用户名: 密码: 验证码:
生物催化苊醌及其衍生物不对称还原反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,生物催化的不对称合成反应为人们提供了数量众多的手性化合物,极大地促进了医药、农药、食品及功能材料等领域的的迅速发展,生物催化已经成为一个非常重要的研究方向。
     虽然大量文献报道了生物催化脂肪族酮和简单芳香酮羰基的还原反应,但成功实现催化稠环芳酮不对称还原反应报道的则很少。而刚性并具有手性的2-羟基苊酮、1,2-二羟基苊及其衍生物,作为重要的有机合成砌块,在医药中间体、手性金属催化剂和功能材料等精细化学品的合成方面有着十分广泛的应用。为此,本文以苊醌和取代苊醌为底物,利用面包酵母、植物细胞和黄曲霉作为生物催化剂,开展了生物催化苊醌及其衍生物不对称还原反应的研究。
     首先,以面包酵母作为催化剂,探讨了催化苊醌不对称还原反应的可行性,针对苊醌难溶于还原反应体系的特点,考察了搅拌方式以及有机助溶剂对还原反应的影响。在此基础上,考察了面包酵母、植物细胞和黄曲霉微生物细胞对苊醌不对称还原反应的催化性能。研究结果表明:1.面包酵母作为催化剂,随着反应的进行,2-羟基苊酮的量先增加后减少,1,2-二羟基苊的含量逐渐增加,当反应进行12h后有明显的增加趋势,48h时含量为95%。此外,通过采用机械搅拌作为动力设备和添加有机助溶剂,可以提高面包酵母催化苊醌还原反应的活性及立体选择性;2.多种植物细胞都可以催化苊醌的还原反应,还原产物只得到2-羟基苊酮,说明植物细胞催化剂与面包酵母催化性能不同,并且不同植物的催化性能差异也较大。在所选择的6种植物中,胡萝卜(根)和桃(果实)细胞对苊醌的立体构型选择性最好,分别得到手性纯度达到81%ee的(-)-2-羟基苊酮和手性纯度达到86%ee的(+)-2-羟基苊酮;3.黑曲霉微生物细胞也可以催化苊醌不对称还原反应。催化还原的过程与面包酵母相似,但催化活性没有面包酵母高。
     其次,为了扩大底物的范围,获取更加丰富的手性芳香醇,探讨生物催化苊醌衍生物(5位取代)的不对称还原反应,本文以廉价苊醌为原料,经溴化、硝化、取代、热分解和重氮化等反应,合成了8种苊醌衍生物(5位取代):5-溴、5-硝基和5-甲氧基、5-叠氮基、5-氨基、5-乙酰胺基、5-氯和5-碘苊醌。以5-溴苊醌和5-甲氧基苊醌为底物,研究了面包酵母催化稠环芳酮的不对称还原反应。结果表明:面包酵母催化还原5-甲氧基苊醌,只生成ee.为55%的2-羟基-6-甲氧基苊酮,没有2-羟基-5-甲氧基苊酮的产物生成,说明面包酵母催化羰基还原的化学选择性很好;使用DMSO作为底物助溶剂,在强烈搅拌下,面包酵母催化还原5-甲氧基苊醌能生成de.为>99%的顺-及反-5-甲氧基-1,2-二羟基苊。
     最后,探讨了动物肝细胞对芳香硝基化合物的还原反应。结果表明,大多数动物肝细胞都具有较好的还原活性。在还原Xa模型化合物时:反应进行1h,选择性就达到了最大值,羟胺/胺为71/29;当反应进行到8h,羟胺全部转化为胺,且转化率达到了48%;48h以后,转化率达到了97%以上。在优化的条件下用猪肝细胞还原(Ⅺa-ⅩⅥa)时,随着化合物种类的不同,转化率和选择性表现出了一定的差异,其中Xllla化合物反应4h,转化率只有5%,但选择性却达到了54/46;XVa化合物反应4h,转化率达到了98%,但选择性却只有5/95。
Recently, biocatalysis have provided numerous chiral compounds for greatly promoting the development in the medicine, pesticide, food and functional materials field. Therefore, the biocatalysis has become a very important research area.
     It is well documented that most biocatalysts have the ability to reduce the aliphatic ketone and simple aromatic ketone. However, biocatalyst-mediated asymmetric reduction of polycyclic aromatic ketone was rarely. On the other hand, chiral polycyclic aromatic alcohols with rigid structures are widely used as synthetic building blocks for pharmaceuticals intermediates, transition metal ligands, analytical reagents and functional materials. Therefore, in this dissertation, we applied baker's yeast, plant cell and Aspergillus flavus as biocatalyst to mediate the asymmetric reduction of acenaphthenequinone and substituted acenaphthene-qumones.
     Firstly, the reasibility of asymmetric reduction of acenaphthenequinone was study using baker's yeast as biocatalyst. In view of the poor solubility of acenaphthenequinone, the effects of the mixing method and organic cosolvent on the reduction were examined. On this basis, the other biocatalysts such as plant cells and aspergillus flavus were also applied to study the asymmetric reduction of acenaphthenequinone. The results showed that:1. Baker's yeast mediated-reduction of the aryl a-diketone gave mono-alcohol and di-alcohol in initial reaction time. The substrate was consumed in the initial4h of reaction time, at the same time, content of mono-alcohol,2-hydroxyacenaphthenone increase in the initial time then decrease. While the content of di-alcohol,1,2-dihydroxyacenaphthene is increasing with the time. When the reaction was performed after12h the trend of increase has a significant improment, and when the reduction proceeded for48h, the content of1,2-dihydroxyacenaphthene reached98%.2. Various plants cell were proven to reduce acenaphthenequinone to afford mono-hydroxyl ketone, exclusively. This results indicated that the plants cell show a different catalytic perfomance with baker's yeast in activity and enantioselectivity. Among the screened six plants cell, the carrot (Daucus carota L.) and Peach (Prunus persica (L.) Batsch.) exhibited high efficiency in preparing hydroxyacenaphthenone, and up to81%ee of (-)-mono-hydroxyl ketone and86%ee of (+)-mono-hydroxyl ketone were obtained.3. Aspergillus Niger can also catalyze the asymmetric reduction of acenaphthenequinone. The reaction process is similar to that of baker's yeast, however, a lower catalytic activity was observed.
     Furthermore, to expand the substrate scope of baker's yeast-catalyzed reduction and obtain more valuable chiral aromatic alcohol, eight5-substituted acenaphthenequinones (5-bromo,5-nitro,5-methoxy,5-azido,5-amino,5-acetamido,5-chloro and5-iodo) were synthesized with acenaphthenenquinone as raw material by reaction of bromination, nitration, substitution, thermal decomposition and diazotization. Using5-bromoacenaphthenequinone and5-methoxyacenaphthenequinone as the substrates, the catalytic performance of baker's yeast-mediated asymmetric reduction of polycyclic aromatic ketone was studied. The results show that only2-hydroxy-6-methoxyacenaphthenenone (55%ee) was produced exclusively when5-methoxyacenaphthenequinone as the substrate, which indicated that baker's yeast-mediated reduction of polycyclic aromatic keto shows a good regioselectivity. In the presence of dimethyl sulfoxide (DMSO) as cosolvent and under vigorous agitation, both more than99%ee of cis-and trans-5-methoxy-1,2-dihydroxyacenaphthene were obtained.
     Finally, we have performed a study for reductive metabolism of nitroaromatic compounds by several liver microsomes from mammalian, pisces and aves, and found that all of the organisms exhibit the same metabolism process. Among the tested animal's liver microsomes, the pig's liver microsome exhibited the highest reactivity and chemoselectivity. Using4-nitrophthalonitrile (Xa) as substrate, the selectivity was reached the highest and hydroxylamine/amine=71/29when the reaction proceeded for1h. When the reaction proceeded for8h, the hydroxylamine was transformed to corresponding amine compound completely, and the conversion can reached48%. Further prolonging the reaction time up to48h, more than97%of1a was converted. Under the optimized conditions, pig's liver microsome was applied to reduce other nitroaromatic compounds (Ⅺa-ⅩⅥa). There are some differences in the conversion and selectivity along with various substrates. Among them, compound Ⅷa exhibits the lowest reactivity and only5%was converted when the reaction was performed for4h, meanwhile selectivity for hydroxylamine/amine reached54/46. By contrast, compound XVa shows the highest reactivity up to98%conversion, however the selectivity for hydroxylamine reached95%at the same reaction conditions.
引文
[1]曹梦竺.植物细胞催化苯乙酮还原反应的研究[D].中国矿业大学,2004.
    [2]沈德中等生物催化和生物降解-有机化合物的微生物转化[M]北京:化学工业出版社2005:184.
    [3]Crump S and Rozzell J D. Biocatalytic production of amino acids by transamination in biocatalutic producion of amino acids and derivatives [J]. Hanser Publishers Munich, 1992:43-58.
    [4]Rozzell J D. Commercial scale biocatalysis:myths and realities [J]. Bioorg Med Chem, 1999,7 (10):2253-2261.
    [5]童海宝.生物催化技术在精细化工中的应用[J].精细与化学专用品,2002,10:9-10.
    [6]Fadnavis N W, Vadivel S K, Sharfuddin M and Bhalerao U T. Baker's yeast mediated enantiospecific synthesis of anti-(2R,3R)-p-chloro-3-hydroxytyrosine:an a-amino-β-hydroxy acid of vancomycin [J]. Tetrahedron:Asymmetry,1997,8 (24):4003-4006.
    [7]Z-L Wu, Z-Y Li. Practical synthesis of optically activea,a-disubstituted malonamic acids through asymmetric hydrolysis of malonamide derivatives with Rhodococcus sp CGMCC 0497[J]. J. Org. Chem.,2003,68:2479-2482.
    [8]Andra F Mayer, Wolfgang K Kurt F. Enzyme-initiated domino (cascade) reaction [J]. Chem Soc Rew,2001,30:332-339.
    [9]Fadnavis N W, Vadivel S K and Bhaleras U T. Biotransformations with baker's yeast:pH effects on diastereoselectivity during a-hydroxy-β-ketoester reductions and carbon carbon bond cleavages [J]. Tetrahedron:Asymmetry,1997,8 (14):2355-2359.
    [10]汪秋安,麻秋娟,汤建国.不对称催化合成技术及其最新进展[J].工业催化,2003,11(5):1-6.
    [11]张贻亮,杨振云.不对称催化环氧化反应[J].化学进展,1996,8(1):58-62.
    [12]魏志亮.生物还原反应在手性药物不对称合成中的应用[J].有机化学,2001,6:403-412
    [13]王云英,徐渡新.生物催化不对称合成研究新进展[J].安徽大学学报,2003,27(3):103-110.
    [14 Csuk R and Glanzer B I. Baker's yeast mediated transformations in organic chemistry [J]. Chem Rev,1991,91 (1):49-97.
    [15]Urdiales E G, Alfonso I and Gotor V. Enantioselective enzymatic desymmetrizations in organic synthesis [J]. Chem Rev,2005,105 (1):313-354.
    [16]Kometani T, Yoshii H and Matsuno R. Large-scale production of chiral alcohols with bakers'yeast [J]. J Mol Catal B Enzym,1996,1(2):45-52.
    [17]Andre B, Jean B, Annie F et al. Use of biological systems for the preparation of chiral molecules.3. Application in pheromone synthesis:preparation of sulcatol enantiomers [J]. J. Org. Chem.,1987,52 (2):256-260.
    [18]黄和,杨忠华,姚善泾.面包酵母催化羰基不对称还原合成手性醇的研究[J].生物加工过程,2004,2(2):52-55.
    [19]Bartmann W and Trost B M. Selectivity-A goal for Synthetic Efficiency [J]. Verlag Chemie,1983:250-253.
    [20]杨忠华,姚善泾.水相中酵母细胞催化4-氯乙酰乙酸乙酯不对称还原反应[J].催化学报,2004,6(25):434-438.
    [21]刘湘,刘湘,方志杰,许建和.酵母细胞催化芳香酮的不对称还原反应[J].催化学报,2006,27(1):20-24.
    [22]Nakamura K, Miyai T, Nozaki K et al. Diastereo-and enantio-selective reduction of 2-methyl-3-oxobutanoate by bakers'yeast [J]. Tetrahedron Lett,1986,27 (27): 3155-3156.
    [23]Chenevert R and Thiboutot S. Conversion of carboxylic acids to alkyl fluorides with xenon difluoride [J]. Can J Chem,1986,64 (8):1599-1601.
    [24]Derek H R and Beatrice M C. The selective functionalization of saturated hydrocarbons. Part 37. Utilization of a New Oxidant:Bis(trimethylsilyl) peroxide [J]. Tetrahedron, 1997,53 (2):487-510.
    [25]Dee W B and Keith W W. Chiral building blocks for fused cyclopentanoids: enantioselective synthesis of 5-methylbicyclo[3.3.0]oct-l-ene-3,6-dione and derivatives [J]. J. Org. Chem.,1987,52 (10):2036-2039.
    [26]Li Feng, Cui Jing Nan, Qian Xu Hong et al. A novel strategy for the preparation of arylhydroxylamines:chemoselective reduction of aromatic nitro compounds using bakers'yeast. Chem Commun,2004:2338-2339.
    [27]Fujisawa T, Kojima E and Sato T. (2S,3S)-1-Phenylthio-2,3-butanediol. A usefel chiral building block for a single synthesis of (4R,5S)-S-hydroxyhexen-4-oliole and (4R, 5S)-5-hydroxy-2-hexen-4-olide [J]. Chem Lett,1987,11:2227-2228.
    [28]Takabe K, Hiyoshi H, Sawada H. Baker's yeast reduction of 3-phenylthiomethyl-2-butenolide and its derivatives:Synthesis of versatile chiral C5-building blocks for terpenoid synthesis [J]. Tetrahedron:Asymmetry,1992,3 (11):1399-1400.
    [29]Gramatica P, Manitto P, Monti D. Regio- and stereoselective hydrogenation of methyl substituted pentadien-1-ols by baker's yeast [J]. Tetrahedron,1988,44 (4):1299-1304.
    [30]Utaka M, Konishi S and Takeda A. Asymmetric reduction of Z-3-chloro-3-alken-2-ones with fermenting baker's yeast [J]. Tetrahedron Lett,1986,27 (39):4737-4740.
    [31]Ohta H, Kobayashi N and Ozaki K. Asymmetric reduction of nitro olefins by fermenting bakers' yeast [J]. J. Org. Chem.,1989,54 (8):1802-1804.
    [32]刘湘,张宝立,夏咏梅,方志杰,许建和.植物细胞在含羰基化合物不对称转化中的应用[J].化学进展,2008,(7/8):1108-1114.
    [33]Scarpi D, Occhiato E G, Guarna A. Selectivity of Daucus carota roots and baker's yeast in the enantioselective reduction of y-nitroketones [J]. Tetrahedron:Asymmetry,2005, 16:1479-1483.
    [34]Yadav J S, Rao A B, Sabitha G. Daucus carota and baker's yeast mediated bio-reduction of prochiral ketones [J]. Tetrahedron:Asymmetry,2007,18:717-723.
    [35]Maczka W K, Mironowicz A. Enantioselective hydrolysis of 1-aryl ethyl acetates and reduction of aryl methyl ketones using carrot, celeriac and horseradish enzyme systems [J]. Tetrahedron:Asymmetry,2002,13:2299-2302
    [36]Maczka W K, Mironowicz A. Enantioselective reduction of bromo-and methoxy-acetophenone derivatives using carrot and celeriac enzymatic system [J]. Tetrahedron:Asymmetry,2004,15:1965-1967
    [37]Andrade L H, Utsunomiya R S, Omori A T [J]. Molec. Catal. B:Enzym.,2006,38:84-90.
    [38]Comasseto J V, Omori A T, Porto A LM, Andrade L H. Preparation of chiral organochalcogeno-a-methylbenzyl alcohols via biocatalysis. The role of Daucus carota root [J]. Tetrahedron Lett.2004,45:473-476.
    [39]Baldassarre F, Bertoni G, Chiappe C, Marioni F. Preparative synthesis of chiral alcohols by enantioselective reduction with Daucus carota root as biocatalyst [J]. Molec. Catal. B: Enzym.,2000,11:55-58.
    [40]Utsukihara T, Watamabe S, Tomiyama A, Chai W, Horiuchi A. Stereoselective reduction of ketones by various vegetables [J]. Molec. Catal. B:Enzym,2006,41:103-109.
    [41]Yadav J S, Reddy P T, Nanda S, Rao A. Stereoselective synthesis of (R)-(-)-denopamine, (R)-(-)-tembamide and (R)-(-)-aegeline via asymmetric reduction of azidoketones by Daucus carota in aqueous medium [J]. Tetrahedron:Asymmetry,2002, 12:3381-3385.
    [42]Itoh K, Sakamaki H, Nakamura K, Horiuchi C. Biocatalytic asymmetric reduction of 3-acetylisoxazoles [J]. Tetrahedron:Asymmetry,2005(16):1403-1408.
    [43]Chai W, Hamada H, Suhara J, Horiuchi A. Biotransformation of (+)- and (-)-camphorquinones by plant cultured cells [J]. Phytochemistry,2001,57:669-673.
    [44]Bruni R, Fantin G, Maietti S, Medici A, Pedrini P. Plants-mediated reduction in the synthesis of homochiral secondary alcohols [J]. Tetrahedron:Asymmetry,2006,17: 2287-2291.
    [45]解晴.酵母催化不对称还原2-氯-苯乙酮及相关酶的克隆表达[D].浙江大学,2008,6.
    [46]HARALD G. Sterochemical Cont rol of Asymmet ric Hydr-ogen Transfer Employing Five Kinds of Fungi in Anhydrous Hexane [J]. Enzyme and Technology,2000,34:578-582.
    [47]Deendayal Mandal, Absar Ahmad. Enantioselective Bioreduction of Acetophenone and Its Analogous by the Fungus Trichothecium sp. [J]. Journal of Molecular Catalysis B: Enzymatic,2004,27:61-63.
    [48]Zhi-Liang Wei, Zu-Yi Li and Guo-Qiang Lin. Anti-Prelog Microbia Reduction of Aryl a-Halomethl or a-Hyroxymethyl Ketones With Geotrichum sp.38 [J]. Tetrahedron,1998, 54:13059-13072.
    [49]欧志敏,吴坚平,杨立荣,岑沛霖,刘磷,齐楠.酿酒酵母B5不对称还原制备手性药物中间体R-2'-氯-1-苯乙醇的研究[J].生物工程学报,2003,19(2):206-211.
    [50]Nakamura K, Matsuda T. [J]. J. Org. Chem.,1998,61:8957-8964.
    [51]Srebrik M, Ramachandran P V, Brown H C. Chiral Synthesis via Organoboranes.18. Seleotive Reductions 43. Diisopinoeampheylchloroborane as an Excellent Chiral Reducing Reagent for the Synthesis of Halo Alcohol of High Enantiometric Purity. A Highly Enantioselective Synthesis of Both Optical Isomers of Tomoxetine, Fluoxetine, and Nisoxetine [J]. J. Org. Chem.,1988,53:2916-2920.
    [52]王志欣,云自厚.脲衍生物型手性固定相拆分氟西汀对映体[J].分析化学,1997,25(4):464-467.
    [53]黄彦合,王礼深,黄嘉梓.抗抑郁药氟西汀的合成[J].中国药物化学杂志,1996,3(19):56-58.
    [54]Nakamura K, Ida Y.[J].Tetrahedron Lett.,2002,43:3629-3631.
    [55]Sebastien R, Vanessa A, Michel N and Laurence T L. Asymmetric bioreduction of a bulky ketone:1-phenyl-1-(2-phenylthiazol-5-yl)-methanone [J]. Adv Synth Catal,2001, 343:738-743.
    [56]Chartrain M, Lynch J, Choi W B, Churchill H, Patel S, Yamazaki S, Volante R and Greasham R. Asymmetric bioreduction of a bisaryl ketone to its corresponding (S)-bisaryl alcohol, by the yeast Rhodotorula pilimanae ATCC 32762[J]. Mol Catal B: Enzym,2000,8 (6):285-288.
    [57]潘冰峰,顾建新,冯青,李祖义.白地霉G38生物转化制备抗忧郁药(R)-fluoxetine[J].微生物学报,1995,35(5):353-357.
    [58]Yamamoto K, Oishi K, Fujimatsu I and Komatsu K. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750 [J]. Appl. Environ. Microbiol., 1991,57:3028-3032.
    [59]Bartmann W and Trost B M. Selectivity-a goal for Synthetic Efficiency. Verlag Chemie, 1983,250-263.
    [60]Giuseppe B, Cinzia C, Luca C, Franco M and Gloria P. Substrate enantioselection in the microsomal epoxide hydrolase catalyzed hydrolysis of monosubstituted oxiranes. Effects of branching of alkyl chains [J]. J. Org. Chem.,1989,54(25):5978-5983.
    [61]Jacques M, Toru N and Hideaki Y. Synthesis of various aromatic amide derivatives using nitrile hydratase of Rhodococcusrhodochrous [J]. Tetrahedron,1989,45(2):1347-1354
    [62]Jellimann C, Allainmat M M, Andrieux J, Kloubert S, Boutin J A, Bennejean C, Delagrange P and Langlois M. Synthesis of Phenalene and Acenaphthene Derivatives as New Conformationally Restricted Ligands for Melatonin Receptors [J]. J. Med. Chem., 2000,43(22):4051-4062.
    [63]Rover S, Adam G, Cesura A, Galley M, Jenck G, Monsma F J, Wichmann J and Dautzenberg F M. High-Affinity, Non-Peptide Agonists for the ORL1 (Orphanin FQ/Nociceptin) Receptor [J]. J. Med. Chem.,2000,43 (7):1329-1338.
    [64]Rusell A F, Greenberg S and Moffatt J G. Reactions of 2-acyloxyisobutyryl halides with nucleosides. Ⅱ1 Reactions of adenosinez [J]. J. Am. Chem. Soc.,1973,95 (12): 4025-4030.
    [65]Huryn D M and Okabe M. AIDS driven nucleoside chemistry [J]. Chem. Rev.,1992,92 (8):1745-1768.
    [66]Sudo A, Matsumoto M, Hashimoto Y and Saigo K. cis-2-Amino-l-acenaphthenol: practical resolution and application to the catalytic enantioselective reduction of ketones [J]. Tetrahedron:Asymmetry,1995,6 (8):1853-1856.
    [67]Klaus Z and Matthias W H. Novel syntheses of decacyclene by deoxygenating cyclotrimerisation acenaphthenequinone with Zero-Valent titanium or phosphorus pentasulfide [J]. Synlett,1997,609-611.
    [68]Merz A, Dietl F, Tomahogh R, Weber G and Sheldrick G M.1,2-Diakoxyacena-phthylenes and 2,3,11,12-bis-(1,2-acenaphth0)-[18] crown-6 [J]. Tetrahedron,1984,40 (4):665-671.
    [69]Zolotukhin M G, Fomine S, Lazo L M, Salcedo R, Sansores L E and Cedillo G G. Superacid-catalyzed polycondensation of acenaphthenequinone with aromatic hydrocarbons [J]. Macromolecules,2005,38 (14):6005-6014.
    [70]Kuznetsov V V, Anikin V F, Brusilovskii Y E and Mazepa A V. Reaction of acetonitrile with cyclic boronic esters derived from cis-acenaphthenediol [J]. Russ. J. Org. Chem., 2001,37(1):147-148.
    [71]Sampson K, Paik A, Duvall B and Whalen D L. Transition-state effects in acid-catalyzed aryl epoxide hydrolyses [J]. J. Org. Chem.,2004,69 (16):5204-5211.
    [72]Merz A, Dietl F, Tomahogh R, Weber G and Sheldrick G M.1,2-Diakoxyacena-phthylenes and 2,3,11,12-bis-(1,2-acenaphth0)-[18] crown-6 [J]. Tetrahedron,1984,40 (4):665-671.
    [73]Arnold R M and David Y C. Locked aryl rotation in cis-diarylacenaphthenes, torsionally rigid analogues of cis-1,2-diarylcyclopentanes [J]. J. Am. Chem. Soc.,1976,98 (7): 1860-1865.
    [74]Zimmermann K and Haenel M W. Novel syntheses of decacyclene by deoxygenating cyclotrimerization of acenaphthenequinone with zero-valent titanium or phosphorus pentasulfide [J]. Synlett.,1997,5:609-611.
    [75]Selifonov S A, Grifoll M, Eaton R W and Chapman P J. Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2-dioxygenase [J]. App. Environ. Microbiol.,1996,62 (2):507-514.
    [76]Schocken M J and Gibson D T. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene [J]. App. Environ. Microbiol.,1984,48 (1):10-16.
    [77]Green K D, Gill I S, Khan J A and Vulfson E N. Microencapsulation of yeast cells and their use as a biocatalyst in organic solvents [J]. Biotech, and Bioeng.,1996,49 (5), 535-543.
    [78]Hayakawa R, Shimizu M and Fujisawa T. The baker's yeast reduction of 1-acetoxy-2-alkanones in the presence of a sul fur compound [J]. Tetrahedron:Asymmetry,1997,8 (19):3201-3204.
    [79]Hayakawa R, Nozawa K, Kimura K and Shimizu M. The bakers' yeast reductions of and -keto ester derivatives in the presence of a sulfur compound [J]. Tetrahedron, 1999,55 (24):7519-7528.
    [80]刘湘,方志杰,许建和.酵母细胞催化芳香酮的不对称还原反应[J].催化学报,2006,27(1):20-24
    [81]欧志敏,吴坚平,杨立荣等.微生物法制备抗抑郁药R-托莫西汀中间体[J].无锡轻工大学学报,2003,22(1):43-48
    [82]张文虎,刘湘,方云等.环糊精介入酵母细胞催化芳香酮的不对称还原反应[J].分子催化,2008,22(4):346-350
    [83]Keyller Bastos Borges, Warley de Souza Borges etc. Stereoselective biotransformations using fungi as biocatalysts [J]. Tetrahedron:Asymmetry,2009 (20):385-397
    [84]杨忠华,曾嵘,王光辉等.立体选择性还原芳香酮微生物的筛选及反应特性的研究[J].精细化工,2007,24(5):466-469
    [85]Hughes J B, Shanks J, Vanderford M et al. Transformation of TNT by quatic plants and plant tissue cultures [J]. Environ. Sci. Technol.,1997,31:266-271.
    [86]Josie A B, Nicholas J T and Andrew S W. Concerning the baker's yeast (Saccharomyces cerevisiae) mediated reduction of nitroarenes and other N-O containing functional groups [J]. Tetrahedron Lett,1997,38 (17):3043-3046.
    [87]Li Feng, Cui Jing Nan, Qian Xu Hong et al. A novel strategy for the preparation of arylhydroxylamines:chemoselective reduction of aromatic nitro compounds using bakers'yeast [J]. Chem. Commun.,2004:2338-2339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700