed.2002,40,1290-1309.
    8. (a) Huang, J.; Nolan, S. P.J. Am. Chem. Soc.1999,121,9889-9890;
    (b)Navarro, O.; Nolan. S. P. J. Org. Chem.2004,69,3173-3180.
    9. (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.2001,34,18-29;
    (b)Hong, S. H.; Grubbs. R. H.J. Am. Chem. Soc.2004.126,7414-7415.
    10. Herrmann, WA; Elison, M.; Fischer, J.; Kocher, C.; Artus, G. R. J. Angew. Chem. Int. Ed. Engl.1995,34,2371-2374.
    11. Cram, D. J.; Cram, J. M. Acc. Chem. Res.1971,4,204-213.
    12. Yang, C.; Lee, H.M.; Nolan. S. P. Org. Lett.2001,3,1511-1514.
    13. Andrus. M.B.:Song, C.:Zhang.J. Q. Org. Lett.2002,4,2079-2082.
    14. Loch. J. A:Albrecht, M.:Peris. E.; Mata. J.:Faller, J. W.; Crabtree. R. H. Organometallics 2002.21,700-706.
    15. Selvakumar, K.; Zapf, A.; Spannenberg, A; Beller, M. Chem. Eur. J.2002,8, 3901-3906.
    16. Gstottmayr, CWK; Bohm, V. PW; Herdtweck, E.; Grosche, M.; Herrmann, WA Angew. Chem. Int. Ed 2002,41,1363-1365.
    17. Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc.2004, 126,15195-15201.
    18. Furstner, A.; Leitner, A. Synlett.2001,2,290-292.
    19. Navarro, O.; Kaur, H.; Mahjoor, P.; Nolan, S.P. J. Org. Chem.2004,69,3173-3180.
    20. Navarro, O.; Kelly Ⅲ, R. A.; Nolan, S. P. J. Am. Chem. Soc.2003,125, 16194-16195.
    21. Peris, E.; Mata, J.; Loch, J. A.; Crabtree, R. H. Chem. Commun.2001,201-202.
    22. Bohm, V. P. W.; Weskamp, T.; Gstottmayr, C. W. K; Herrmann, W.A. Angew. Chem. Int. Ed.2000,39,1602-1604.
    23. Huang, J.; Nolan, S. P. J. Am. Chem. Soc.1999,121,9889-9890.
    24. Bohm, V.P.W.; Gsottmayr, CWK; Weskamp, T.; Herrmann, W.A. Angew. Chem. Int. Ed. 2001,40,3387-3389.
    25. Cram, D. J.; Cram, J. M. Acc. Chem. Res.1971,4,204-213.
    26. Caddick, S.; Cloke, F. G. N; Clentsmith,G. K. B; Hitchcock, P. B.; McKerrecher, D.; Titcomb, L. R; Williams, M. R. V. J. Organomet. Chem.2001,617-618,635-639.
    27. Grasa, G. A.; Nolan, S. P. Org. Lett.2001,3,119-122.
    28. Hillier, A. C; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem.2002,653,69-82.
    29. De Lewis, A. K.; Caddick, S.; Cloke, F. G. N.; Billingham, N. C.; Hitchcock, P. B.; Leonard, J. J. Am. Chem. Soc.2003,125,10066-10073.
    30. Lee, H. M.; Grasa, A.; Nolan, S. P. Org. Lett.2000,2,2053-2055.
    31. (a) Herrmann, W. A.; Schwarz, J.; Gardiner, M.G. Organometallics 1999,18, 4082-4089.
    (b)Weskamp, T.; Bohm, V. P. W; Herrmann, W. A. J. Organomet. Chem. 1999,585,348-352.
    (c)Herrmann, W. A.; Gardiner, M. G.; Schwarz, J.; Spiegler, M. J. Organomet. Chem.1999,575,80-86.
    (d)Bohm, V. P. W; Gstottmayr, C. W. K; Weskamp, T.; Herrmann, W. A.J. Organomet. Chem.2000,595,186-190.
    32. Furstner, A.; Krause, H. Adv. Synth. Catal.2001,343,343-350.
    33. Moreau, C.; Hague, C.; Weller, A. S.; Frost, C. G. Tetrahedron Lett.2001,42, 6957-6960.
    34. Larsen, A. O.; Leu, W.; Nieto-Oberhuber, C.; Campbell, J. E.; Hoveyda, A. H. J. Am. Chem. Soc.2004,126,11130-11131.
    35. Pytkowicz, J.; Roland, S.; Mangeney, P. Tetrahedron:Asymmetry 2001,12, 2087-2089.
    36. Ma, Y.; Song, C.; Ma, C.; Sun, Z.; Chai, Q.; Andrus, M. B.Angew. Chem. Int. Ed. 2003,42,5871-5874.
    37. Huang, J.; Jafarpour, L.; Hillier, A. C.; Stevens, E. D.; Nolan, S. P. Organometallics 2001,20,794-797.
    38. Lee, H. M.; Jiang, T.; Stevens. E. D.; Nolan, S. P. Organometallics 2001,20, 1255-1258.
    39. Bolm, C.; Focken, T.; Raabe. G. Tetrahedron:Asymmetry 2003,14,1733-1746.
    40. Song, C.; Ma, C. Q.; Ma, Y. D.; Feng, W. H.; Ma, S. T.; Chai, Q.; Andrus, M. B. Tetrahedron Lett.2005.46,3241-3244.
    41. Gu, L. N.; Zhu, G. B.; Song, H. B.:Zi, G. F. Chin. J. Org. Chem.2009,29, 1499-1507.
    42. (a). Winn, C. L.; Guillen. F.; Pytkowicz. J.:Roland, S.; Mangeney, P.; Alexakis, A.J. Organomet. Chem.2005,690,5672-5695.
    (b). Alexakis, A.; Wirm, C. L. Guillen, F.:Pytkowicz. J.; Roland, S.:Mangeney, P. Adv. Synth. Catal.2003,345, 345-348.
    (c). Guillen, F.; Winn, C. L.; Alexakis. A. Tetrahedron:Asymmetry 2001,12, 2083-2086.
    43. Zhang, T.; Shi. M. Chem. Eur. J.2008,14,3759-3764.
    44. Herrmann. W. A.; Goossen. L. J.:Kocher, C.:Artus, G. R. J. Angew. Chem. Int. Ed.1996.35.2805-2807.
    45.Chianese, A. R.; Crabtree, R. H. Organometallics 2005,24,4432-4436.
    46. Enders, D.; Gielen, H.; Breuer, K. Tetrahedron:Asymmetry 1997,8,3571-3574.
    47. Failer. J. W.; Fontaine, P. P. Organometallics 2006,25,5887-5893.
    48. Gade, L. H.; Cesar, V.; Bellemin-Laponnaz, S. Arigew. Chem. Int. Ed.2004,43, 1014-1017.
    49. Powell, M. T.; Hou, D.; Perry, M. C.; Cui, X.; Burgess, K. J. Am. Chem. Soc. 2001,123,8878-8879.
    50. (a). Bappert, E.; Helmchem, G. Synlett 2004,1789-1793.
    (b). Chianese, A. R.; Li, X.; Janzen, M. C.; Failer, J. W.; Crabtree, R. H. Organometallics 2003,22,1 663-1667.
    51. Seiders, R. J.; Ward, D. W.; Grubbs, R. H. Org. Lett.2001,3,3225-3228.
    52. (a). Veldhuizen, J. J. V.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A. H. J. Am. Chem. Soc.2002,124,4954-4955.
    (b). Veldhuizen, J. J. V.; Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc.2003,125, 12502-12508.
    53. Lee, S.; Hartwig, J. F. J. Org. Chem.2001,66,3402-3415.
    54. Bonnet, L. G.; Douthwaite, R. E. Organometallics 2003,22,4187-4189.
    55. Chen, T.; Jiang, J. J.; Xu, Q.; Shi, M. Org. Lett.2007,9,865-868.
    56. Ma, G. N.; Zhang, T.; Shi, M. Org. Lett.2009,11,875-878.
    57. Cram, D. J.; Steinberg, H. J. Am. Chem. Soc.1951,73,5691-5704.
    58. Hopf, H.; Lenich, F. T. Chem. Ber.1974,107,1891-1902.
    59. Shi, Z.; Wang, J. H.; Chin. Sci. Bull.1995,40,1581-1587.
    60. Reich, H. J.; Cram, D. J. J. Am. Chem. Soc.1969,91,3527-3533.
    61. Allgeier, H.; Siegel, M. G.; Cram, D. J. J. Am. Chem. Soc.1975,97,3782-3789.
    62. (a) Arduengo, A. J.; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.;. Marshall, W. J; Unverzagt, M. Tetrahedron 1999,55,14523-14534.
    (b)Seo, H.; Hirsch-Weil, D.; Abboud, K. A.; Hong, S. J. Org. Chem.2008,73,1983-1986.
    63. (a) Yamashita, M.; Goto, K.; Kawashima, T. J. Am. Chem. Soc.2005,127, 7294-7295.
    (b)Bohler, C.; Stein, D.; Donati, N.; Grutzmacher, H. New J. Chem.2002, 26,1291-1295.
    (c)Niehus, M.:Erker, G.; Kehr, G.; Schwab, P.; Frohlich, R.; Blacque, O.; Berke, H. Organometallics 2002,21,2905-2911;
    (d)Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem.2000,606,49-54.
    64. (a) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. W. Chem. Commun.2002, 2704-.2705;
    (b)Burstein C.; Lehmann, C. W.; Glorius, F. Tetrahedron 2005,61, 6207-6217.
    (c)Altenhoff, G.;Goddard, R.; Lehmann, C. W.; Glorius, F. Angew. Chem. Int. Ed.2003,42,3690-3693.
    (d)Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc.2004,126,15195-15201.
    1. (a) Schmidt, F.; Stemmler, R. T.; Rudolph, J.; Bolm, C. Chem. Soc. Rev.2006,35, 454-470.
    (b)Fagnou, K.; Lautens, M. Chem. Rev.2003,103,169-196.
    (c)Bolm, C.; Hildebrand, J. P.; Hermanns, N. Angew. Chem. Int. Ed.2001,40,3284-3308.
    (d) Trindade, A. F.; Gois, P. M. P.; Veiros, L. F.; Andre, V.; Duarte, M. T.; Afonso, C. A. M.; Caddick, S.; Cloke, F. G. N. J. Org. Chem.2008,73,4076-4086.
    2. (a) Boronic Acids; Hall, D. G., Ed.; Wiley-VCH:Weinheim, Germany,2005.
    (b) Molander, G. A.; Ellis, N. Acc. Chem. Res.2007,40,275-286.
    3. (a) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. Chem. Int. Ed. 2007,46,3802-3824.
    (b)Knochel, P.; Dohle, W.; Gommermann, N.; Kniesel, F. F. Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem. Int. Ed.2003,42, 4302-4320.
    4. (a) Gillis, E. P.; Burke, M. D.J. Am. Chem. Soc.2008,130,14084-14085.
    (b)Ihara, H.; Suginome, M. J. Am. Chem. Soc.2009,131,7502-7503.
    5. Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem. Int. Ed.1998,37,3279-3281.
    6. Rh:(a) Batey, R. A.; Thadani, A. N.; Smil, D. V. Org. Lett.1999,1,1683-1686. (b) Ueda, M.; Miyaura, N. J. Org. Chem.2000,65,4450-4452.
    Pd:(d) Kuriyama, M.; Shimazawa, R.; Shirai, R.J. Org. Chem.2008,73,1597-1600.
    Ru:(e) Yamamoto, Y.; Kurihara, K.; Miyaura, N. Angew. Chem. Int. Ed 2009,48, 4414-4416.
    Fe:(f) Zou, T.; Pi, S. S.; Li, J. H. Org. Lett.2009,11,453-456.
    Cu:(g) Tomita, D.; Kanai, M.; Shibasaki, M. Chem. Asian J.2006,1,161-166.
    Pt:(h) Liao, Y. X.; Xing, C. H.; He, P.; Hu, Q. S. Org. Lett.2008,10,2509-2512.
    Ni:(i) Takahashi, G.; Shirakawa, E.; Tsuchimoto, T.; Kawakami, Y. Chem. Commun. 2005,1459-1461.
    (j)Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett.2005,7, 4689-4691.
    (k)Arao, T.; Kondom, K.; Aoyama, T. Tetrahedron Lett.2007,48, 4115-4117.
    7. For nonasymmetric Rh-catalyzed addition of aryl organometallic reagents to aldehydes, see:
    (a)Oi. S.; Moro, M.; Inoue, Y. Chem. Commun.1997,1621-1622.
    (c) Li, C. H.; Meng. Y. J. Am. Chem. Soc.2000,122,9538-9539.
    (d)Huang, T.; Meng, Y.; Venkatraman, S.; Wang, D.; Li, C. H. J. Am. Chem. Soc.2001,123,7451-7452. (f) Oi, S.; Moro, M.; Inoue, Y. Organometallics 2001,20,1036-1307.
    (g)Fujii, T.; Koike, T.; Mori, A.; Osakada, K. Synlett.2002,298-301.
    (h)Oi, S.; Moro, M.; Fukuhara, H.; Kawanishi, T.; Inoue, Y. Tetrahedron 2003,59.4351-4361.
    (i)Xing, C. H.; Liu, T. P.; Zheng. J. R.; Ng, J; Esposito, M,.1. Tetrahedron Lett.2009,50,4953-4957. For asymmetric Rh-catalyzed addition of organometallic reagents to aldehydes, see
    (a) Moreau, C.; Hague, C.; Weller, A. S.; Frost, C. G. Tetrahedron Lett.2001,42, 6957-6960.
    (d)Suzuki, K.:Kondo, K.;Aoyama. T. Synthesis 2006,8,1360-1364.
    8. Zou. T.; Pi. S. S.;Li, J. H. Org. Lett.2009.11,453-456.
    9. Fagnou, K.; Lautens. M. Chem. Rev.2003,103,169-196.
    10. Suzuki. K.; Kondo, K.:Aoyama. T. Synthesis 2006,1360,1360-1364.
    11. Duan, H. F.; Xie, J. H.; Shi, W. J.:Zhang, Q.; Zhou, Q. L. Org Lett.2006,8, 1479-1481.
    12. Yamamoto, Y.; Kurihara, K.; Miyaura, N.Angew.Chem. Int. Ed.2009,48,
    13. Furstner, A.; Krause, H. Adv. Synth. Catal.2001,343,343-350;
    14. Focken, M. T.; Rudolph, J.; Bolm, C. Synthesis 2005,3,429-436.
    15. Trindade, A. F.; Gois, P. M. P.; Veiros, L. F.; Andre, V.; Duarte, M. T.; Afonso, C. A. M.; Caddick, S.; Cloke, F. G. N. Angew. Chem. Int. Ed.2007,46,5750-5753.
    16. Saro, I.; Toyota, Y.; Asakura, N. Eur. J. Org. Chem.2007,16,2608-2610.
    17. DeBerardinis, A. M.; Turlington, M.; Pu, L. Org. Lett.2008,10,2709-2712.
    1. Ofele, K. J. Organomet. Chem.1968,12,42-43.
    2. Wanzlick, H. W.:Schonherr, H. J. Angew. Chem. Int. Ed. Engl.1968,7,141-142.
    3. Lappert, M. F. J. Organomet. Chem.1975,100,139-159.
    4. Lappert, M. F. J. Organomet. Chem.1988,358,185-214.
    5. Arduengo, A. J., Ⅲ; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.1991,113, 361-363.
    6. Bourissou, D.; Guerret. O.; Francuois, P.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000,100,39-92.
    7. Herrmann, W. A.; Kocher, C. Angew. Chem. Int. Ed. Engl.1997,36,2162-2187.
    8. Herrmann, W. A. Angew.Chem. Int. Ed.2002,41,1290-1309.
    9. Korotkikh, N. I.; Shvaika, O. P.; Rayenko, G. F.; Kiselyov, A.V.; Knishevitsky, A. V.; Cowley, A. H.; Jones. J. N.; Macdonald, C. L. B. ARKIVOC 2005,8,10.
    10. Arduengo, A. J.; Tapu, D. In Comprehensive Organic Functional Transformations Ⅱ; Katritzky, A. R., Taylar, R. J. K., Eds.; Elsevier:Oxford, U.K.,2005; p 1103.
    11. Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem.2002,653.69-82.
    12. Jafarpour, L.; Nolan, S. P.J. Organomet. Chem.2001,17,617-618.
    13. Arduengo, A. J.,Ⅲ; Dias. H. V. R.; Calabrese, J. C.; Davidson, F. Organometallics 1993,12,3405-3409.
    14. Guerret, O.:Sole, S.; Gornitzka. H.; Teichert. M.; Trinquier, G.; Bertrand, G.J. Am. Chem. Soc.1997,119,6668-6676.
    15. Wang, H. M. J.; Lin, I J. B. Organometallics 1998,17,972-975.
    16. Tulloch, A. A. D.; Danopoulos, A. A.; Winston, S.; Kleinhenz, S.; Eastham, G. J. Chem. Soc. Dalton Trans.2000,4499-4506.
    17. Arnold, P. L. Heteroat. Chem.2002,13,534-539.
    18. Lin, I. J. B.; Vasam, C. S. Comments Inorg. Chem.2004,25,75-129.
    19. Klasen, H. J. Burns 2000,26,131-138.
    20. Lansdown, A. B. G. Br. J. Nurs.2004,13,6-13.
    21. (a) Caballero, A.; Diez-Barra, E.; Jalon, F. A.; Merino, S.; Rodriguez, A. M.; Tejeda, J. J. Organomet. Chem.2001,627,263-264.
    (b)Fox, M. A.; Mahon, M. F.; Patmore, N. J.; Weller, A. S. Inorg. Chem.2002, 41,4567-4570.
    (c)Chung, M. C. Bull. Korean Chem. Soc.2002,23,921-924.
    24. Ku, R. Z.; Huang, J. C.; Cho, J. Y.; Kiang, F. M.; Reddy, K. R.; Chen, Y. C.; Lee, K. J.; Lee, J. H.; Lee, G. H.; Peng, S. M.; Liu, S. T. Organometallics 1999,18, 2145-2154.
    25. (a) Arnold, P. L.; Scarisbrick, A. C.; Blake, A. J.; Wilson, C. Chem. Commun. 2002,2340-2341.
    (b)Danopoulos, A. A.; Tulloch, A. A. D.; Winston, S.; Eastham, G.; Hursthouse, M. B. Dalton Trans.2003,1009-1015.
    (c)Bonnet, L. G.; Douthwaite, R. E.; Hodgson, R. Organometallics 2003,22, 4384-4386.
    26. Wang, H. M. J.; Lin, I. J. B. Organometallics 1998,17,972-975.
    28. Jered C. Garrison and Wiley J. Youngs, Chem. Rev.2005,105,3978-4008.
    27. Tulloch, A. A. D.; Danopoulos, A. A.; Winston, S.; Kleinhenz, S.; Eastham, G. J. Chem. Soc. Dalton Trans.2000,4499-4506.
    29. Hu, X.; Castro-Rodriguez, I.; Olsen, K.; Meyer, K. Organometallics 2004,23, 755-764.
    30. Melaiye, A.; Youngs, W. J. Expert Opin. Ther. Pat.2005,75,125-130.
    31. Ramirez, J.; Corbera'n, R.; Sanau', M.:Peris, E.; Fernandez, E. Chem. Commun. 2005,3056-3057.
    1. Fu, B.; Xiao,Y. M.; Qin, Z. H.; Dong, Y. H; Li, N. C. J. Org. Chem.2006,7, 899-905.
    2. Hajos, Z. G.; Parrish, D. R. J. Org. Chem.1974,59,1615-1621.
    3. Eder, U.; Sauer, G.; Wiechert. R. Angew. Chem. Int. Ed. Engl.1971,10,496-497.
    4. Etter, M. C.; Panunto, T. W.J. Am. Chem. Soc.1988,110,5896-5897.
    5. Etter. M. C.:Urbanzyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Panunto, T. W. J. Am. Chem. Soc.1990.112,8415-8426.
    6. Curran. D. P.; Kuo, L. H. J. Org. Chem.1994,59,3259-3261.
    7. Curran. D. P.; Kuo, L. H. Tetrahedron Lett.1995,36,6647-6650.
    8. Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc.1998,120,4901-4902.
    9. Williams, R. M.; Hendrix, J. A. Chem. Rev.1992,92,889-917.
    10. Sigman, M. S.; Vachal, P; Jacobsen, E. N. Angew. Chem. Int. Ed.2000,39, 1279-1281.
    11. Vachal, P.; Jacobsen, E. N. Org. Lett.2000,2,867-870.
    12. Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc.2002,124,10012-10013.
    13. Ma, J. A.; Cahard, D. Angew. Chem. Int. Ed.2004,43,4566-4583.
    14. Okiho, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc.2003,125,12672-12673.
    15. Vakulya, B.; Varga, S.; Csfimpai, A.; Soos, T. Org. Lett.2005,7,1967-1969.
    16. McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed.2005,44,6367-6370.
    17. Wang, J.; Li, H.; Duan, W. H.; Zu, L. S.; Wang, W. Org. Lett.2005,7, 4713-4716.
    18. Zhang, Y. W.; Wang, J. F.; Shen, Z. X. Chin. J. Org. Chem.2003,22,1324.
    19. Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc.2002,124,12964-12965.
    20. (a). Adam, H.; Aderson, J. C.; Peace, S,; Pennell, A. M. K. Org. Chem.1998,63, 9932-9934.
    (b). Ballini, R.; Petrini, M. Tetrahedron 2004,60,1017.
    21. Yoon, T. P.; Jacobsen, E. N. Angew. Chem. Int. Ed.2005,44,466-468.
    22. Sohtome, Y.; Hashimoto, Y.; Nagasawaa, K. Eur. Org. Chem.2006,71, 2894-2897.
    23. Basavaiah, D.; Rao, A. J.; Satyanarayana. Chem. Rev.2003,3,811-891.
    24. Cui. E. L.; Wang, C.; Ma, J. J.; Zhang, Y. Q.; Gao, Y. J.; Zang, X. H.; Zhang, D. N.; Zhou, X.; Zhang, H. Y. Chin. J. Org. Chem.2005,25,763-768.
    25. Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett.2004, 45,5589-5592.
    26. Herrera, R. P.; Sagarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed.2005, 44,6576-6579.
    27. Xu, X.; Yabuta,; Yuan, P.; Takemoto, Y. Synlett.2006,1,137-140.
    28. Fuerst, D. E.; Jacobsen, E. N. J. Am. Chem. Soc.2005,127,8964-8965.
    29. Joly, G. D.; Jacobsen, E. N.J. Am. Chem. Soc.2004,126,4102-4103.
    30. Maryanoff, B. E.; Zhang, H. C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A.; Chem. Rev.2004,104,1413.
    31. Berkessel, A.; Mukherjee, S.; Cleemann, F.; Mfiller, N.; Lex, J. Chem. Commun. 2005,1898-1899.
    32. Berkessel, A.; Cleemann, F.; Mukherjee, S.; Mfiller, N.; Lex, J. Angew. Chem. Int. Ed.2005,44,807-811.
    1. (a) Arigoni, D.; Eliel, E. L. Top. Stereochem.1969,4,127-244.
    (b)Floss, H. G.; Lee, S. Acc.Chem. Res.1993,26,116-122.
    (c)Parry. R. J.; Trainor. D. A.J.Am. Chem. Soc.1978,100,5243-5244.
    (d)Mu, Y.;Omer, C. A.:Gibbs. R. A. J. Am. Chem. Soc.1996,118,1817-1823.
    2. (a) Schmidt, F.; Stemmlcr, R. T.;Rudolph. J.; Bolm, C. Chem. Soc. Rev.2006,35, 454-470.
    (b)Fagnou, K.; Lautens, M. Chem. Rev.2003,103,169-196.
    (c)Bolm, C.; Hildebrand. J. P.; Hermanns, N. Angew. Chem. Int. Ed 2001,40, 3284-3308.
    (d)Trindade, A. F.; Gois, P. M. P.; Veiros, L. F.; Andre, V.; Duarte, M. T.; Afonso, C. A. M.; Caddick, S.; Cloke. F. G. N. J. Org. Chem.2008,73,4076-4086.
    3. (a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res.1997,30,97-102.
    (b)Palmer, MJ; Wills, M. Tetrahedron:Asymmetry 1990,10,2045-2061.
    (c)Saluzzo, C.; Lemaire, M.Adv. Synth. Catal.2002,344,915-928.
    (d)Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev..2004,248, 2201-2237.
    4. Genet, J. P.; Ralovelonmanana, V.; Pinel, C. Synlett.1993,7-478.
    5. Barbara, P.; Bianchini, C.; Togni, A. Organometallics 1997,16,3004-3014.
    6. (a) Danieli, B.; Lesma, G.; Passarella, D.; Sacchetti, A.; Silvani, A. Tetrahedron Letters 2005,46,7121-7124.
    (b)Masreanzo, V. M.; Quintero, L.; Parrodi, C. A.; Juaristi, E.; Waksh, P. J. Tetrehedron 2004,60,1781-1789.
    (c)Wiberg, K. B.; Bailey, W. F. Tetrahedron Lett.2000,41,9365-9368.
    (d)Gamez, P.; Fache, F.; Lemaire, M. Tetrahedron:Asymmetry 1995,6,705-718.
    7. (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995,117,7562-7563.
    (b)Murata, K.; Ikariya, T.; Noyori, R. J. Org. Chem.1999,64,2186-2187.
    8. Matharu, D. S.; Morris, D. J.; Kawaraoto, A. M.; Clarkson, G. J.; Wills, M. Org. Lett.2005,7,5489-5492.
    9.何炜,张邦乐,刘鹏,等.催化学报,2006,27,527-531.
    10. Rhyoo, H. Y.; Yoon, Y. A.; Park, H. J.; Chung, Y. K. Tetrahedron Lett.2001,42, 5045-5048.
    11. Faller, J. W.; Lavorie, A. R. Organometallics 2001,20,5245-5247.
    12. Fukuzaka, S. I.; Suzuki, T. Eur. J. Org. Chem.2006,1012-1016
    13. Barbara, P.; Bianchini, C.;Togni, A. Organometallics 1997,16,3004.
    14. Jiang, Y.; Jiang, Q.; Zhang. X.J. Am. Chem. Soc.1998,120,3817-3818.
    15. (a) Li, X.; Wu, X.; Chen, W.; Hancock, F. E.; King, F.; Xiao, J. Org. Lett.2004,6, 3321-3324.
    (b)Wu, X. F.; Li, X. G.; Hems, W.; King, F.; Xiao, J. L. Org. Biomol. Chem.2004, 2, 1818-1821.
    (c)Liu, P. N.; Gu, P. M.; Wang, F.; Tu, Y. Q. Org. Lett. 2004, 6, 169-172
    16. Chen, Y. C; Wu, T. F.; Jiang, L.; Deng. J. G: Liu. H.; Zhu, J.; Jiang, Y.-Z. J. Org. Chem. 2005, 70, 1006-1010.
    17. (a) Reetz, M. T.; Gosberg, A.; Goddard, R.; Kyung, S. H. Chem. Commun. 1998, 18, 2077-2078.
    (b)Reetz, M.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3, 4083-4085.
    (c)Reetz, M. T.; Li, X. J. Am. Chem. Soc. 2006, 128, 1044-1045.
    18. (a) Everaere, K.; Mortreux, A.; Carpentier, J. F. Adv. Synth. Catal. 2003, 345, 67-77.
    (b)Takehara, J.; Hashiguchi, S.; Fujii, A.; Inoue, S.; Ikariya, T.; Noyori, R. J. Chem. Soc. Chem. Commun. 1996, 233-234..
    (c)Liu, P. N.; Chen, Y.C.; Li, X. Q.; Tu, Y. Q.; Deng, J. G. Tetrahedron: Asymmetry 2003, 14, 2481-2485.
    (d)Mao. J.; Wan, B.; Wu, F.; Lu, S. Tetrahedron Lett. 2005, 46, 7341-7344.
    19. (a) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151-4202.
    (b)Gao, J. X.; Ikariya, T.; Noyori, R. Organometallics 1996, 75, 1087-1089.
    (c)Leautey, M.; Jubault. P.; Pannecoucke, X.; Quition, J. Eur. J. Org. Chem. 2003, 3761-3768.
    20. 蒋琳,四川大学硕士论文, 2007, 11-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700