用户名: 密码: 验证码:
矩形板问题的Hamilton求解方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性矩形板是一种重要的结构元件,广泛应用于土木工程、海洋工程、航空航天以及机械工程等多个领域,其相关力学问题(弯曲、振动等)的求解一直是工程领域研究的一个重要内容,然而由于数学上的困难,该类问题的解析求解一直是一个难题。本文的工作是将该类问题导入Hamilton体系并利用辛几何方法求解典型边界条件下弹性矩形板的问题,其中包括Kirchhoff板(基于经典薄板理论)和Reissner板(基于中厚板理论)的弯曲和振动问题。
     对于薄板的弯曲问题,本文从Kirchhoff薄板弯曲问题的控制方程出发,以基本力学量为对偶变量,构造出了该问题的Hamilton体系。以此为基础,再利用辛几何方法理性求解对偶方程。对于对边简支薄板,直接求出了Levy型解析解。对于对边固支的情况,以变分边界条件导出方程组来决定级数中出现的待定系数,从而得到了解析解。同时,本文还将Hamilton体系求解方法推广到各向异性的情况,建立了正交各向异性薄板弯曲问题的Hamilton体系,求解出对边简支以及对边固支正交各向异性矩形薄板的辛解析解。针对其他非对边简支矩形薄板的问题,本文提出一种基于辛几何法与叠加法结合的求解方法,作者称之为“辛—叠加方法”——该方法对于常见边界条件下的矩形板问题都是适用的。
     对于中厚板的弯曲问题,从Reissner板弯曲问题的控制方程出发,首先构造出一种形式简洁的Hamilton体系,然后利用辛几何方法理性求得了对边简支Reissner板的解析解,并利用得到的解析解分析和阐释了板弯曲中的边界效应问题。与以基本力学量为对偶变量的方程相比,本文构造出的对偶方程具有形式简洁、求解方便的特点。
     本文还分别将Kirchhoff板、Reissner板的自由振动问题导入Hamilton体系,理性求得了对边简支板自由振动问题的解析解。
     本文的求解方法是直接从弹性矩形板的控制方程出发,将问题导入到Hamilton体系当中,然后基于辛几何方法,利用分离变量、辛本征展开等手段,得到矩形薄板、中厚板的弯曲和振动问题的解析解。由于在求解过程中不需要预先人为选取试函数(如挠度函数),而是直接以板的基本方程为起点,通过逐步的理性推导得到问题的解析解,从而使本文求解方法具有明显优于传统解析解法的优点,跳出了半逆法的限制,可以得到更多传统方法难以得到的解析解。
As the important structural elements, elastic rectangular plates are widely used in various fields such as civil engineering, mechanical engineering, ocean engineering, aeronautics and astronautics. Solution of the plate problems (bending, vibration, etc.) have been one of the important research topics in engineering. However, it is hard to obtain the analytical solutions to most of these problems till now due to the mathematical challenge. In this dissertation, the bending and vibration problems of rectangular plates, including those based on the Kirchhoff theory (thin plate theory) and Reissner theory (moderately thick plate theory), are respectively introduced into the Hamiltonian system. Accordingly, the symplectic geometry is applied to solve the problems of rectangular plates with typical boundary conditions, some of which are known as the difficulties in elasticity.
     For the bending of thin plates, the Hamiltonian system is constructed from the governing equations, with the basic mechanical quantities as the symplectic variables. Then the symplectic approach is used to solve the canonical equation rationally. For the rectangular thin plates with two opposite edges simply supported, the Levy-type analytical solutions are derived; for those with two opposite edges clamped, the symplectic analytical solutions are obtained by determine the coefficients in the resultant series via the variational equations. In addition, the Hamiltonian system based solution method is extended to the bending of orthotropic plates and the sympletic analytical solutions of plates with two opposite edges simply supported or clamped are obtained. For the rectangular thin plates with complex boundary conditions such as cantilever plates, fully free plates and plates with two adjacent edges free, a symplectic superposition method is proposed, which is applicable to rectangular plates with any combinations of commonly used boundary conditions.
     For the bending of moderately thick plates, a concise form of the Hamiltonian system is constructed from the governing equations. Then the symplectic approach is used to solve the bending of moderately thick rectangular plates with two opposite edges simply supported as well as to explain the boundary effects in plate bending. Compared with the canonical equation based on basic mechanical quantities, the equation derived in this dissertation is simple in form and thus easy to solve.
     Free vibration problems of the thin and moderately thick plates are introduced into the Hamiltonian system and the plates with two opposite edges simply supported are rationally solved.
     The solution approach presented in this dissertation starts from the governing equations of plates. In the Hamiltonian system, using the symplectic geometry, the method of separation of variables as well as symplectic eigen expansion is adopted to obtain the analytical solutions of bending and vibration of thin and moderately thick rectangular plates. It is noted that the analytical solution procedure in this dissertation is completely rational without any predetermined trial functions such as the deflections, therefore, the solution methodology prevails over the conventional ones, as represented by the semi-inverse method. As a result, we conclude that the Hamiltonian system based solution approach enables one to obtain more analytical solutions which have not been obtained by other existing methods.
引文
[1]Navier CL. Extrait des recherches sur la flexion des plans elastiques [J]. Bulletin des Sciences par la Societe Philomathique de Paris,1823.
    [2]Kirchhoff G. Uber das gleichgewicht und die bewegung einer elastischen scheibe [J]. Journal fur die Reine und Angewandte Mathematik,1850,40:S.51-88.
    [3]Levy M. Memoire sur la theoric des plaques elastiques planes [J]. Journal de Mathematiques Pures et Appliquees,1877,30:219-306.
    [4]Timoshenko SP, Woinowsky-Krieger SW. Theory of plates and shells [M]. New York: McGraw-Hill,1959.
    [5]Huang MK, Conway HD. Bending of a uniformly loaded rectangular plate with two adjacent edges clamped and the others either simply supported or free [J]. Journal of Applied Mechanics-Transactions of the Asme,1952,19 (4):451-460.
    [6]Chang FV. Bending of uniformly cantilever rectangular plates [J]. Applied Mathematics and Mechanics,1980,1 (3):371-383.
    [7]Chang FV. Bending of a cantilever rectangular plate loaded discontinuously [J]. Applied Mathematics and Mechanics,1981,2 (4):403-410.
    [8]Holl DL. Cantilever plate with concentrated edge load [J]. Journal of Applied Mechanics-Transactions of the Asme,1937,4:8-10.
    [9]Barton MV. Finite difference equations for the analysis of thin rectangular plates with combinations of fixed and free edges [R]. Defense Research Lab Rep No 175,1948.
    [10]MacNeal RH. The solution of elastic plate problems by electrical analogies [J]. Journal of Applied Mechanics-Transactions of the Asme,1951,18(1):59-67.
    [11]Nash WA. Several approximate analysis of the bending of a rectangular cantilever plate by uniform normal pressure [J]. Journal of Applied Mechanics-Transactions of the Asme,1952,19(1):33-36.
    [12]Zienkiewicz OC, Cheung YK. The finite element method for analysis of elastic isotropic and orthotropic slabs [C]. ICE Proceedings,1964,28:471-488.
    [13]石钟慈.样条有限元[J].计算数学,1979,(1):50-72.
    [14]Cheung YK. Finite strip method in structural analysis [M]. Oxford:Pergamon Press,1976.
    [15]Civalek O. Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns [J]. Engineering Structures,2004,26 (2):171-186.
    [16]Malekzadeh P, Fiouz AR. Large deformation analysis of orthotropic skew plates with nonlinear rotationally restrained edges using DQM [J]. Composite Structures,2007,80 (2):196-206.
    [17]Donning BM, Liu WK. Meshless methods for shear-deformable beams and plates [J]. Computer Methods in Applied Mechanics and Engineering,1998,152 (1-2):47-71.
    [18]付宝连,谭文峰.求解厚矩形板弯曲问题的功的互等定理法[J].应用数学和力学,1995,16(4):367-379.
    [19]Li R, Zhong Y, Tian B, Liu YM. On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates [J]. Applied Mathematics Letters, 2009,22(12):1821-1827.
    [20]钟阳,田斌,李锐Winkler地基上矩形层合厚板三维解析解[J].哈尔滨工业大学学报,2009,43(4):109-113.
    [21]钟阳,田斌,李锐.双参数弹性地基上四边自由矩形薄板精确解[J].强度与环境,2009,36(5):19-25.
    [22]钟阳,田斌,李锐.矩形悬臂薄板精确解分析[J].武汉理工大学学报,2010,32(8):102-106.
    [23]田斌,钟阳,李锐,胡波.弹性矩形悬臂中厚板弯曲问题积分变换解[J].大连理工大学学报,2011,51(3):381-386.
    [24]Tian B, Zhong Y, Li R. Analytic bending solutions of rectangular cantilever thin plates [J]. Archives of Civil and Mechanical Engineering,2011,11 (4):1043-1052.
    [25]田斌.弹性矩形板动静力分析的有限积分变换法[D].大连:大连理工大学,2010.
    [26]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [27]Reissner E. On the theory of bending of elastic plates [J]. Journal of Mathematics and Physics, 1944,23:184-191.
    [28]Reissner E. The effect of transverse shear deformation on the bending of elastic plates [J]. Journal of Applied Mechanics-Transactions of the Asme,1945,12:A69-A77.
    [29]Reissner E. On bending of elastic plates [J]. Quarterly of Applied Mathematics,1947,5:55.
    [30]冯康,秦孟兆Hamilton动力体系的Hamilton算法[J].自然科学进展,1991,(2):102-112.
    [31]Hankins TL. Sir William Rowan Hamilton [M]. Baltimore:The Johns Hopkins University Press, 1980.
    [32]钟万勰.应用力学对偶体系[M].北京:科学出版社,2002.
    [33]钟万勰.力、功、能量与辛数学[M].大连:大连理工大学出版社,2007.
    [34]冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003.
    [35]Weyl H. The classical group [M]. Princeton:Princeton University Press,1946.
    [36]Arnol'd VI. Mathematical methods of classical mechanics [M].2nd ed. Moscow:Nauka,1989.
    [37]Feng K. On difference schemes and symplectic geometry [C]. Proceedings of Beijing Symposium on Differential Geometry and Differential Equations,1985:42-58.
    [38]Feng K. Difference-schemes for hamiltonian-formalism and symplectic-geometry [J]. Journal of Computational Mathematics,1986,4 (3):279-289.
    [39]Feng K. Symplectic geometry and numerical methods in fluid dynamics [C]. Tenth International Conference on Numerical Methods in Fluid Dynamics,1986,264:1-7.
    [40]Feng K. Canonical differences schemes for hamiltonian canonical differential equations [C]. International Workshop on Applied Differential Equations,1986:59-73.
    [41]Feng K, Qin MZ. The symplectic methods for the computation of hamiltonian equations [J]. Lecture Notes in Mathematics,1987,1297:1-37.
    [42]Ge Z, Feng K. On the approximation of linear hamiltonian-systems [J]. Journal of Computational Mathematics,1988,6 (1):88-97.
    [43]Feng K, Wu HM, Qin MZ, Wang DL. Construction of canonical difference-schemes for hamiltonian-formalism via generating-functions [J]. Journal of Computational Mathematics,1989, 7(1):71-96.
    [44]Feng K, Wu HM, Qin MZ. Symplectic difference-schemes for linear hamiltonian canonical systems [J]. Journal of Computational Mathematics,1990,8 (4):371-380.
    [45]Feng K. The hamiltonian way for computing hamiltonian-dynamics [C]. Applied and Industrial Mathematics,1989:17-35.
    [46]Feng K. Formal power series and numerical algorithms for dynamical system [C]. Proceedings of International Conference on Scientific Computation,1991:28-35.
    [47]Feng K, Qin M. Hamiltonian algorithms for hamiltonian-systems and a comparative numerical study [J]. Computer Physics Communications,1991,65 (1-3):173-187.
    [48]Feng K, Wang DL. A note on conservation laws of symplectic difference schemes for hamiltonian systems [J]. Journal of Computational Mathematics,1991,9 (3):229-237.
    [49]Feng K, Wang DL. Symplectic difference schemes for hamiltonian systems in general symplectic structure [J]. Journal of Computational Mathematics,1991,9 (1):86-96.
    [50]Feng K. How to compute properly newton's equation of motion [C]. Proceedings of the Second Conference on Numerical Methods for Partial Differential Equations,1992:15-22.
    [51]Feng K. Symplectic, contact and volume-preserving algorithms [C]. Proceedings of the First China-Japan Conference on Numerical Mathematics,1992:1-28.
    [52]Feng K, Shang ZJ. Volume-preserving algorithms for source-free dynamical-systems [J]. Numerische Mathematik,1995,71 (4):451-463.
    [53]Feng K. The step-transition operators for multi-step methods of ODE's [J]. Journal of Computational Mathematics,1998,16 (3):193-202.
    [54]Feng K. The calculus of generating functions and the formal energy for Hamiltonian algorithms [J]. Journal of Computational Mathematics.1998,16 (6):481-498.
    [55]Feng K. Contact algorithms for contact dynamical systems [J]. Journal of Computational Mathematics,1998,16(1):1-14.
    [56]Feng K, Wang DL. Variations on a theme by Euler [J]. Journal of Computational Mathematics, 1998,16 (2):97-106.
    [57]Feng K. Contact algorithms for contact dynamical systems [J]. Journal of Computational Mathematics,1998,16(1):1-14.
    [58]Feng K, Qin MZ. Symplectic geometric algorithms for hamiltonian systems [M]. S Berlin: Springer-Verlag,2010.
    [59]冯康.冯康文集(第一卷)[M].北京:国防工业出版社,1994.
    [60]冯康.冯康文集(第二卷)[M].北京:国防工业出版社,1995.
    [61]Timoshenko SP, Goodier JN. Theory of elasticity [M]. New York:McGraw-Hill,1951.
    [62]钟万勰,欧阳华江,邓子辰.计算结构力学与最优控制[M].大连:大连理工大学出版社,1993.
    [63]钟万勰.弹性力学求解新体系[M].大连:大连理工大学出版社,1995.
    [64]钟万勰.应用力学的辛数学方法[M].北京:高等教育出版社,2006.
    [65]钟万勰,钟翔翔.计算结构力学、最优控制及偏微分方程半解析法[J].计算结构力学及其应用,1990,7(1):1-15.
    [66]钟万勰.分离变量法与哈密尔顿体系[J].计算结构力学及其应用,1991,8(3):229-240.
    [67]钟万勰.条形域平面弹性问题与哈密尔顿体系[J].大连理工大学学报,1991,31(4):373-384.
    [68]Zhong W, Ouyang H. Hamiltonian system and simplectic geometry in mechanics of composite materials (Ⅰ)——fundamental theory [J]. Applied Mathematics and Mechanics,1992,13 (11): 1017-1022.
    [69]Zhong W, Ouyang H. Hamiltonian system and simpletic geometry in mechanics of composite materials (Ⅱ)——plane stress problem [J]. Applied Mathematics and Mechanics,1992,13 (12): 1077-1080.
    [70]Zhong W, Ouyang H. Hamiltonian system and simplectic geometry in mechanics of composite materials (Ⅲ)——flexure and free vibration of plates [J]. Applied Mathematics and Mechanics,1993, 14(1):21-25.
    [71]钟万勰.互等定理与共轭辛正交关系[J].力学学报,1992,24(4):432-437.
    [72]钟万勰,钟翔翔.柱形域椭圆型偏微分方程的横向本征函数的解法[J].数值计算与计算机应用,1992,(2):107-118.
    [73]欧阳华江,钟万勰,杨琦,邓子辰.一类基于Hamilton体系的半解析法[J].计算结构力学及其应用,1993,10(2):129-136.
    [74]钟万勰.哈密尔顿阵本征向量辛正交的物理意义[J].大连理工大学学报,1993,33(1):110-111.
    [75]钟万勰,欧阳华江,邓子辰.最优控制与计算结构力学的模拟关系[J].力学与实践,1993,15(1):8-10.
    [76]孙雁,钟万勰.基于哈密尔顿体系的半解析法与波传播问题的应用[J].上海交通大学学报,1994,28(3):1-9.
    [77]钟万勰.弹性平面扇形域问题及哈密顿体系[J].应用数学和力学,1994,15(12):1057-1066.
    [78]孙雁,钟万勰.基于哈密尔顿体系的条形域弹性问题的一类新的半解析法[J].上海交通大学学报,1995,29(4):17-22.
    [79]张洪武,钟万勰,李云鹏.基于哈密顿原理的两种材料界面裂纹奇性研究[J].固体力学学报,1996,17(1):19-30.
    [80]钟万勰,徐新生,张洪武Hamilton体系与弹性力学Saint-Venant问题[J].应用数学和力学,1996,17(9):781-789.
    [81]张鸿庆,阿拉坦仓,钟万勰Hamilton体系与辛正交系的完备性[J].应用数学和力学,1997,18(3):217-221.
    [82]钟万勰,姚伟岸.多层层合板圣维南问题的解析解[J].力学学报,1997,29(5):617-626.
    [83]徐新生,郑新广,张洪武,钟万勰.哈密顿体系与弹性楔体问题[J].应用力学学报,1999,16(2):140-144.
    [84]钟万勰,姚伟岸.板弯曲求解新体系及其应用[J].力学学报,1999,31(2):173-184.
    [85]姚伟岸.平面各向异性哈密顿体系及圣维南问题的解析解[J].大连理工大学学报,1999,39(5):612-615.
    [86]钟万勰,吴志刚,谭述君.状态空间控制理论与计算中的几个问题——分析结构力学的观点[J].航天控制,2007,25(6):3-12.
    [87]邹贵平,唐立民.板问题混合变量等参Hamiltonian元的半解析解[J].上海力学,1993,14(4):16-25.
    [88]邹贵平,唐立民.正交异性层合厚板的混合状态Hamiltonian元[J].复合材料学报,1994,11(3):97-104.
    [89]邹贵平,唐立民.复合材料迭层板的Hamilton正则方程及其状态空间有限元法[J].复合材料学报,1994,11(1):73-84.
    [90]邹贵平,唐立民.层合厚板混合状态Hamiltonian元的半解析解[J].航空学报,1994,15(7):794-799.
    [91]邹贵平,唐立民,刘迎曦Hamilton体系层合板动力响应半解析法[J].航空动力学报,1994,9(1):51-54.
    [92]邹贵平,唐立民,刘迎曦.厚板动力分析的混合状态Hamiltonian等参元[J].振动工程学报,1994,7(1):23-31.
    [93]Leung AYT, Mao SG. A symplectic galerkin method for nonlinear vibration of beams and plates [J]. Journal of Sound and Vibration,1995,183 (3):475-491.
    [94]Leung AYT, Mao SG. Symplectic integration of an accurate beam finite-element in nonlinear vibration [J]. Computers & Structures,1995,54 (6):1135-1147.
    [95]Zou GP, Tang LM. A semi-analytical solution for laminated composite plates in Hamiltonian system [J]. Computer Methods in Applied Mechanics and Engineering,1995,128 (3-4):395-404.
    [96]邹贵平,唐立民.层合厚板混合状态Hamiltonian动力元及其半解析解[J].固体力学学报,1995,16(4):303-310.
    [97]邹贵平,唐立民.层合板脱层开裂混合状态Hamiltonian元的半解析法[J].应用力学学报,1995,12(4):9-14.
    [98]邹贵平,唐立民.厚板弹塑性混合状态Hamiltonian元的半解析法[J].上海力学,1995,16(4):268-274.
    [99]Zhang HW, Zhong WX, Li YP. Stress singularity analysis at crack tip on bi-material interfaces based on Hamiltonian principle [J]. Acta Mechanica Solida Sinica,1996,9 (2):124-138.
    [100]Zhong W, Xu X, Zhang H. Hamiltonian system and the Saint Venant problem in elasticity [J]. Applied Mathematics and Mechanics,1996,17 (9):827-836.
    [101]Zhong WX, Xu XS. Direct solutions of the Saint Venant problems [C]. Engineering Mechanics: Proceedings of the 11th Conference,1996, 1and 2:1151-1154.
    [102]钟万勰,徐新生,张洪武.弹性曲梁问题的直接法[J].工程力学,1996,13(4):1-8.
    [103]邹贵平.反对称铺设层合板动力问题的Hamilton体系及辛几何解法[J].固体力学学报,1996,17(4):312-319.
    [104]邹贵平.层合板壳问题的哈密顿体系与哈密顿型广义变分原理[J].上海大学学报(自然科学版),1996,2(2):119-128.
    [105]邹贵平.薄板问题的Hamilton体系和辛几何方法[J].应用基础与工程科学学报,1996,4(4):335-343.
    [106]Xu XS, Zhong WX, Zhang HW. The Saint-Venant problem and principle in elasticity [J]. International Journal of Solids and Structures,1997,34 (22):2815-2827.
    [107]Zhong W, Yao W. The Saint Venant solutions of multi-layered composite plates [J]. Advances in Structural Engineering,1997,1 (2):127-133.
    [108]杨正林,陈浩然.层合板热弹性问题混合状态Hamilton半解析法[J].大连理工大学学报,1 997,37(3):259-264.
    [109]邹贵平.层合板热应力分析的辛正交解析法[J].强度与环境,1997,(3):1-8.
    [110]邹贵平Reissner板的哈密尔顿体系及其辛正交解析法[J].力学学报,1997,29(2):252-256.
    [111]邹贵平Mindlin板动力学问题的Hamilton体系及其辛解法[J].上海力学,1997,18(3):260-265.
    [112]Zou G. An exact symplectic geometry solution for the static and dynamic analysis of Reissner plates [J]. Computer Methods in Applied Mechanics and Engineering,1998,156 (1-4):171-178.
    [113]杨正林,陈浩然.任意边界形状层合板热弹性分析的Hamilton半解析法[J].大连理工大学学报,1998,38(1):16-19.
    [114]杨正林,陈浩然.非线性热弹性问题的Hamilton半解析法及其在层合板固化降温过程中热应力的分布研究[J].复合材料学报,1998,15(4):128-133.
    [115]Yao W, Zhong WX, Su B. New solution system for circular sector plate bending and its application [J]. Acta Mechanica Solida Sinica,1999,12 (4):307-315.
    [1]6] 邹贵平.考虑剪切效应层合板的Hamilton体系及辛几何方法[J].应用力学学报,1999,16(1):149-153.
    [117]Yao W, Su B, Zhong W. Hamiltonian system for orthotropic plate bending based on analogy theory [J]. Science in China Series E-Technological Sciences,2001,44 (3):258-264.
    [118]Yao WA, Xu C. A restudy of the paradox on an elastic wedge based on the Hamiltonian system [J]. Journal of Applied Mechanics-Transactions of the Asme,2001,68 (4):678-681.
    [119]Yao WA, Yang HT. Hamiltonian system based Saint Venant solutions for multi-layered composite plane anisotropic plates [J]. International Journal of Solids and Structures,2001,38 (32-33): 5807-5817.
    [120]马坚伟,徐新生,杨慧珠,钟万勰.平面粘性流体扰动与哈密顿体系[J].应用力学学报,2001,18(4):82-86.
    [121]孙雁,刘正兴,钟万勰.基于哈密尔顿体系的裂纹尖端应力奇性分析及计算[J].力学季刊,2001,22(1):18-23.
    [122]钟万勰.变截面电磁波导的辛分析[J].力学季刊,2001,22(3):273-280.
    [123]钟万勰.电磁波导的辛体系[J].大连理工大学学报,2001,41(4):379-387.
    [124]钟万勰.周期电磁波导的能带辛分析[J].计算力学学报,2001,18(4):379-387.
    [125]罗建辉.弹性力学求解体系研究[D].长沙:湖南大学.2002.
    [126]Yao WA, Zhang BR. Paradox solution on elastic wedge dissimilar materials [J]. Applied Mathematics and Mechanics-English Edition,2003,24 (8):961-969.
    [127]Zhang HW, Zhong WX. Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions [J]. International Journal of Solids and Structures,2003,40 (2): 493-510.
    [128]Zhong WX, Williams FW, Leung AYT. Symplectic analysis for periodical electro-magnetic waveguides [J]. Journal of Sound and Vibration,2003,267 (2):227-244.
    [129]徐新生,郭杏林,马国军,齐朝晖.旋转系统中弹性结构振动问题的哈密顿体系方法[J].振 动工程学报,2003,16(1):36-40.
    [130]钟万勰.电磁波导的半解析辛分析[J].力学学报,2003,35(4):401-41 0.
    [131]Yao WA, Sui YF. Symplectic solution system for Reissner plate bending [J]. Applied Mathematics and Mechanics-English Edition,2004,25 (2):178-185.
    [132]鲍四元,邓子辰.环扇形板弯曲问题中环向模拟为时间的辛体系[J].西北工业大学学报,2004,22(6):734-738.
    [133]龙志飞,岑松,龙驭球,罗建辉.薄板哈密顿含参变分原理[J].工程力学,2004,21(4):1-5.
    [134]罗建辉,岑松,龙志飞,龙驭球.厚板哈密顿求解体系及其变分原理与正交关系[J].工程力学,2004,21(2):34-39.
    [135]马国军,徐新生,郭杏林.旋转运动中弹性梁耦合振动的辛方法[J].计算力学学报,2004,21(6):671-677.
    [136]松岑,龙志飞,罗建辉,龙驭球.薄板哈密顿求解体系及其变分原理[J].工程力学,2004,21(3):1-5,30.
    [137]姚伟岸.辛对偶求解体系在弹性力学中的扩展应用研究[D].大连:大连理工大学,2004.
    [138]鲍四元,邓子辰.哈密顿体系下矩形薄板自由振动的一般解[J].动力学与控制学报,2005,3(2):10-16.
    [139]鲍四元,邓子辰Mindlin中厚板的辛求解方法[J].固体力学学报,2005,26(1):102-106.
    [140]Hu C, Fang XQ, Long G, Huang WH. Hamiltonian systems of propagation of elastic waves and localized vibrations in the strip plate [J]. International Journal of Solids and Structures,2006,43 (21):6568-6573.
    [141]Xu XS, Ma Y, Lim CW, Chu HJ. Dynamic buckling of cylindrical shells subject to an axial impact in a symplectic system [J]. International Journal of Solids and Structures,2006,43 (13): 3905-3919.
    [142]Xu XS, Zhang WX, Li X, Wang GP. An application of the symplectic system in two-dimensional viscoelasticity [J]. International Journal of Engineering Science,2006,44 (13-14):897-914.
    [143]高强.哈密顿体系中波的传播、鲁棒控制与辛方法探索[D].大连:大连理工大学,2006.
    [144]Leung AYT, Xu XS, Gu Q, Leung CTO, Zheng JJ. The boundary layer phenomena in two-dimensional transversely isotropic piezoelectric media by exact symplectic expansion [J]. Internationa] Journal for Numerical Methods in Engineering,2007,69 (11):2381-2408.
    [145]Lim CW, Cui S, Yao WA. On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported [J]. International Journal of Solids and Structures,2007,44 (16):5396-5411.
    [146]Wang JS, Qin QH. Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities [J]. Philosophical Magazine,2007,87 (2):225-251.
    [147]顾佥.压电材料中力学问题的辛体系方法[D].大连:大连理工大学,2007.
    [148]李晓川.电磁弹性固体辛对偶体系及虚边界元数值方法[D].大连:大连理工大学,2007.
    [149]马源.哈密顿体系下弹性圆柱壳的动态屈曲研究[D].大连:大连理工大学,2007.
    [150]姚征.辛体系算法在波的传播与振动问题中的应用[D].大连:大连理工大学,2007.
    [151]张维祥.粘弹性力学中的辛方法[D].大连:大连理工大学,2007.
    [152]Tan S, Zhong W. Numerical solutions of linear quadratic control for time-varying systems via symplectic conservative perturbation [J]. Applied Mathematics and Mechanics,2007,28 (3): 277-287.
    [153]Leung AYT, Zheng JJ, Lim CW, Zhang XC, Xu XS, Gu Q. A new symplectic approach for piezoelectric cantilever composite plates [J]. Computers & Structures,2008,86 (19-20): 1865-1874.
    [154]Xu XS, Chu HJ, Lim CW. Hamiltonian system for dynamic buckling of transversely isotropic cylindrical shells subjected to an axial impact [J]. International Journal of Structural Stability and Dynamics,2008,8 (3):487-504.
    [155]Xu XS, Leung AYT, Gu Q, Yang H, Zheng JJ.3D symplectic expansion for piezoelectric media [J]. International Journal for Numerical Methods in Engineering,2008,74 (12):1848-1871.
    [156]鞠伟,岑松:龙驭球.基于哈密顿解法的矩形厚板分析[J].工程力学,2008,25(1):1-7,33.
    [157]鞠伟,岑松,傅向荣,龙驭球.基于哈密顿解法的厚板边界效应典型算例分析[J].工程力学,2008,25(2):1-8.
    [158]谈梅兰,吴光,王鑫伟.矩形薄板面内非线性分布载荷下的辛弹性力学解[J].工程力学,2008,25(10):50-53.
    [159]姚伟岸,孙贞.环扇形薄板弯曲问题的环向辛对偶求解方法[J].力学学报,2008,40(4):557-563.
    [160]Leung AYT, Xu X, Zhou Z, Wu YF. Analytic stress intensity factors for finite elastic disk using symplectic expansion [J]. Engineering Fracture Mechanics,2009,76 (12):1866-1882.
    [161]Li R, Zhong Y. On new symplectic approach for exact free vibration solutions of moderately thick rectangular plates with two opposite edges simply supported [J]. International Journal of Engineering and Applied Sciences,2009,1 (3):13-28.
    [162]Lim CW, Lu CF, Xiang Y, Yao W. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates [J]. International Journal of Engineering Science,2009, 47(1):131-140.
    [163]Lu CF, Lim CW, Yao WA. A new analytic symplectic elasticity approach for beams resting on pasternak elastic foundations [J]. Journal of Mechanics of Materials and Structures,2009,4 (10): 1741-1754.
    [164]Tarn JQ, Chang HH, Tseng WD. Axisymmetric deformation of a transversely isotropic cylindrical body:a hamiltonian state-space approach [J]. Journal of Elasticity,2009,97 (2):131-154.
    [165]Tarn JQ, Tseng WD, Chang HH. A circular elastic cylinder under its own weight [J]. International Journal of Solids and Structures,2009,46 (14-15):2886-2896.
    [166]Xu XS, Ma JQ, Lim CW, Chu HJ. Dynamic local and global buckling of cylindrical shells under axial impact [J]. Engineering Structures,2009,31 (5):1132-1140.
    [167]Zhao L, Chen WQ. Symplectic analysis of plane problems of functionally graded piezoelectric materials [J]. Mechanics of Materials,2009,41 (12):1330-1339.
    [168]Zhong Y, Li R. Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach [J]. Mechanics Research Communications,2009,36 (6):707-714.
    [169]Zhong Y, Li R, Liu YM, Tian B. On new symplectic approach for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported [J]. International Journal of Solids and Structures,2009,46 (11-12):2506-2513.
    [170]Zhou ZH, Xu XS, Leung AYT. The mode III stress/electric intensity factors and singularities analysis for edge-cracked circular piezoelectric shafts [J]. International Journal of Solids and Structures,2009,46 (20):3577-3586.
    [171]褚洪杰.弹性圆柱壳动力和热屈曲中的辛方法[D].大连:大连理工大学,2009.
    [172]刘艳红,张惠明,卿光辉.基于Hamilton理论的压电材料智能叠层板的固有频率分析[J].船舶力学,2009,13(5):788-794.
    [173]钟阳,李锐,田斌.矩形中厚板自由振动问题的哈密顿体系与辛几何解法[J].动力学与控制学报,2009,7(4):302-307.
    [174]钟阳,李锐,田斌.矩形中厚板哈密顿体系的一种构造方法及典型算例分析[J].应用力学学报,2009,26(3):524-529.
    [175]Hou GL, Alatancang. Symplectic eigenfunction expansion theorem for elasticity of rectangular planes with two simply-supported opposite sides [J]. Applied Mathematics and Mechanics-English Edition,2010,31 (10):1241-1250.
    [176]Leung AYT, Xu XS, Zhou ZH. Hamiltonian approach to analytical thermal stress intensity factors-part 1:thermal intensity factor [J]. Journal of Thermal Stresses,2010,33 (3):262-278.
    [177]Leung AYT, Xu XS, Zhou ZH. Hamiltonian approach to analytical thermal stress intensity factors-part 2 thermal stress intensity factor [J]. Journal of Thermal Stresses,2010,33 (3): 279-301.
    [178]Lim CW. Symplectic elasticity approach for free vibration of rectangular plates [J]. Advances in Vibration Engineering,2010,9 (2):159-163.
    [179]Lim CW, Xu XS. Symplectic elasticity:theory and applications [J]. Applied Mechanics Reviews, 2010,63(5).
    [180]Liu YM, Li R. Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach [J]. Applied Mathematical Modelling,2010,34 (4):856-865.
    [181]Tarn JQ, Chang HH, Tseng WD. A hamiltonian state space approach for 3d analysis of circular cantilevers [J]. Journal of Elasticity,2010,101 (2):207-237.
    [182]Xu XS, Chu HJ, Lim CW. A symplectic hamiltonian approach for thermal buckling of cylindrical shells [J]. International Journal of Structural Stability and Dynamics,2010,10 (2):273-286.
    [183]Xu XS, Ma JQ, Lim CW, Zhang G. Dynamic torsional buckling of cylindrical shells [J]. Computers & Structures,2010,88 (5-6):322-330.
    [184]Zhao L, Chen WQ. Plane analysis for functionally graded magneto-electro-elastic materials via the symplectic framework [J]. Composite Structures,2010,92 (7):1753-1761.
    [185]谈梅兰,吴光Hamilton体系下矩形薄板受抛物线压力载荷的屈曲分析[J].固体力学学报,2010,31(1):53-59.
    [186]徐新生,马春泓,褚洪杰,Lim C.在热冲击下弹性梁非线性热局部屈曲[J].兵工学报,2010,31:131-135.
    [187]杨红卫,钟万勰,侯碧辉.力学、热力学及电磁波导中的正则变换和辛描述[J].物理学报, 2010,59(7):4437-4441.
    [188]Bai E, Chen ATC. Responses to "Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach" [J]. Applied Mathematical Modelling,2011,35 (9):4674-4674.
    [189]Li R, Zhong Y. On a new symplectic geometry method for exact bending solutions of orthotropic rectangular plates with two opposite sides clamped [J]. Acta Mechanica,2011,216 (1-4):333-343.
    [190]Li R, Zhong Y, Tian B. On new symplectic superposition method for exact bending solutions of rectangular cantilever thin plates [J]. Mechanics Research Communications,2011,38 (2):111-116.
    [191]Li R, Zhong Y, Tian B, Du J. Exact bending solutions of orthotropic rectangular cantilever thin plates subjected to arbitrary loads [J]. International Applied Mechanics,2011,47 (1):107-119.
    [192]Wang H, Alatancang, Huang JJ. Symplectic eigenvector expansion theorem of a class of operator matrices arising from elasticity theory [J]. Chinese Physics B,2011,20 (1):010209.
    [193]Zhong Y, Li R, Tian B, Liu Y. Analytic solution for Reissner plate bending based on new symplectic approach [J]. Journal of Harbin Institute of Technology (New Series),2011,18 (1): 35-41.
    [194]陈晓敏,侯国林,程婷,王欣杰,阿拉坦仓.矩形中厚板Hamilton正则方程的解析解[J].固体力学学报,2011,32(6):611-618.
    [195]周震寰.断裂问题中的哈密顿体系方法及其应用[D].大连:大连理工大学,2011.
    [196]褚洪杰,徐新生,林志华,江南,马建青.弹性梁非线性热屈曲行为与辛本征解展开方法[J].大连理工大学学报,2011,51(1):1-6.
    [197]杨有贞,王燕昌,马文国,戚靖骅.正交叠层复合材料板弯曲问题辛方法研究[J].地下空间与工程学报,2011,7(6):1134-1137.
    [198]钟阳,李锐,田斌.四边固支矩形薄板自由振动的哈密顿解析解[J].应用力学学报,2011,28(4):323-327.
    [199]Liu YM, Li R. Reply to "Responses to'Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach'" [J]. Applied Mathematical Modelling,2012,36 (2):859.
    [200]同济大学数学系.线性代数(第五版)[M].北京:高等教育出版社,2007.
    [201]徐芝纶.弹性力学(下册)(第三版)[M].北京:高等教育出版社,1990.
    [202]Bhaskar K, Kaushik B. Simple and exact series solutions for flexure of orthotropic rectangular plates with any combination of clamped and simply supported edges [J]. Composite Structures, 2004,63 (1):63-68.
    [203]张福范.两相邻边固定两相邻边自由的矩形板[J].固体力学学报,1981,(4):491-502.
    [204]Leissa AW, Niedenfuhr FW. Bending of a square plate with two adjacent edges free and the others clamped or simply supported [J]. AIAA Journal,1963,1 (1):116-120.
    [205]张福范.弹性薄板(第二版)[M].北京:科学出版社,1984.
    [206]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [207]中国科学院力学研究所.夹层板壳的弯曲稳定和振动[M].北京:科学出版社,1977.
    [208]柳春图,蒋持平.板壳断裂力学[M].北京:国防工业出版社,2000.
    [209]Gorman DJ. Free vibration analysis of rectangular plates [M]. New York:Elsevier,1982.
    [210]Liew KM, Xiang Y, Kitipornchai S. Transverse vibration of thick rectangular plates—Ⅰ. Comprehensive sets of transverse boundary conditions [J]. Computers and Structures,1993,49 (1): 1-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700