用户名: 密码: 验证码:
某些超分子主体与药物相互作用的光谱特性及色谱行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精、葫芦脲作为第二代和第四代超分子主体化合物,由于它们对客体分子的良好包合性能,使其在催化、生化、医药、分离材料和污水处理等领域有很好的应用前景。近几年来,葫芦脲对药物分子的包合性能成为研究的热点,也成为某些药物新分析方法建立的重要有效手段。建立简单、准确、可靠、灵敏和可重复的药物分析方法,是控制药品质量的有效途径,一直是药物分析工作者的主要任务之一。环糊精在药物分析上的应用已相当广泛,作为药物分离材料特别是手性分离材料也有较广的应用。近20年来深入研究的桥联环糊精,在分子识别和分子自组装中表现了良好的特性,但作为手性分离材料的应用较少。鉴于这些主要特性,本论文主要做了以下几方面的研究工作:
     第一部分综述了葫芦脲在分子识别、分子组装、分子器件和主要应用方面的研究进展,并对环糊精手性固定相的发展和桥联环糊精的主要特点和研究成果做了简要概括,提出本论文的主要研究内容。
     第二部分建立了一种简单、灵敏、有效的测定雷尼替丁、尼扎替丁和西咪替丁的荧光测定法。该方法是基于某些药物和巴马汀探针对葫芦[7]脲空腔的竞争反应。葫芦[7]脲能与巴马汀相互作用形成稳定的包合物而使溶液的荧光显著增强。然而,当加入被测药物时溶液的荧光剧烈淬灭。考察了不同实验因素对荧光猝灭的影响。在最佳的实验条件下,以343nm为激发波长,在495nm发射波长处测定荧光强度,荧光猝灭值(ΔF)和药物浓度在0.04-1.9μg·mL-1呈线性关系。检测限为0.013-0.030μg·mL-1。所建立的方法可以同时用于原料药、药物制剂和生物样品的测定。该方法的灵敏度比一般的光谱法高两个数量级。
     第三部分建立了一种简单、灵敏的高效液相色谱荧光检测法(HPLC-FLD),可以同时测定巴马汀和小檗碱。该方法是基于在葫芦[7]脲的存在下,巴马汀和小檗碱水溶液的荧光显著增强。色谱条件是:在商品C18柱上,以葫芦[7]脲为液相色谱流动相添加剂,以(50/50,v/v)的甲醇/0.05%醋酸三乙胺缓冲溶液水(pH4.1)为流动相,并在缓冲溶液中加入1.25×10-4mo1·L-1葫芦[7]脲。以343nm为激发波长,在495nm发射波长处测定荧光强度,巴马汀和小檗碱的线性范围分别为3-230ng-mL-1和2-220ng.mL-,线性回归方程分别为Y=594248+7.56×104X(R=0.9993)和Y=811028+6.32×104X(R=0.9995)。巴马汀和小檗碱的检测限分别为1.0ng·mL-1和0.7ng-mL-。本方法的灵敏度几乎与液质联用方法的灵敏度相当。同时可用于中药金鸡胶囊和血浆中巴马汀和小檗碱的测定。该HPLC-FLD法方便快捷、灵敏、重现性好。
     第四部分制备了一种新型羟基葫芦[7]脲键合固定相,并用作液相色谱固定相,在高效液相色谱上对一些原小檗碱类生物碱(如:黄连碱、小檗碱、药根碱)和鸦片生物碱(如可待因、罂粟碱、蒂巴因、单乙酰吗啡)进行了测定。考察了流动相的组成对分离的影响,如乙腈含量、缓冲溶液的浓度、pH值等。结果表明:羟基葫芦[7]脲固定相相比羟基葫芦[6]脲固定相,对这些原小檗碱类生物碱具有更好的选择性,这些鸦片类生物碱在两种色谱固定相上均能得到基线分离。相比C18柱,此固定相对这些原小檗碱类生物碱在等度洗脱下进行分离,无需梯度洗脱,具有操作简单,性能稳定的优点。
     第五部分合成了三种芳香二胺桥联-β-环糊精,它们分别是:3-氨甲基-苄胺-桥联(6-氨基-6-脱氧-β-环糊精)(1),4,4'-二胺二苯基-亚甲基-桥联(6-氨基-6-脱氧-β-环糊精)(2),1,2-双(4-氨苯基)-乙基-桥联(6-氨基-6-脱氧-β-环糊精)(3)。将这三种芳香二胺桥联-β-环糊精分别键合到色谱硅胶上制成手性色谱固定相(CSPs),并用于液相色谱拆分手性化合物。用甲醇和醋酸三乙基胺缓冲溶液作流动相,对11种手性化合物进行了拆分。结果显示:三种手性色谱固定相相比β-环糊精固定相,对测定的这些手性化合物有更强的拆分能力。可以看出两个环糊精单元之间桥基的长度对对映体选择性有较大的影响,随着桥基的增长手性识别能力下降,具有最短桥基的CSP1分离能力最强。这和文献报道的分子识别规律是一致的。
     第六部分将单壁碳纳米管(SWCNT)和羟丙基-β-环糊精(HP-β-CD)衍生化制成液相色谱固定相,在高效液相色谱上对多种多环芳烃和结构类似物进行了分析。实验结果表明:在单壁碳纳米管羟丙基-β=环糊精固定相上,以水/甲醇(5:5,v/v)为流动相,八种多环芳烃能够分离;以(3:7,v/v)甲醇/醋酸三乙基胺缓冲液为流动相,其中醋酸三乙基胺的体积百分比浓度为0.1%且pH为4.1,结构相似的六种地平类药物能得到分离。与羟丙基-β-环糊精固定相相比,此单壁碳纳米管固定相对这些多环芳烃和地平类药物显示出更强的分离能力。此方法可以用来提高环糊精固定相的分离效率。
     本论文的主要特点和创新点:
     1.葫芦[7]脲运用于雷尼替丁、尼扎替丁和西咪替丁三种H2组胺受体药物的测定,实现了三种H2组胺受体无荧光药物的荧光测定,该荧光测定法比一般的光谱方法灵敏度高,灵敏的测定方法可以用于生物体液中药物的测定。
     2.葫芦[7]脲用作液相色谱流动相添加剂,实现了两种结构非常相似的异喹啉药物巴马汀和小檗碱的高效液相色谱分离和测定,该方法与已报道的液相色谱法相比具有高灵敏度,其检测限可与价格昂贵的液质联用法相媲美。该方法简单易行,也可以用于其他生物样品的测定。
     3.合成了几种新的色谱固定相,并对其各自的分离特性进行了评价。羟基葫芦[7]脲键合固定相对分离生物碱类药物有一定的优势;桥基短的芳香二胺桥联-β-环糊精手性固定相对手性化合物的拆分比普通β-环糊精手性固定相好很多;单壁碳纳米管单独用于固定相分离效果较差,但如与羟丙基-β-环糊精结合制作色谱固定相,其协同作用显示了对环境污染物多环芳烃和结构相似物良好的分离能力,单壁碳纳米管在改善环糊精固定相分离能力上具有一定的应用潜力。
As the second and fourth generation of supramolecular host compounds, cyclodextrin and cucurbit[n]urils have a promising application prospect in the fields of catalysts, biochemistry, medicine, separating materials and sewage treatment, due to their good inclusion properties. In recent years, the inclusion of cucurbit[n]urils with drug molecules become a hot research, also become an important and effective means of new analytical methods for certain drugs to be established. A simple, accurate, reliable, sensitive, and repeatable analytical method of drugs is an effective way to control the drugs quality. The analytical method of drugs to be established is one of the main task of the analyst. Cyclodextrin has a wide range of applications in pharmaceutical analysis, which also has a broader application as materials for drug separation, especially chiral separation materials. Through depth study of the past20years, bridged cyclodextrin showed good characteristics in molecular recognition and molecular self-assembly, but has little application in chiral separation materials. In view of these essential characteristics above, the following aspects are researched in this paper:
     In the first part of this paper, research progress of cucurbit[n]urils in the fields of molecular recognition, molecular assembly, molecular device was summarized. The progress of cyclodextrin as chiral stationary phase, the chief characteristics and research results of bridged cyclodextrin were summarized in brief. Main contents of research in this paper was proposed.
     The second chapter describes a validated, simple, and sensitive fluorescence quenching method for the determination of ranitidine, nizatidine, and cimetidine in tablets and biological fluids. This is the first single fluorescence method reported for the analysis of all three H2antagonists. The competitive reaction between the investigated drug and the palmatine probe for the occupancy of the cucurbit[7]uril (CB[7]) cavity was studied using spectrofluorometry. CB[7] was found to react with the probe to form a stable complex. The fluorescence intensity of the complex was also enhanced greatly. However, the addition of the drug dramatically quenched the fluorescence intensity of the complex. Accordingly, a new fluorescence quenching method for the determination of the studied drugs was established. The different experimental parameters affecting the fluorescence quenching intensity were studied carefully. At optimum reaction conditions, the rectilinear calibration graphs between the fluorescence quenching values (ΔF) and the medicament concentration were obtained in the concentration range of0.04-1.9μg mL-1for the investigated drugs. The limits of detection ranged from0.013to0.030μg mL-1at495nm using an excitation wavelength of343nm. The proposed method can be used for the determination of the three H2antagonists in raw materials, dosage forms and biological fluids.
     The third chapter describes a simple and sensitive high performance liquid chromatography-fluorescence detector (HPLC-FLD) method which was developed for simultaneous determination of palmatine (PAL) and berberine (BRH). The method is based on the enhancement of the fluorescence of PAL and BRH in aqueous solution in the presence of cucurbit[7]uril (CB[7]). The chromatographic resolution of PAL and BRH was performed on SymmetryShieldTM RP18column with CB[7] as the mobile phase additive. The composition of the mobile phase was (50/50, v/v) absolute methanol/0.05%(v/v) triethylammonium acetate buffer (pH4.1) with1.25×10-4M CB[7]. The linear ranges of PAL and BRH were3-230and2-220ng mL-1, with the regression equations of
     Y-594248+7.56x104×(R=0.9993),Y=811028+6.32×104×(R=0.9995), respectively. The limits of detection for PAL and BRH were1and0.7ng·mL-1, respectively, with fluorescence detection at an excitation wavelength of347nm and an emission wavelength of495nm. The sensitivity of the proposed method was almost equal to previous liquid chromatography-mass spectroscopy method. The proposed method was applied to determine PAL and BRH in human plasma and Jinji capsules. The HPLC-FLD method was sensitive, and convenient.
     In the fourth chapter, a novel perhydroxyl-cucurbit[7]uril bonded stationary phase was prepared and used to separated protoberberine alkaloids (coptisine, berberine and jatrorrhizine) and opium alkaloids (narceine, codeine, thebaine, and monoacetylmorphine) by high-performance liquid chromatography (HPLC). The influence of mobile phase variation such as acetonitrile content, buffer concentration and pH to the chromatographic behavior was studied. The results showed that perhydroxyl-cucurbit[7]uril stationary phase had better selectivity for these protoberberine alkaloids than perhydroxyl-cucurbit[6]uril stationary phase and these opium alkaloids were obtained baseline separation in the two columns.
     In the fifth chapter, three diamino-bridged bis(β-cyclodextrin)s, namely1,3-(aminomethyl)-benzylamine-bridged bis(6-amino-6-deoxy-β-cyclodextrin)(1),4,4-diaminodiphenyl methano-bridged bis(6-amino-6-deoxy-β-cyclodextrin)(2), and4,4-ethylenedianiline-bridged bis(6-amino-6-deoxy-β-cyclodextrin)(3), were prepared and used in the novel application as chiral stationary phases (CSPs) in HPLC. Their ability to separate11enantiomers was investigated using triethylammonium acetate buffer containing methanol as the mobile phase. All three CSPs, particularly CSP1, have better enantiomer separation efficiencies than the parent β-cyclodextrin. Therefore, the linker length between two cyclodextrin units is effective to enantioselectivity, and the resolution ability decreases with increased linker length, which conforms with the molecular recognition ability.
     The sixth chapter describes a novel application of functionalized single-walled carbon nanotubes (SWCNTs) as a stationary phase for the liquid chromatographic separation of polycyclic aromatic hydrocarbons and structurally similar analogues. The SWCNTs were first oxidized to give carboxylic derivatives (SWCNT-COOH), afterwards these were covalently derivatized with hydroxypropyl-β-cyclodextrin (HP-β-CD). Then, the HP-β-CD-SWCNTs were bonded to silica gel with3-(triethoxysilyl) propyl isocyanate, which were used as a stationary phase to separate the investigated substances by HPLC. Eight polycyclic aromatic hydrocarbons were separated using water/methanol(5:5, v/v) as the mobile phase, and six structurally similar dipine drugs were separated using (3:7, v/v) methanol/triethylammonium acetate buffer (0.1%, v/v, pH4.1) as the mobile phase on this stationary phase. The results showed that the HP-β-CD-SWCNTs stationary phase had stronger separation ability for aromatic hydrocarbons and analogues compared with the HP-β-CD stationary phase. This method can be used to improve the separation efficiency of the β-CD stationary phases.
     The chief characteristics and innovations of this thesis are as follows:
     1. Cucurbit[7]uril was used for the determination of three H2antagonists ranitidine, nizatidine and cimetidine. Therefore, the three H2antagonists which have no fluorescence can be determined by fluoremetry. The fluoremetry is more sensitive than the normal spectroscopic method, so can be used to determine the three H2antagonists in biological fluids.
     2. A simple and sensitive high performance liquid chromatography-fluorescence detector (HPLC-FLD) method was developed for simultaneous determination of palmatine (PAL) and berberine (BRH) using CB[7] as the mobile phase additive. The method was more sensitive than the normal chromatographic method, almost equal to expensive liquid chromatography-mass spectroscopy method. The proposed method can be applied to determine PAL and BRH in biological fluids. The above HPLC-FLD method was sensitive and convenient.
     3. Several novel chromatography stationary phases were prepared and their respective separation advantages were also evaluated. Perhydroxyl-cucurbit[7]uril bonded stationary phase have certain advantages in separating alkaloids drugs. Diamino-bridged bis(β-cyclodextrin)s with short bridged group had better enantiomer separation efficiencies than the parent β-cyclodextrin. Single-walled carbon nanotubes (SWCNTs) alone used in the stationary phase had poor separation effect. However, SWCNTs, derivatized with hydroxypropyl-β-cyclodextrin (HP-β-CD) as a stationary phase showed good separative capability of environmental pollutants polycyclic aromatic hydrocarbons and structurally similar analogues. SWCNTs had certain potential application in the improvement of the separation efficiency of the β-CD stationary phases.
引文
[1]C. J. Pedersen. The discovery of crown ethers. Angew. Chem. Int. Ed. Engl.,1988,27: 1021-1027.
    [2]D. J. Carm. The design of molecular hosts, guests, and their complexes. Angew. Chem. Int. Ed. Engl.,1988,27:1009-1020.
    [3]刘育,尤长城,张衡益编著.超分子化学——合成受体的分子识别与组装,南开大学出版社,天津1-2.
    [4]R. Behrend, E. Meyer, F. Rusche. About condensation products of glycoluril and formaldehyde. Ann. Chem.,1905,339:1-37.
    [5]W. A. Freeman, W. L. Mock, N. Y. Shih. Cucurbituril. J. Am. Chem. Soc.,1981, 103(24):7367-7368.
    [6]J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi. K. Kim. New cucurbituril homologues:syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n= 5,7, and 8). J. Am. Chem. Soc.,2000,122(3): 540-541.
    [7]A. I. Day, A. P. Arnold, R. J. Blanch, B. Snushall. Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem.,2001,66:8094-8100.
    [8]A. Flinn, G. C. Hough, J. F. Stoddart, D. J. Williams. Decamethyl cucurbit[5]uril. Angew. Chem. Int. Ed. Engl.,1992,31:1475-1477.
    [9]J. Zhao, H. J. Kim, J. Oh, S. Y. Kim, J. W Lee, S. Sakamoto, K. Yamaguchi, K. Kim. Cucurbir[n]uril derivatives soluble in water and organic solvents. Angew. Chem. Int. Ed. Engl.,2001,40:4233-4235.
    [10]L. Isaacs, S. K. Park, S. Liu, Y. H. Ko, N. Selvapalam, Y. Kim, H. Kim, P. Y. Zavalij, G. H. Kim, H. S. Lee, K. Kim. The inverted cucurbit[n]uril family. J. Am. Chem. Soc., 2005,127(51):18000-18001.
    [11]霍方俊,阴彩霞,杨频.瓜环的超分子化学研究进展,化学研究,2006,17(3):103-107.
    [12]A. I. Day, A. P. Arnold, R. J. Blanch. A method for synthesizing partially substituted cucurbit[n]uril. Molecules,2003,8:74-84.
    [13]H. Isobe, S. Sota, K. Nakamura. Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative. Org. Lett.,2002,4(8):1287-1289.
    [14]J. Lagona, J. C. Fettinger, L. Isaacs. Cucurbit[n]uril analogues. Org. Lett.,2003,5(20): 3745-3747.
    [15]S. Y. Jon, N. Selvapalam, D. H. Oh, J. K. Kang, S. Y. Kim, Y. J. Jeon, J. W. Lee, K. Kim. Facile synthesis of cucurbit[n]uril derivatives via direct functionalization:expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc.,2003,125:10186-10187.
    [16]韩宝航,刘育.葫芦脲:分子识别与组装,有机化学,2003,23(2):139-149.
    [17]张桂玲,徐周庆,薛赛凤,祝黔江,陶朱.一类新型环型笼状化合物——瓜环:(Ⅱ)酸度、ⅠA、ⅡA金属离子对瓜环溶解性的影响,无机化学学报,2003,19(6):655-659.
    [18]Y. J. Jeon, H. Kim, S. Y. Jon, N. Selvapalam, D. H. Oh, I. Seo, C. S. Park, S. R. Jung, D. S. Koh, K. Kim. Artificial ion channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K channels. J. Am. Chem. Soc.,2004,126:15944-15945.
    [19]杨辉,谭业邦,黄晓玲,王月霞.葫芦脲的研究进展,化学进展,2009,21(1):164-173.
    [20]Y. M. Jeon, J. Kim, D. Whang, K. Kim. Molecular container assembly capable of controlling binding and release of its guest molecules:reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc.,1996, 118(40):9790-9791.
    [21]D. Whang, J. Heo, H. P. Joo, K. Kim. A molecular bowl with metal ion as bottom: Reversible inclusion of organic molecules in cesium ion complexed cucurbituril. Angew. Chem. Int. Ed. Engl.,1998,37:78-80.
    [22]J. I. Phenom. Complex formation between cucurbit[n]urils and alkali, alkaline earth and ammonium ions in aqueous solution. Mol. Chem.,2001,40:117-120.
    [23]D. G. Samsonenko, A. A. Sharonova, M. N. Sokolov, A. V. Virovets, V. P. Fedin. Crystal structure of the Ca2+ supramolecular complex with cucurbituryl{[Ca(H2O)3 (HSO4)(CH3OH)]2 (C36N24O,2H36)}(HSO4) 2·4H2O. Russ. J. Coord. Chem.,2001,27: 12-17.
    [24]O. A. Gerasko, A. V. Virovets, D. G. Samsonenko, A. A. Tripol-skaya, V. P. Fedin, D. Fenske. Synthesis and crystal structures of sumpramolecular compounds of cucurbit[n]urils (n=6,8) with polynuclear strontium aqua complexes. Russ. Chem. Bull. Int. Ed.,2003,52(3):585-593.
    [25]H.J. Buschmann, E. Cleve, K. Jansen, E. Schollmeyer. Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution. Anal. Chim. Acta.,2001,437:157-163.
    [26]J. Zhao, H. J. Kim, J. Oh, S. Y. Kim, J. W. Lee, S. Sakamoto, K. Y. Prof., K. Kim. Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem. Int. Ed. Engl.,2001,40(22):4233-4235.
    [27]H. J. Kim, J. Heo, W. S. Jeon, E. Lee, J. Kim, S. Sakamoto, K. Yamaguchi, K. Kim. Selective inclusion of a hetero-guest pair in molecular host:formation of stable charge-transfer complexes in cucurbit[8]uril. Angew. Chem. Int. Ed.,2001,40(8): 1526-1529.
    [28]A. V. Virovets, D. G. Smasonenko, D. N. Dybtsev, V. P. Fedin, W. Clegg. Cysrtal structure of a supramolecular addut of tetrachloroferrate(Ⅲ) with cucurbituril (H703)4[FeCl4]2Cl2·C36H36N24O12·3H2O. J. Srtuct. Chem.,2001,42(2):319-321.
    [29]D. G. Smasonenko, O. A. Geasrko, T. V. Mitkina, J. Lipkowski, A. V. Virovets, D. Fenske, V. P. Fedin. Synthesis and crystal structure of supramolecular adducts of macrocyclic cavitand cucurbituril with chromium(Ⅲ) and nickel(Ⅱ) aqua complexes. Russ. J. Coordination. Chem.,2003,29(3):166-174.
    [30]S. Y. Kim, I. N. Jung, E. Lee, J. Kim, S. Sakamoto, K. Yamaguchi, K. Kim. Macrocycles within macrocycles:cyclen, cyclam, and their transition metal complexes encapsulated in cucurbit[8]uril. Angew. Chem. Int. Ed.,2001,40(11):2119-2121.
    [31]H. J. Buschmann, K. Jansen, E. Schollmeyer. Cucurbit[6]uril as ligand for the complexation of lanthanide cations in aqueous solution. Inorg. Chem. Commun.,2003, 6:531-534.
    [32]D. G. Samsonenko, J. Lipkowski, O. A. Gerasko, A. V. Virovets, M. N. Sokolov, V. P. Fedin, J. G. Platas, R. H. Molina, A. Mederos. Cucurbituril as a new macrocyclic ligand for complexation of lanthanide cations in aqueous solutions. Eur. J. Inorg. Chem.,2002, 2002:2380-2388.
    [33]D. G. Samsonenko, M. N. Sokolov, A. V. Virovets, N. V. Pervukhina, V. P. Fedin. Isolation and structural characterization of new indium(III) aqua complexes: trans-[InCl2(H2O)4]+ and trans-[InCl4(H2O)2]- as supramolecular adducts with cucurbituril and related studies. Eur. J. Inorg. Chem.,2001,167-172.
    [34]W. L. Mock, N. Y. Shih. Host-guest binding capacity of cucurbituril. J. Org. Chem., 1983,48(20):3618-3619.
    [35]W. L. Mock, N. Y. Shih. Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem.,1986,51(23):4440-4446.
    [36]W. L. Mock, N. Y. Shih. Organic ligand-receptor interactions between cucurbituril and alkylammonium ions. J. Am. Chem. Soc,1988,110(14):4706-4710.
    [37]韩宝航,刘育.葫芦脲:分子识别与组装.有机化学,Vol.23,2003,No.2:139-149.
    [38]J. X. Liu, T. Zhu, S. F. Xue, Q. J. Zhu, J. X. Zhang. Investigation of host-guest compounds of cucurbit [n= 5-8] uril with some piperazine derivatives. Chinese J. Inorg. chem.,2004,20:139-146.
    [39]W. Ong, M. G. Kaifer, A. E. Kaifer. Cucurbit[7]uril:a very effective host for viologens and their cation radicals. Org. Lett.,2002,4(10):1791-1794.
    [40]W.-S. Jeon, H. J. Kim, C. Lee, K. Kim. Control of the stoichiometry in host-guest complexation by redox chemistry of guests:Inclusion of methylviologen in cucurbit[8]uril. Chem Commun,2002,1828-1829.
    [41]R. Hoffmann, W. Knoche, C. Fenn, H. J. Buschmann. Host-guest complexes of cucurbituril with the 4-methylbenzylammonium Ion, alkali-metal cations and NH4+. J. Chem. Soc. Faraday Trans.,1994,90(11):1507-1511.
    [42]C. Marquez, W. M. Nau. Two mechanisms of slow host-guest complexation between cucurbit[6]uril and cyclohexylmethylamine:pH-responsive supramolecular kinetics. Angew. Chem. Int. Ed.,2001,40(17):3155-3160.
    [43]C. Marquez, R. R. Hudgins, W. M. Nau. Mechanism of host-guest complexation by cucurbituril. J. Am. Chem. Soc.,2004,126:5806-5816.
    [44]K. A. Kellersberger, J. D. Anderson, S. M. Ward, K. E. Krakowiak, D. V. Dearden. Acetonitrile by decamefhyl cucurbit[5]uril(NH4+)2 complexes in the gas phase:influence of the guest on 'lid' tightness. J. Am. Chem. Soc.,2001,123:11316-11317.
    [45]Y. Miyahara, K. Abe, T. Inazu. "Molecular" molecular sieves:Lid-Free decamethyl cucurbit[5]uril absorbs and desorbs gases selectively. Angew. Chem. Int. Ed.,2002,41: 3020-3023.
    [46]H. J. Buschmann. The formation of cucurbituril complexes with amino acids and amino alcohols in aqueous formic acid studied by calorimetric titrations. Thermochim. Acta., 1998,317:95-98.
    [47]H. J. Buschmann, K. Jansen, E. Schollmeyer. Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution. Thermochim. Acta.,2000,346:33-36.
    [48]H. J. Buschmann. The formation of amino acid and dipeptide complexes with a-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry. Thermochim. Acta.,2003,399:203-208.
    [49]H. J. Buschmann. Stabilization of dyes against hydrolytic decomposition by the formation of inclusion compounds. J. Incl. Phenom. Macro. Chem.,1992,14:91-99.
    [50]J. Inclusion. Journal of inclusion phenomena and macrocyclic chemistry. Phenom. Mol. Recognit. Chem.,1997,29:167-174.
    [51]R. Neugebauer, W. Knoche. Host-guest complexes of cucurbituril with 4-amino-4'-nitroazobenzene and 4,4'-diaminoazobenzene in acidic aqueous solutions. J. Chem. Soc., Perkin Trans.,1998,2:529-534.
    [52]B. D. Wagner, A. I. MacRae. The lattice inclusion compound of 1,8-ANS and cucurbituril:a unique fluorescent solid. J. Phys. Chem. B.,1999,103:10114-10119.
    [53]B. D. Wagner, S. J. Fitzpatrick, M. A. Gill, A. I. MacRae, N. Stojanovic. A fluorescent host-guest complex of cucurbituril in solution:a molecular Jack O'Lantern. Can. J. Chem.,2001,79:1101-1104.
    [54]B. D. Wagner, N. Stojanovic, A. I. Day, R. J. Blanch. Host properties of cucurbit[7]uril: fluorescence enhancement of anilinonaphthalene sulfonates. J. Phys. Chem. B.,2003, 107:10741-10746.
    [55]刘思敏,吴晓军,梁峰,姚骏骅,吴成泰.葫[n]环联脲(n=5,6,7,8)与两种重 氮氟硼酸盐的包合作用研究,高等学校化学学报,2004,25:2038-2041.
    [56]Y. J. Jeon, S. Y. Kim, Y. H. Ko, S. Sakamoto, K. Yamaguchi, K. Kim. Novel molecular drug carrier:encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org Biomol Chem.,2005,3(11):2122-2125.
    [57]S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij, L. Isaacs. The cucurbit[n]uril family:prime components for self-sorting systems. J. Am. Chem. Soc., 2005,127:15959-15967.
    [58]G. R. Newkome, H. J. Kim, K. H. Choi, C. N. Moorefield. Synthesis of neutral metallodendrimers possessing adamantane termini:supramolecular assembly with /?-cyclodextrin. Macromolecules,2004,37(17):6268-6274.
    [59]M. Megyesi, L. Biczok, I. Jablonkai. Highly sensitive fluorescence response to inclusion complex formation of berberine alkaloid with cucurbit[7]uril. J. Phys. Chem. C.,2008, 112:3410-3416.
    [60]M. D. Pozo, L. Hernandez, C. Quintana. A selective spectro-fluorimetric method for carbendazim determination in oranges involving inclusion-complex formation with cucurbit[7]uril. Talanta,2010,81:1542-1546.
    [61]C. F. Li, L. M. Du, W. Y. Wu, A. Z. Sheng. Supramolecular interaction of cucurbit[n]urils and coptisine by spectrofluorimetry and its analytical application. Talanta,2010,80: 1939-1944.
    [62]C. F. Li, L. M. Du, H. M. Zhang. Study on the inclusion interaction of cucurbit[n]urils with sanguinarine by spectrofluorimetry and its analytical application. Spectrochim. Acta.A.,2010,75:912-917.
    [63]Z. Miskolczy, L. Biczok, M. Megyesi, I. Jablonkai. Inclusion complex formation of ionic liquids and other cationic organic compounds with cucurbit[7]uril studied by 4',6-diamidino-2-phenylindole fluorescent probe. J. Phys. Chem. B.,2009,113: 1645-1651.
    [64]W. S. Jeon, H. J. Kim, K. Kim. Control of the stoichiometry in host-guest complexation by redox chemistry of guests:Inclusion of methylviologen in cucurbit[8]uril. Chem. Commun.2002,1828-1829.
    [65]W. S. Jeon, A. Y. Ziganshina, J. W. Lee, Y. H. Ko, J. K. Kang, C. Lee, K. Kim. A [2]Pseudorotaxane-based molecular machine:reversible formation of a molecular loop driven by electrochemical and photochemical stimuli. Angew. Chem. Int. Ed.,2003,115: 4231-4234.
    [66]刘思敏,吴成泰.葫环联脲新进展,化学进展,2005,17(1):143-150.
    [67]W. A. Freeman, W. L. Mock, N. Y. Shih. Cucurbituril. J. Am. Chem. Soc.,1981, 103(24):7367-7368.
    [68]Y. Y. Zhou, H. P. Yu, L. Zhang, H. W. Xu, L. Wu, J. Y. Sun, L. Wang. A new spectrofluorometric method for the determination of nicotine base on the inclusion interaction of methylene blue and cucurbit[7]uril. Microchim Acta.,2009,164: 63-68.
    [69]W. L. Mock, J. J.Pierpont. A cucurbituril-based molecular switch. Chem. Soc. Chem. Commun.,1990,1509-1511.
    [70]S. I. Jun, J. W. Lee, S. Sakamoto, K. Yamaguchi, K. Kim. Rotaxane-based molecular switch with fluorescence signaling. Tetrahedron Lett.,2000,41,471-475.
    [71]K. Park, D. Whang, E. Lee, J. Heo, K. Kim. Transition metal ion directed supramolecular assembly of one-and two-dimensional polyrotaxanes incorporating cucurbituril. Chem. Eur.J,2002,8:498-508.
    [72]K. M. Park, S. Y. Kim, J. Heo, D. Whang, S. Sakamoto, K. Yamaguchi and K. Kim. Designed self-assembly of molecular necklaces. J. Am. Chem. Soc.,2002,124: 2140-2147.
    [73]W. L. Mock, T. A. Irra, J. P. Wepsiec, T. L. Manimaran. Cycloaddition induced by cucurbituril. A case of pauling principle catalysis. J. Org. Chem.,1983,48(20): 3619-3620.
    [74]W. L. Mock, T. A. Irra, J. P. Wepsiec, M. Adhya. Catalysis by cucurbituril. the significance of bound-substrate destabilization for induced triazole formation. J. Org. Chem.1989,54(22):5302-5308.
    [75]S. Y. Jon, Y. H. Ko, S. H. Park, H. J. Kim, K. Kim. A facial, stereoselective[2+2] photoreaction mediated by cucurbit[8]uril. Chem. Commun.,2001:1938-1939.
    [76]Y. Lim, T. Kim, J. W. Lee, S. Kim, H. J. Kim, K. Kim, J. Park. Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA:noncovalent strategy in developing a gene delivery carrier. Bioconjugate Chem.,2002,13(6):1181-1185.
    [77]H. Isobe, S. Sato, J. W. Lee, H. J. Kim, K. Kim, E. Nakamura. Supramolecular modulation of action of polyamine on enzyme/DNA interactions. Chem. Commun., 2005,1549-1551.
    [78]S. M. Liu, L. Xu, C. T. Wu, Y. Q. Feng. Preparation and characterization of per hydroxyl-cucurbit[6]uril bonded silica stationary phase for hydrophilic-interaction chromatography. Talanta,2004,64:929-934.
    [79]L. X, S. M. Liu, C. T. Wu, Y. Q. Feng. Separation of positional isomers by cucurbit[7]urilmediated capillary electrophoresis. Electrophoresis,2004,25(18/19): 3300-3306.
    [80]S. Karcher, A. Kommulier, M. Jekel. Removal of reactive dyes with the cage compound cucurbituril. Acta Hydrochim Hydrobiol.,1997,9:131-152.
    [81]S. Karcher, A. Kommulier, M. Jekel. Effects of alkaline and alkaline earth cations on reactive dye removal with cucurbituril. Acta Hydrochim Hydrobiol.,1999,27(1): 38-41.
    [82]S. S. Banerjee, D. H. Chen. Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem. Mater.,2007,19:6345-6349.
    [83]F. Van. De. Manakker, T. Vermonden, C. F. Van. Nostrum, W. E. Hennink. Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications, cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules, 2009,10(12):3157-3175.
    [84]E. M. Davis. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle:from concept to clinic. Mol. Pharm.,2009,6: 659-668.
    [85]D. W. Armstrong. Bonded phase material for chromatographic separations. U S Patent., 1985,4539399
    [86]包建民,粱清刚,宝贵荣,张勃,李优鑫.液相色谱环糊精类手性固定相研究进展,国际药学研究杂志,2012,39:286-293.
    [87]A. M. Stalcup, S. C. Chang, D. W. Armstrong. Effect of the configuration of the substituents of derivatized β-cyclodextrin bonded phases on enantioselectivity in normal-phase liquid chromatography. J. Chromatogr.,1991,540:113-128.
    [88]Z. M. Zhou, X. Li, X. P. Chen, M Fang, X Dong. Separation performance and recognition mechanism of mono(6-deoxy-imino)-β-cyclodextrins chiral stationary phases in high-performance liquid chromatography. Talanta.,2010,82(2):775-784.
    [89]X. Li, Z. M. Zhou, D. Xu, J. Zhang. Enantiomeric separation in highperformance liquid chromatography using novel β-cyclodextrin derivatives modified by R-configuration groups as chiral stationaryphases. Talanta,2011,84(4):1080-1092.
    [90]Q. Zhong, L. He, T. E. Beesley, W. S. Trahanovsky, P. Sun, C. Wang, D. W. Armstrong. Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. J. Chromatogr A.,2006, 1115(1/2):19-45.
    [91]I. Ilisz, R. Berkecz, E. Forro, F. Fulop, D. W. Armstrong. The role of π-acidic and π-basic chiral stationary phases in the high-performance liquid chromatographicenantioseparation of unusual β-amino acids. Chirality,2009,21(3): 339-348.
    [92]Z. B. Zhang, W. G. Zhang, W. J. Luo, J. Fan. Preparation and enantioseparation characteristics of a novel chiral stationary phase based on mono (6A-azido-6A-deoxy)-per (p-chlorophenylcarbamoylated) β-cyclodextrin. J. Chromatogr. A.,2008,1213(2):162-168.
    [93]Y. Zhang, Z. Guo, J. Ye, X. Xu, X. Liang, A. Lei. Preparation of nove β-cyclodextrin chiral stationary phase based on click chemistry. J. Chromatogr. A.,2008,1191(1/2): 188-192.
    [94]Y. Zhao, Z. Guo, Y. Zhang, X. Xue, Q. Xu, X. Li, X. Liang, Y. Zhang. Retention properties of novel β-CD bonded stationary phases in reversed-phase HPLC mode. Talanta,2009,78(3):916-921.
    [95]Y. Wang, T. T. Ong, L. S. Li, T. T. Y. Tan, S. C. Ng. Enantioseparation of a novel "click" chemistry derived native β-cyclodextrin chiral stationary phase for high-performance liquid chromatography. J. Chromatogr. A.,2009,1216(12):2388-2393.
    [96]Y. Wang, D. J. Young, T. T. Y. Tan, S. C. Ng. " Click" immobilized perphenylcarbamated and permethylated cyclodextrin stationary phases for chiral high-performance liquid chromatography application. J. Chromatogr. A.,2010,1217(31):5103-5108.
    [97]J Zhao, D Tan, S. K. Chelvi, E. L. Yong, H. K. Lee, Y. Gong. Preparation and application of rifamycin-capped (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)-propylsilyl-appended silica particles as chiral stationary phase for high-performance liquid chromatography. Talanta,2010,83:286-290.
    [98]X. H. Lai, W. H. Tang, S. C. Ng. Novel β-cyclodextrin chiral stationary phases with different length spacers for normal-phase high performance liquid chromatography enantioseparation. J. Chromatogr. A.,2011,1218(22):3496-3501.
    [99]Y. Liu, Y. Chen. Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res.,2006,39(10):681-691.
    [100]C. A. Haskard, J. C. Easton, L. B. May, S. F. Lincoln. Cooperative binding of 6-(p-Toluidinyl)naphthalene-2-sulfonate by β-cyclodextrin dimers. J. Phys. Chem.,1996, 100:14457-14461.
    [101]C. T. Sikorski, R. C. Petter. The effect of tether length on the affinity of Ligands for bis(cyclodextrins). Tetrahedron lett.,1994,35:4275-4278.
    [102]F. Venema, H. F. M. Nelissen, P. Berthault, N. Birlirakis, A. E. Rowan, M. C. Feiters, R. J. M. Nolte. Synthesis, conformation, and binding properties of cyclodextrin homo- and heterodimers connected through their secondary sides. Chem. Eur. J.,1998,4: 2237-2250.
    [103]J. M. Casas-Solvas, I. Quesada-Soriano, D. Carreno-Gazquez, J. J. Gimenez-Martinez, L. Garcia-Fuentes, A. Vargas-Berenguel.β-Cyclodextrin dimers linked through their secondary faces with rigid spacer arms as hosts for bile salts. Langmuir,2011,27: 9729-9737.
    [104]Y. Liu, C. C. You, Y. Chen, T. Wada, Y. Inoue. Inclusion complexation by organoselenium-bridged bis(β-cyclodextrin)s and their platinum(Ⅳ) complexes. J. Org. Chem.,1999,64:7781-7787.
    [105]Y. Liu, B. Li, C. C. You, T. Wada, Y. Inoue. Molecular recognition of dyes by organoselenium-bridged bis(β-cyclodextrin)s. J. Org. Chem.,2001,66:225-232.
    [106]Y. Liu, Y. Song, Y. Chen, Z. X. Yang, F. Ding. Speetrophotometric study on the controlling factor of molecular selective binding of dyes by bridged bis(β-cyclodextrin)s with diselenobis(benzoyl) linkers. J. Phys. Chem. B.,2005,109:10717-10726.
    [107]Y. Liu, Y. L. Zhao, Y. Chen, F. Ding, G. S.Chen. Binding behavior of aliphatic oligopeptides by bridged and metallobridged bis(β-cyclodextrin)s bearing an oxamido bis(2-benzoic) carboxyl linker. Bioconjugate Chem.,2004,15:1236-1245.
    [108]A. Cavazzini, L. Pasti, A. Massi, N. Marchetti, F. Dondi. Recent applications in chiral high performance liquid chromatography:A review. Anal. Chim. Acta,2011,14: 205-222.
    [109]X. Y. Shi, Y. Q. Zhang, J. H. Han, R. N. Fu. Cyclodextrin dimer derivatives used as stationary phase for capillary gas chromatography. Chromatographia,2000,52: 200-204.
    [1]S. Santra, P. Zhang, K. Wang, R. Tapec, W. H. Tan. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem.,2001, 73:4988-4993.
    [2]W. M. Nau, J. Mohanty. Taming fluorescent dyes with cucurbituril. Int. J. Photoenergy, 2005,7:133-141.
    [3]A. L. Koner, W. M. Nau. Cucurbituril encapsulation of fluorescent dyes. Supramol. Chem.,2007,19:55-66.
    [4]C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel. Photobleaching of fluorescent dyes under conditions used for single-molecule detection:Evidence of two-step photolysis. Anal. Chem.,1998,70:2651-2659.
    [5]R. B.Wang, L.Yuan, D. H. Macartney. A green to blue fluorescence switch of protonated 2-aminoanthracene upon inclusion in cucurbit [7] uril. Chem. Commun.,2005, 5867-5869.
    [6]T. Plakhotnik, E. A. Donley, U. P. Wild. Single-molecule spectroscopy. Annu. Rev. Phys. Chem.,1997,48:181-212.
    [7]S. L. Hart, R. I. Haines, A. Decken, B. D. Wagner. Isolation of the trans-Ⅰ and trans-Ⅱ isomers of CuII(cyclam) via complexation with the macrocyclic host cucurbit[8]uril. Inorg. Chim. Acta,2009,362:4145-4151.
    [8]L. B. Lu, D. H. Yu, Y. Q. Zhang, Q. J. Zhu, S. F. Xue, Z. Tao, Supramolecular assemblies based on some new methyl-substituted cucurbit[5]urils through hydrogen bonding. J. Mol. Struct.,2008,885:70-75.
    [9]D. H. Yu, X. L. Ni, Z. C. Tian, Y. Q. Zhang, S. F. Xue, Z. Tao, Q. J. Zhu, Host-guest inclusion complexes of four partial alkyl-substituted cucurbit[6]urils with some probe guests. J. Mol. Struct.,2008,891:247-253.
    [10]L. Yuan, R. B. Wang, D. H. Macartney. Chiroptic behaviour of a chiral guest in an achiral cucurbit[7]uril host. Tetrahedron:Asymmetry,2007,18:483-487.
    [11]Z. S. Hou, Y. B. Tan, K. Kim, Q. F. Zhou. Synthesis, characterization and properties of side-chain pseudopolyrotaxanes consisting of cucurbituril[6] and poly-N1-(4- vinylbenzyl)-1,4-diaminobutane dihydrochloride. Polymer,2006,47:742-750.
    [12]H. J. Buschmann, E. Cleve, L. Mutihac, E. Schollmeyer. A novel experimental method for the study of complex formation between α-, β-and γ-cyclodextrin and nearly insoluble cucurbituril-[2]rotaxanes in aqueous solution. Microchem J.,2000,64: 99-103.
    [13]Y. Y. Zhou, J. Yang, M. Liu, S. F. Wang, Q. Lu. A novel fluorometric determination of melamine using cucurbit[7]uril. J. Lumin.,2010,130:817-820.
    [14]Z. Miskolczy, L. Biczok, H. Gorner. Tautomerization of lumichrome promoted by supramolecular complex formation with cucurbit[7]uril. J. Photochem. Photobiol. A: Chem.,2009,207:47-51.
    [15]N. K. Petrov, D. A. Ivanov, D. V. Golubkov, S. P. Gromov, M. V. Alfimov. The effect of cucurbit[7]uril on photophysical properties of aqueous solution of 3,3'-diethylthiacar-bocyanine iodide dye. Chem. Phys. Lett.,2009,480:96-99.
    [16]F. Wei, Y. Q. Feng. Rapid determination of aristolochic acid Ⅰ and Ⅱ in medicinal plants with high sensitivity by cucurbit[7]uril-modifier capillary zone electrophoresis. Talanta, 2008,74:619-624.
    [17]F. Constabel, K. E. Geckeler. Solvent-free self-assembly of C60 and cucurbit[7]uril using high-speed vibration milling.Tetrahedron Lett.,2004,45:2071-2073.
    [18]P. Giri, M. Hossain, G. S. Kumar. Molecular aspects on the specific interaction of cytotoxic plant alkaloid palmatine to poly(A). Int. J. Biol. Macromol.,2006,39: 210-221.
    [19]C. F. Li, L. M. Du, W. Y. Wu, A. Z. Sheng. Supramolecular interaction of cucurbit[n]urils and coptisine by spectrofluorimetry and its analytical application. Talanta,2010,80:1939-1944.
    [20]C. F. Li, L. M. Du, H. M. Zhang. Study on the inclusion interaction of cucurbit[n]urils with sanguinarine by spectrofluorimetry and its analytical application. Spectrochim. Acta Part A,2010,75:912-917.
    [21]Y. P. Li, H. Wu, L. M. Du. Study on the inclusion interactions of berberine hydrochloride and cucurbit[7]uril by spectrofluorimetry. Chin. Chem. Lett.,2009,20: 322-325.
    [22]C. Li, J. Li, X. Jia. Selective binding and highly sensitive fluorescent sensor of palmatine and dehydrocorydaline alkaloids by cucurbit[7]uril. Org. Biomol. Chem.2009,7: 2699-2703.
    [23]D. A. I. Ashiru, R. Patel, A. W. Basit. Simple and universal HPLC-UV method to determine cimetidine, ranitidine, famotidine and nizatidine in urine:application to the analysis of ranitidine and its metabolites in human volunteers. J. Chromatogr. B,2007, 860:235-240.
    [24]M. J. Nozal, J. L. Bernal, L. Toribio, M. T. Martin, F. J. Diez. Validation of a liquid chromatographic method for the determination of ranitidine hydrochloride residues on surfaces in the manufacture of pharmaceuticals. J. Chromatogr. A,2001,919:87-93.
    [25]C. F. Perez, H. J. Olguina, J. F. Perez, A. T. Lopez, I. L. Asseff, C. A. Garcia. Reliable method for the determination of ranitidine by liquid chromatography using a microvolume of plasma. J. Chromatogr. B,2003,795:141-144.
    [26]D. Zendelovska, T. Stafilov. Development of an HPLC method for the determination of ranitidine and cimetidine in human plasma following SPE. J. Pharm. Biomed. Anal., 2003,33:165-173.
    [27]T. Iqbal, C. S. Karyekar, M. Kinjo, G. C. Ngan, T. C. Dowling. Validation of a simplified method for determination of cimetidine in human plasma and urine by liquid chromatography with ultraviolet detection. J. Chromatogr. B,2004,799:337-341.
    [28]L. G. Hare, D. S. Mitchel, J. S. Millership, P. S. Collier, J. C. McElnay, M. D. Shields, D. J. Carson, R. Fairc. Liquid chromatographic determination including simultaneous "on-cartridge" separation of ranitidine cisapride drug combinations from paediatric plasma samples using an automated solid-phase extraction procedure. J. Chromatogr. B, 2004,806:263-269.
    [29]S. M. Huang, T. R. Tsai, P. H. Yeh and T. H. Tsai, Measurement of unbound ranitidine in blood and bile of anesthetized rats using microdialysis coupled to liquid chromatography and its pharmacokinetic application. J. Chromatogr. A,2005,1073: 297-302.
    [30]A. Khedr. Sensitive determination of ranitidine in rabbit plasma by HPLC with fluorescence detection. J. Chromatogr. B,2008,862:175-180.
    [31]State Pharmacopeia Committee of China, Pharmacopoeia of People's Republic of China. Chemical Industry Press, Beijing, China.2005,2,583.
    [32]K. Basavaiah, P. Nagegowda. Determination of ranitidine hydrochloride in pharmaceutical preparations by titrimetry and visible spectrophotometry using bromate and acid dyes. Il Farmaco,2004,59:147-153.
    [33]E. M. Hassan, F. Belal. Kinetic spectrophotometric determination of nizatidine and ranitidine in pharmaceutical preparations. J. Pharm. Biomed. Anal.,2002,27:31-38.
    [34]F. A. El-Yazbi, A. A. Gazy, H. Mahgoub, M. A. El-Sayed, R. M. Youssef. Spectrophotometric and titrimetric determination of nizatidine in capsules. J. Pharm. Biomed. Anal.,2003,31:1027-1034.
    [35]State Pharmacopeia Committee of China, Pharmacopoeia of People's Republic of China, Chemical Industry Press, Beijing, China.2005,2,191.
    [36]J. Luksa, D. j. Josic. Determination of cimetidine in human plasma by free capillary zone electrophoresis. J. chromatogr. B,1995,667:321-327.
    [37]N. W. Barnett, B. J. Hindson, S. W. Lewis. Determination of ranitidine and salbutamol by flow injection analysis with chemiluminescence detection. Anal. Chim. Acta,1999, 384:151-158.
    [38]L. M. Du, Y. Q. Yang, Q. M. Wang. Spectrofluorometric determination of certain quinolone through charge transfer complex formation. Anal. Chim. Acta,2004,516: 237-243.
    [39]X. T. Chen, Y. Xiang, N. Li, P. S. Song, A. J. Tong. Fluorescence turn-on detection of protamine based on aggregation-induced emission enhancement characteristics of 4-(6'-carboxyl) hexyloxysalicylaldehyde azine. Analyst,2010,135:1098-1105.
    [40]刘思敏.含甘脲结构单元大环化合物的合成及性质研究.武汉大学博士论文.2004,.29.
    [41]J. Kim, I. S. Jung, S. Y. Kim, E. Lee. J. K. Kang, S. Sakamoto, K. Yamaguchi. K. Kim. New cucurbituril homologues:syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5,7, and 8). J. Am. Chem. Soc.,2000,122:540-541.
    [42]M. Megyesi, L. Biczok, I. Jablonkai. Highly sensitive fluorescence response to inclusion complex formation of berberine alkaloid with cucurbit[7]uril. J. Phys. Chem. C,2008, 112:3410-3416.
    [43]R. Wang, D. H. Macartney. Cucurbit[7]uril host-guest complexes of the histamine H2-receptor antagonist ranitidine. Org. Biomol. Chem.,2008,6:1955-1960.
    [1]M. Marszalek, M. Wolszczak. Radiolysis of berberine or palmatine in aqueous solution. Radiat. Phys. Chem.,2011,80:94-99.
    [2]T. Schmeller, B. Latz-Bruning, M. Wink. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry,1997,44:257-266.
    [3]X. Su, T. Bo, R. Li, K. A. Li, H. Liu. Determination of isoquinoline alkaloids in Thalictrum herbal drugs by non-aqueous capillary electrophoresis. Chromatographia, 2002,55:63-68.
    [4]C. O. Chan, C. C. Chu, D. K. W. Mok, F. T. Chau. Analysis of berberine and total alkaloid content in Cortex Phellodendri by near infrared spectroscopy (NIRS) compared with high-performance liquid chromatography coupled with ultra-visible spectrometric detection. Anal. Chim. Acta,2007,592:121-131.
    [5]K. Suto, S. Kakinuma, Y. Ito, K. Sagara, H. Iwasaki, H. Itokawa. Determination of berberine and palmatine in phellodendri cortex using ion-pair supercritical fluid chromatography on-line coupled with ion-pair supercritical fluid extraction by on-column trapping. J. Chromatogr. A,1997,786:371-376.
    [6]L. H. Liu, X. G. Chen, Z. D. Hu. On-line concentration by head-column field amplified sample injection for the analysis of berberine, palmatine and jatrorrhizine in herbal medicine by flow injection-micellar electrokinetic chromatography. Microchim Acta, 2007,159:125-131.
    [7]L. Yin, B. Lu, Y. Qi, L. Xu, X. Han, Y. Xu, J. Peng, C. Sun. Simultaneous determination of 11 active components in two well-known traditional Chinese medicines by HPLC coupled with diode array detection for quality control. J. Pharmaceut. Biomed. Anal., 2009,49:1101-1108.
    [8]H. S. Lee, Y. E. Eom, D. O. Eom. Narrowbore high performance liquid chromatography of berberine and palmatine in crude drugs and pharmaceuticals with ion-pair extraction using cobalt thiocyanate reagent. J. Pharmaceut. Biomed. Anal.,1999,21:59-63.
    [9]R. An, Y. Wang, L. You, X. Wang. UPLC-MS analysis for simultaneous determination of eight components in the 'Ge-Gen-Qin-Lian' tablets. Chromatographia,2009,69: 969-975.
    [10]T. Lu, Y. Liang, J. Song, L. Xie, G. J. Wang, X. D. Liu. Simultaneous determination of berberine and palmatine in rat plasma by HPLC-ESI-MS after oral administration of traditional Chinese medicinal preparation Huang-Lian-Jie-Du decoction and the pharmacokinetic application of the method. J. Pharmaceut. Biomed. Anal.,2006,40: 1218-1224.
    [11]X. Li, H. Liu, J. Li, X. Zhao, S. Wang, X. Zheng. Simultaneous determination of berberine and palmatine in rabbit plasma by LC-MS-MS and its application in pharmacokinetic study after oral administration of Coptidis and Coptidis-Gardeniae couple extract. Chromatographia,2009,70:1113-1119.
    [12]Y. Deng, Q. Liao, S. Li, K. Bi, B. Pan, Z. Xie. Simultaneous determination of berberine, palmatine and jatrorrhizine by liquid chromatography-tandem mass spectrometry in rat plasma and its application in a pharmacokinetic study after oral administration of coptis-evodia herb couple. J. Chromatogr. B,2008,863:195-205.
    [13]J. Feng, W. Xu, X. Tao, H. Wei, F. Cai, B. Jiang, W. Chen. Simultaneous determination of baicalin, baicalein, wogonin, berberine, palmatine and jatrorrhizine in rat plasma by liquid chromatography-tandem mass spectrometry and application in pharmacokinetic studies after oral administration of traditional Chinese medicinal preparations containing scutellaria-coptis herb couple. J. Pharmaceut. Biomed. Anal.,2010,53:591-598.
    [14]W. M. Nau, J. Mohanty. Taming fluorescent dyes with cucurbituril. Int. J. Photoenergy, 2005,7:133-141.
    [15]R. Wang, L. Yuan, D. H. Macartney. A green to blue fluoroscence switch of protonated 2-aminoanthracene upon inclusion in cucurbit[7]uril. Chem. Commun.,2005, 5867-5869.
    [16]S. L. Hart, R. I. Haines, A. Decken, B. D. Wagner. Isolation of the trans-Ⅰ and trans-Ⅱ isomers of CuⅡ(cyclam) via complexation with the macrocyclic host cucurbit[8]uril. Inorg. Chim. Acta,2009,362:4145-4151.
    [17]Z. Miskolczy, L. Biczok, H. Gorner. Tautomerization of lumichrome promoted by supramolecular complex formation with cucurbit[7]uril. J. Photochem. Photobiol. A: Chem.,2009,207:47-51.
    [18]C. F. Li, L. M. Du, W. Y. Wu, A. Z. Sheng. Supramolecular interaction of cucurbit[n]urils and coptisine by spectrofluorimetry and its analytical application. Talanta,2010,80:1939-1944.
    [19]C. F. Li, L. M. Du, H. M. Zhang. Study on the inclusion interaction of cucurbit[n]urils with sanguinarine by spectrofluorimetry and its analytical application. Spectrochim. Acta Part A,2010,75:912-917.
    [20]J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim. New cucurbituril homologues:syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5,7, and 8). J. Am. Chem. Soc.,2000,122:540-541.
    [21]S. Yu, X. Pang, Y. Deng, L. Liu, Y. Liang, X. Liu, L. Xie, G. Wang, X. Wang. A sensitive and specific liquid chromatography mass spectrometry method for simultaneous determination of berberine, palmatine, coptisine, epiberberine and jatrorrhizine from Coptidis Rhizoma in rat plasma. Int. J. Mass Spectrom.,2007,268:30-37.
    [22]M. Megyesi, L. Biczok, I. Jablonkai. Highly sensitive fluorescence response to inclusion complex formation of berberine alkaloid with cucurbit[7]uril. J. Phys. Chem. C,2008, 112:3410-3416.
    [1]A. Day, A. P. Arnold, R. J. Blanch, B. Snushall. Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem.,2001,66:8094-8100.
    [2]A. L. Koner, W. M. Nau. Cucurbituril encapsulation of fluorescent dyes. Supramol. Chem.,2007,19:55-66.
    [3]K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim, J. Kim. Functionalized cucurbiturils and their applications. Chem. Soc. Rev.,2007,36:267-279.
    [4]L. B. Lu, D. H. Yu, Y. Q. Zhang, Q. J. Zhu, S. F. Xue, Z. Tao. Supramolecular assemblies based on some new methyl-substituted cucurbit[5]urils through hydrogen bonding. J. Mol. Struct.,2008,885:70-75.
    [5]S. L. Hart, R. I. Haines, A. Decken, B. D. Wagner. Isolation of the trans-I and trans-Ⅱ isomers of CuII(cyclam) via complexation with the macrocyclic host cucurbit[8]uril. Inorg. Chim. Acta,2009,362:4145-4151.
    [6]L. Mu, X. B. Yang, S. F. Xue, Q. J. Zhu, Z. Tao, X. Zeng. Cucurbit[n]urils-induced room temperature phosphorescence of quinoline derivatives. Anal. Chim. Acta,2007,597: 90-96.
    [7]J. Y. Ge, S. F. Xue, Q. J. Zhu, Z. Tao, J. X. Zhang. Interaction of cucurbit[n=6-8]urils and benzimidazole derivatives. J. Incl. Phenom. Macrocycl. Chem.,2007,58:63-69.
    [8]S. Kemp, N. J. Wheate, F. H. Stootman. J. R. Aldrich-Wright. The host-guest chemistry of proflavine with cucurbit[6,7,8]urils. Supramol. Chem.,2007,19:475-484.
    [9]R. Nally, L. Isaacs. Toward supramolecular polymers incorporating double cavity cucurbituril hosts. Tetrahedron,2009,65:7249-7258.
    [10]K. Kim. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev.,2002,31:96-107.
    [11]F. Constabel, K. E. Geckeler. Solvent-free self-assembly of C60 and cucurbit[7]uril using high-speed vibration milling. Tetrahedron. Lett.,2004,45:2071-2073.
    [12]Y. X. Chang, Y. Q. Qiu, L. M. Du, C. F. Li, M. Guo. Determination of ranitidine, nizatidine, and cimetidine by a sensitive fluorescent probe. Analyst,2011,136: 4168-4173.
    [13]S. Y. Jon, N. Selvapalam, D. H. Oh, J. K. Kang,S. Y. Kim, Y. J. Jeon, J. W. Lee, K. Kim. Facile synthesis of cucurbit[n]uril derivatives via direct functionalization:expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc.,2003,125:10186-10187.
    [14]L. Hwang, K. Baek, M. Jung, Y. Kim, K. M. Park, D. W. Lee, N. Selvapalam, K. Kim. Noncovalent immobilization of proteins on a solid surface by cucurbit[7]uril-ferrocenemethylammonium pair, a potential replacement of biotin-avidin pair. J. Am. Chem. Soc.,2007,129:4170-4171.
    [15]L. Isaacs. Cucurbit[n]urils:from mechanism to structure and function. Chem. Commun., 2009,619-629.
    [16]T. V. Mitkina, D. Y. Naumov, O. A. Gerasko, V. P. Fedin. Crystal structure and chemical oxidation of the palladium(Ⅱ) cyclam complex within the cavity of cucurbit[8]uril. Inorg. Chim. Acta,2010,363:4387-4391.
    [17]S. M. Liu, L. Xu, C. T. Wu, Y. Q. Feng. Preparation and characterization of perhydroxyl-cucurbit[6]uril bonded silica stationary phase for hydrophilic-interaction chromatography. Talanta,2004,64:929-934.
    [18]W. J. Cheong, J. H. Go, Y. S. Baik, S. S. Kim, E. R. Nagarajan, N. Selvapalam, Y. H. Ko, K. Kim. Preparation of cucurbituril anchored silica gel by cross polymerization and its chromatographic applications. Bull. Korean Chem. Soc.,2008,29:1941-1945.
    [19]J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim. New cucurbituril homologues:syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n= 5,7, and 8). J. Am. Chem. Soc.,2000,122:540-541.
    [20]J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim, K. Kim. Cucurbituril homologues and derivatives:new opportunities in supramolecular chemistry. Acc. Chem. Res.,2003,36: 621-630.
    [21]C. F. Li, L. M. Du, W. Y. Wu, A. Z. Sheng. Supramolecular interaction of cucurbit[n]urils and coptisine by spectrofluorimetry and its analytical application, Talanta,2010,80: 1939-1944.
    [22]M. Shamsipur, N. Fattahi. Extraction and determination of opium alkaloids in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chiomatography. J. Chromatogr. B,2011,879:2978-2983.
    [23]S. Yu, X. Pang, Y. Deng, L. Liu, Y. Liang, X. Liu, L. Xie, G Wang, X. Wang. A sensitive and specific liquid chromatography mass spectrometry method for simultaneous determination of berberine, palmatine, coptisine, epiberberine and jatrorrhizine from coptidis rhizoma in rat plasma. Int. J. Mass Spectrom.,2007,268:30-37.
    [24]W. Wu, F. Song, C. Yan, Z. Liu, S. Liu. Structural analyses of protoberberine alkaloids in medicine herbs by using ESI-FT-ICR-MS and HPLC-ESI-MS. J. Pharm. Biomed. Anal.,2005,37:437-446.
    [25]W. C. Chuang, D. S. Young, L. K. Liu, S. J. Sheu. Liquid chromatographic-electrospray mass spectrometric analysis of coptidis rhizoma. J. Chromatogr. A,1996,755:19-26.
    [1]F. K. Glowka, M. Karazniewicz. Resolution of indobufen enantiomers by capillary zone electrophoresis pharmacokinetic studies of human serum. J. Chromatogr. A,2004,1032: 219-225.
    [2]V. P. Rane, K. R. Patil, J. N. Sangshetti, D. B. Shinde. Enantiomeric LC separation of epinephrine on amylose based sorbent. Chromatographia,2008,67:777-781.
    [3]X. Han, L. An, H. Cui, H. Li, W. Liu. Enantioseparation using chitosan tris (3-chlorophenylcarbamate) as a chiral stationary phase for HPLC. Chromatographia, 2011,73:1043-1047
    [4]E. Yashima. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J. Chromatogr. A,2001,906:105-125.
    [5]F. Bressolle, M. Audran, T. N. Pham, J. J. Vallon. Cyclodextrins and enantiomeric separations of drugs by liquid chromatography and capillary electrophoresis:basic principles and new developments. J. Chromatogr. B,1996,687:303-336.
    [6]J. Shi, Z. Ding, Y. Hu. Experimental and theoretical studies on the enantioseparation and chiral recognition of mandelate and cyclohexylmandelate on permethylated β-cyclodextrin chiral stationary phase. Chromatographia,2011,74:319-325.
    [7]R. Wang, T. Ong, W. Tang, S. Ng. Cationic cyclodextrins chemically-bonded chiral stationary phases for high-performance liquid chromatography. Anal. Chim. Acta,2012, 718:121-129.
    [8]K. S. Ahmed, F. Tazerouti, A. Y. Badjah-Hadj-Ahmed, B. Y. Meklati. Application of native and hydroxypropyl-substituted β-cyclodextrin bonded silica gel as stationary phases for high performance liquid chromatography. Chromatographia,2005,62: 571-579.
    [9]F. Bressolle, M. Audran, T. N. Pham, J. J. Vallon. Cyclodextrins and enantiomeric separations of drugs by liquid chromatography and capillary electrophoresis:basic principles and new developments. J. Chromatogr. B,1996,687:303-336.
    [10]Q. Zhong, L. He, T. E. Beesley, W. S. Trahanovsky, P. Sun, C. Wang, D. W. Armstrong. Optimization of the synthesis of 2,6-dinitro-4-trifluoromethylphenyl ether substituted cyclodextrin bonded chiral stationary phases. Chromatographia,2006,64:147-155.
    [11]X. Y. Shi, M. Wang, G. R. Chen, R. N. Fu, J. L. Gu. Synthesis and properties of new cyclodextrin phenyl carbamates as capillary gas chromatography stationary phases. Anal. Chim. Acta,2001,445:221-228.
    [12]X. Han, Q. Zhong, D. Yue, N. D. Ca, R. C. Larock, D. W. Armstrong. Separation of enantiomers of isochromene derivatives by HPLC using cyclodextrin-based stationary phases. Chromatographia,2005,61:205-211.
    [13]X. H. Lai, W. H. Tang, S. C. Ng. Separation of enantiomers of isochromene derivatives by HPLC using cyclodextrin-based stationary phases. J. Chromatogr. A,2011,1218: 5597-5601.
    [14]R. Breslow, Z. Yang, R. Ching, G. Trojandt, F. Odobel. Sequence selective binding of peptides by artificial receptors in aqueous solution. J. Am. Chem. Soc.,1998,120: 3536-3537.
    [15]M. R. D. Jong, J. F. J. Engbersen, J. Huskens, D. N. Reinhoudt. Cyclodextrin dimers as receptor molecules for steroid sensors. Chem. Eur. J.,2000,6:4034-4040.
    [16]S. D. P. Baugh, Z. Yang, D. K. Leung, D. M. Wilson, R. Breslow. Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. J. Am. Chem. Soc.,2001,123: 12488-12494.
    [17]J. J. Michels, J. Huskens, D. N. Reinhoudt. Noncovalent binding of sensitizers for lanthanide (Ⅲ) luminescence in an EDTA-bis (β-cyclodextrin) ligand. J. Am. Chem. Soc,2002,124:2056-2064.
    [18]M. R. D. Jong, R. M. A. Knegtel, P. D. J. Grootenhuis, J. Huskens, D. N. Reinhoudt. A method to identify and screen libraries of guests that complex to a synthetic host. Angew. Chem. Int. Ed.,2002,41:1004-1008.
    [19]J. Wang, D. T. Pham, T. W. Kee, S. N. Clafton, X. Guo, P. Clements, S. F. Lincoln. R. K. Prudhomme, C. J. Easton. Aggregation and host-guest interactions in dansyl-substituted poly(acrylate)s in the presence of β-cyclodextrin and α β-cyclodextrin dimer in aqueous solution:a UV-Vis, fluorescence,1H NMR, and rheological Study. Macromolecules, 2011,44:9782-9791.
    [20]R. Breslow, B. Zhang. Cholesterol recognition and binding by cyclodextrin dimers. J. Am. Chem. Soc.1996,118:8495-8496.
    [21]S. H. Chiu, D. C. Myles, R. L. Garrell, J. F. Stoddart. Novel ether-linked secondary face-to-face 2-2 V and 3-3V β-cyclodextrin dimers. J. Org. Chem.,2000,65:2792-2796.
    [22]M. C. Juan, Q. Indalecio, C. Dolores, J. G. Juan, G. Luis, V. Antonio.β-cyclodextrin dimers linked through their secondary faces with rigid spacer arms as hosts for bile salts. Langmuir,2011,27:9729-9737.
    [23]J. Yan, R. Breslow. An enzyme mimic that hydrolyzes an unactivated ester with catalytic turnover. Tetrahedron Lett.,2000,41:2059-2062.
    [24]J. M. Benito, M. Gomez-Garcia, C. O. Mellet, I. Baussanne, J. Defaye, J. M. G. Fernandez. Optimizing saccharide-directed molecular delivery to biological receptors: design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. J. Am. Chem. Soc.,2004,126:10355-10363.
    [25]Y. Liu, Y. W. Yang, Y. Song, H. Y. Zhang, F. Ding, T. Wada, Y. Inoue. Residue and sequence selective binding of nonaromatic dipeptides by bis(β-cyclodextrin) with a functional tether. Chem. Bio. Chem.,2004,5:868-871.
    [26]Y. Liu, Y. W. Yang, E. C. Yang, X. D. Guan. Molecular recognition thermodynamics and structural elucidation of interactions between steroids and bridged bis(β-cyclodextrin)s. J. Org. Chem.,2004,69:6590-6602.
    [27]R. C. Petter, J. S. Salek, C. T. Sikorski, G. Kumaravel, F. T. Lin. Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins. J. Am. Chem. Soc.,1990,112: 3860-3868.
    [28]Y. Zhao, X. Q. Liu, J. Gu, L. Q. Wang, H. Y. Zhu, R. Huang, Y. F. Wang, Z. M. Yang. Synthesis of novel bis(β-cyclodextrin)s linked with aromatic diamine and their molecular recognition with model substrates. J. Phys. Org. Chem.,2008,21:440-448.
    [29]D. W. Armstrong, A. M. Stalcup, M. L. Holton, J. D. Duncan, J. R. Faulkner, S. C. Chang. Derivatized cyclodextrins for normal-phase liquid chromatographic separation of enantiomers. Anal. Chem.,1990,62:1610-1615.
    [30]M. Lammerhofer. Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J. Chromatogr. A,2010,1217: 814-856.
    [1]S. lijima. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [2]J. W. Che, T. Cagin, W. A. Goddard. Thermal conductivity of carbon nanotubes. Nanotechnology,2000,11:65-69.
    [3]F. M. Du, J. E. Fischer, K. I. Winey. Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys. Rev. B,2005,72: 121404-121407.
    [4]J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, A. H. Windle. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer,2003, 44:5893-5899.
    [5]F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, K. Schulte. Carbon nanotube-reinforced epoxy-composites:enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol.,2004,64:2363-2371.
    [6]H. Huang, C. H. Liu, Y. Wu, S. S. Fan. Aligned carbon nanotube composite films for thermal management. Adv. Mater.,2005,17:1652-1656.
    [7]J. Suhr, N. Koratkar, P. Keblinski, P. Ajayan. Viscoelasticity in carbon nanotube composites. Nat. Mater.2005,4:134-137.
    [8]B. Vigolo, C. Coulon, M. Maugey, C. Zakri, P. Poulin. An experimental approach to the percolation of sticky nanotubes. Science,2005,309:920-923.
    [9]E. T. Thostenson, Z. F. Ren, T. W. Chou. Advances in the science and technology of carbon nanotubes and their composites:a review. Compos. Sci. Technol.,2001,61: 1899-1912
    [10]C. Li, E. T. Thostenson, T. W. Chou. Sensors and actuators based on carbon nanotubes and their composites:a review. Compos. Sci. Technol.,2008,68:1227-1249.
    [11]L. M. Ravelo-Perez, A. V. Herrera-Herrera, J. Hernandez-Borges. Carbon nanotubes: solid-phase extraction. J. Chromatogr. A,2010,1217:2618-2641.
    [12]M. Valcarcel, S. Cardenas, B. M. Simonet. Role of carbon nanotubes in analytical science. Anal. Chem.,2007,79:4788-4797.
    [13]M. Valcarcel, S. Cardenas, B. M. Simonet, Y. Moliner-Martinez, R. Lucena. Carbon nanostructures as sorbent materials in analytical processes. TrAC Trend in Anal. Chem., 2008,27:34-43.
    [14]Q. L. Li, D. X. Yuan. Evaluation of multi-walled carbon nanotubes as gas chromatographic column packing. J. Chromatogr. A,2003,1003:203-209.
    [15]C. Saridara, S. Mitra. Chromatography on self-assembled carbon nanotubes. Anal. Chem., 2005,77:7094-7097.
    [16]M. Stadermann, A. D. McBrady, B. Dick, V. R. Reid, A. Noy, R. E. Synovec, O. Bakajin. Ultrafast gas chromatography on single-wall carbon nanotube stationary phases in microfabricated channels. Anal. Chem.,2006,78:5639-5644.
    [17]Y. Moliner, S. Cardenas, B. M. Simonet, M. Valcarcel. Recent developments in capillary EKC based on carbon nanoparticles. Electrophoresis,2009,30:169-175.
    [18]Y. Moliner-Martinez, M. Barrios, S. Cardenas, M. Valcarcel. Comparative study of carbon nanotubes and C60 fullerenes as pseudostationary phases in electrokinetic chromatography. J. Chromatogr. A,2008,1194:128-133.
    [19]Y. Li, Y. Chen, R. Xiang, D. Ciuparu, L. D. Pfefferle, C. Horvath, J. A. Wilkins. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for μ-HPLC and capillary electrochromatography. Anal. Chem.,2005, 77:1398-1406.
    [20]C. Saridara, S. Mitra. Chromatography on self-assembled carbon nanotubes. Anal. Chem., 2005,77:7094-7097.
    [21]Y. P. Sun, K. Fu, Y. Lin, W. Huang. Functionalized carbon nanotubes:properties and applications. Acc. Chem. Res.,2002,35:1096-1104.
    [22]Y. Zhong, W. Zhou, P. Zhang, Y. Zhu. Preparation, characterization, and analytical applications of a novel polymer stationary phase with embedded or grafted carbon fibers. Talanta,2010,82:1439-1447.
    [23]A. Speltini, D. Merli, E. Quartarone, A. Profumo. Separation of alkanes and aromatic compounds by packed column gas chromatography using functionalized multi-walled carbon nanotubes as stationary phases. J. Chromatogr. A,2010,1217:2918-2924.
    [24]L. M. Yuan, C. X. Ren, L. Li, P. Ai, Z. H. Yan, M. Zi, Z. Y. Li. Single-walled carbon nanotubes used as stationary phase in GC. Anal. Chem.,2006,78:6384-6390.
    [25]Y. Chang, C. Ren, Q. Ruan, L. Yuan. Effect of single-walled carbon nanotubes on cellulose phenylcarbamate chiral stationary phases. Chem. Res. Chinese. U.,2007,23: 646-649.
    [26]Y. X. Chang, L. L. Zhou, G. X. Li, L. Li, L. M. Yuan. Single-wall carbon nanotubes used as stationary phase in HPLC. J. Liq. Chrom & Rel. Technol.,2007,30:2953-2958.
    [27]D. W. Armstrong, A. M. Stalcup, M. L. Holton, J. D. Duncan, J. R. Faulkner, S. C. Chang. Derivatized cyclodextring for normal phase liquid chromatographic separation of enantiomers. Anal. Chem.,1990,62:1610-1615.
    [28]J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon. Solution properties of single-walled carbon nanotubes. Science,1998,282:95-98.
    [29]J. Liu, A. G. Rinder, H. J. Dai, R. E. Smalley. Fullerene pipes. Science,1998,280: 1253-1256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700