用户名: 密码: 验证码:
中高碳合金钢薄板坯连铸连轧新工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究CSP薄板坯连铸连轧工艺生产中高碳合金钢的物理冶金机理和工业生产技术。
     中高碳合金钢的应用十分广泛,使用的条件也很苛刻。因此要求要有高的淬硬性和淬透性、耐磨性和韧性,产品可以热轧直接退火应用或冷轧后应用;热轧状态使用的合金钢还要求保证板形优良、厚度精度高;微观组织要求有良好的等向性、高的洁净度及理想的金相组织,细小均布的碳化物形态。这些高的要求,除了在钢材化学成分上进行合理的配比优化外,相应在冶炼、浇注、热加工、热处理上还要采用一定的新的生产工艺技术。
     中高碳合金钢的碳含量都比较高,有资料显示,当碳的质量分数大于0.45%时,偏析会急剧增加,凝固过程的枝状晶充分生长,选分结晶也相当严重,铸坯中心的元素正偏析在加剧,同时枝状晶的搭桥现象还会阻碍钢液对凝固末端的补充,导致铸坯中心疏松就很严重。利用CSP生产工艺的铸坯的凝固速度快,薄板坯是由液态快冷形成,从γ-α无中间反复相变的技术特点。因此,通过合理的冶金成分设计,建立了全新的薄板坯连铸连轧工艺生产中高碳合金钢的冶金工艺控制技术,成功地开发出具有低脱碳层、产品均匀性好,高性能、高附加值低成本中高碳合金钢热轧薄板。
     本文对碳含量(Wt%)0.3~1.0%的中高碳合金钢成分波动规律进行了研究,提出了影响中高碳合金钢成分波动以及偏析的主要影响因素,并开发了保证成分均匀性以及减少偏析的炼钢、精炼和薄板坯连铸控制技术,实施后各类中高碳合金钢成分均匀性控制水平和偏析控制水平达到国外同类产品水平。
     通过对中高碳合金钢性能影响较大的Al2O3、SiO2、MnS等类型夹杂物的形貌、数量控制以及分布规律的研究。采用显微分析、扫描电镜分析以及电解分析等手段,对比分析不同工艺条件下夹杂物形貌、数量以及分布,研究电炉冶炼工艺、LF精炼工艺和中间包控制工艺的夹杂物控制技术,优选出合理的控制工艺。
     采用热膨胀以及金相法,测定出所试验的钢种在不同冷却速度下连续冷却时的膨胀曲线,绘制了30CrMo、50CrV4和SKS51的连续冷却转变(CCT)曲线;根据不同钢种的CCT曲线上特征点来确定各个相变点,从而确定了该钢种的连续冷却转变曲线;再利用电镜和光学显微镜观察试样的显微组织,分析不同的冷却速度对不同钢种的相变点的影响;另外,还分析讨论了不同的工艺参数对贝氏体转变、马氏体及珠光体转变和对CCT曲线的形状和位置的影响;研究了中高碳合金钢连续冷却过程中不同的钢种奥氏体转变的过程及转变产物的组织与性能,为实际生产工艺制度的优化提供了理论依据。
     为了控制热轧钢带的表面脱碳,对薄板坯连铸连轧流程生产的热轧中高碳合金钢的脱碳行为进行了研究;比较与分析了薄板坯连铸连轧流程与传统流程的脱碳规律,以及热轧中高碳合金钢带在不同的加工条件下所发生脱碳的程度以及影响因素。
     影响中高碳合金钢组织性能的重要因素是控制冷却工艺和合金元素的含量。钢的连续冷却转变曲线,即CCT曲线是研究和制定钢的控制冷却工艺的理论基础和前提。为此,根据测定的中高碳合金钢代表钢种的CCT曲线,研究了卷取温度对钢的组织性能的影响;研究了关键合金元素对钢的组织性能的影响。
     通过对薄板坯连铸连轧工艺生产中高碳合金钢的研究,使珠钢在国内第一次生产出高品质的中高碳合金钢系列热连轧钢板,产品质量与世界先进水平相当。这不仅提升了我国高强度热连轧钢板生产的技术水平,而且还改变了国内工程机械、高端合金工具制造等行业长期依赖进口的局面。
This paper makes a study of physical metallurgical mechanism and manufacture techniques of thin slab continuous casting and rolling process of medium and high carbon alloyed steels.
     As is well known, medium and high carbon alloyed steels are widely applied nowadays while its operating conditions are very harsh as followings. First, it demands high grinding, harden ability, wear resistance and ductility; Secondly, they can be applied only after hot rolling annealing or cold rolling; Thirdly, the hot-rolled alloyed steels should be of fine-shape and high-precision thickness; Last but not the least, the microstructure should have good isotropy, high cleanliness, ideal metallurgical microstructure and evenly distributed carbide shape. To meet all these high demands, some new production technologies must be applied on metallurgical、casting、thermo-mechanical process besides the optimal ratio of the steels chemical composition.
     When the carbon content is high, with the content of lactose higher than 0.45%, its segregation will increase shapely and the columnar grain crystal will grow sufficiently during the solidification processing. What's more, select crystallization will be severe, and the positive segregation of the centerline will intensify. At the same time, the bridging will hinder the supplement to the solidification end from the molten steel. Thus,.center porosity comes into being. Considering some technical characteristics that the slabs produced by CSP solidify quickly, the slabs come into being by liquid cooling and there is no repeated transformation from, thin slab continuous casting and continuous rolling (CSP) process is adopted. After the rational composition design, the totally new metallurgical control technique is used and hot-rolled steel plates of the medium and high carbon alloyed steels with low decarburized layer, good product homogeneity, high-performance, high additional-value and low cost are successfully developed.
     This paper did research on oscillating regulation of the components of the medium and high carbon alloyed steels with the carbon content (Wt%) from 0.3% to 1.0%, put forward the main factors which affected the oscillation and segregation and developed the access control to guarantee the composition uniformity and decrease the segregation during steelmaking, LF, and continuous casting and hot rolling process. The access control over the composition uniformity and segregation all has reached the international advanced level after the enforcement.
     The paper did research on morphology, quantity control and distributive characteristics of the inclusions such as Al2O3、SiO2、MnS and so on, which has much effects on the performance of the medium and high carbon alloyed steels. By The microscopic analysis, scanning electron microscopy analysis and electrolytic analysis, the author took inclusion morphology、quantity and distribution in different process conditions as well as furnace smelting process, and inclusion control of tundish into consideration, choosing the rational control process.
     By using thermal expansion and metallographic method, the author measured the thermal curve when the samples went through continuous cooling at different rate and drew the CCT curve of 30CrMo、50CrV4 and SKS51. Also the author determined the transformation temperatures of Austenite and its continuous cooling transformation curve. Through optical microscope and electron microscope, the author observed the samples'microstructure and analysed the effects on transformation temperature at different cooling rate. The author also analysed the effects on deformation parameters, Bainite transformation, pearlite transformation, CCT curve shape and location and the formation discipline of CCT curve under different processing. And at the same time, Austenite transformation process and the products microstructure and properties were researched during the continous cooling process, which laid a theoretical basis for establishing practical process systems.
     In order to control decarburization, the author did research on decarburization when the strip was hot-rolled during the thin slab casting and rolling process, compared the different decarburization between the thin slab casting and rolling process and traditional process and investigated the decarburization degree and influencing factors when the medium and high Carbon alloyed steels were hot-rolled under different processing condition.
     Controlled cooling processing (cooling rate and cooling temperature) and alloying element content are the main factors affecting the microstructure and properties. Continuous cooling transformation (CCT) is the theoretical basis on considering and determining the cooling technology. So according to the CCT of the characteristic steels, the author investigated how the coiling temperature and the key alloying elements affected the microstructure and properties.
     With the research on.high carbon alloy steel in the thin slab casting and rolling processing, Guangzhou Zhujiang Steel Co.,ltd. has produced high-quality continuous hot rolling plates for the medium and high carbon alloyed steels, with the quality up to the advanced level in the world, which not only upgrades our production technology on high-strength continuous hot rolling plates, but also changes the current situation that some industries such as construction machinery, advanced alloy tool manufacture and so on relies on import over a long period of time.
引文
[1]董瀚.合金钢的现状与未来[J].中国冶金,1999,6:29-34.
    [2]聂义宏,付书红,惠卫军等.硼对高强度弹簧钢脱碳敏感性的影响[J].钢铁研究学报,2005,17(4):45-50.
    [3]章守华,吴承建.钢铁材料学[M].北京:冶金工业出版社,1992.
    [4]周德光,王元立,朱立新.电弧炉E(AF)-钢包炉L(F)-连铸生产轴承钢的工艺和质量[J].特殊钢,1998,19(10):17-20.
    [5]傅杰,王平,吴华杰.轴承钢中微量元素氧-氮-钛-钙的作用与控制[J].1998,19(6):31-34.
    [6]龚伟.连铸轴承钢氧含量和夹杂物控制研究[D].辽宁:东北大学博士论文.2006,01.
    [7]峰公雄,吉田博.长寿命高炭铬轴受钢[J].日本公开特许公报,昭55-4-910.
    [8]Tricot R. Relative Detrimental Effect of Inclusions on Service Properties of Bearing Steel [J]. Production and Application of Clean Steels, Balatonfured, Hungary, The Iron and Steel Institute, June2-4,199-204.
    [9]Cogne J.Y, Heritier B, Monnot J. Cleanness and Fatigue Life of Bearing Steels [J]. Clean Steel3, Balatonufred, Hungary. The Institute of Metals, June2-4,1986,26-31.
    [10]M N维诺格拉德.滚珠轴承钢中的非金属夹杂物(中译本)[M].北京:重工业出版社,1956.
    [11]Hampshire J. M., King E. Quantitative Inclusion Ratings and Continuous Casting:User Experience and Relationships with Rolling Contact Fatigue Life [J]. Effect of Steel Manufacturing Processes on the Quality of Bearing Steels, ASTMSTP 987, J. J. C. Hoo, Ed., PhiladelPhia,1988,61-80.
    [12]Tardy P, Tolnay L, Karoly G. Bearing Steels Cleanliness or Inclusion Modification [J]. Proceedings of 6th International Iron and Steel Congress, Nagoya, Japan, ISIJ, oct.21-26, 1990,637-643.
    [13]Enekes S. Effect of Some Metallurgical Characteristics on the Fatigue Life of Bearing Steels [J]. Production and Application of Clean Steels, Balatonfured, Hugary. The Iron and Steel Institute, June 23-26,1970,215-220.
    [14]Toshikazu UESUGI. Production of high carbon chromium steel in vertical type con-tinuous caster [J]. Transactions of the Iron and Steel Institute of Japan,1986,26(7): 614-620.
    [15]Monnot J., Heritier B., Conge J. Y. Relationship of Melting Practice. Inclusion Type and Size with Fatigue Resistance of Bearing Steels [J]. Effect of Steel Manufacturing Processes on the Quality of Bearing Steels, ASTM STP 987, J. J. C. Hoo, Ed., PhiladelPhia,1988, 149-165.
    [16]门间改三,大谷三郎.炭化物粒度以及未溶解炭化物量对轴承钢强度的影响[J].日本金属学会志,1965,31(11):1266-1271.
    [17]王忠英.钡系合金处理轴承钢的工艺及理论研究[D].北京科技大学博士学位论文,1998年.
    [18]张平,谢亚庆,王世俊等.大冶钢厂和瑞典SKF真空脱气轴承钢疲劳寿命与冶金质量对比分析[J].轴承钢第六届学术报告会论文集,1993,65-69.
    [19]AT斯别克托尔.轴承钢的组织与性能(中译本)[M].上海:上海科学技术文献出版社,1983.
    [20]傅杰,马廷温,王平等.特殊钢冶炼技术的近期进展[J].钢铁研究学报,16,8(6):47-51.
    [21]周德光,徐卫国,王平等.轴承钢电渣重熔过程中氧的控制及作用研究[J].钢铁,1998,33(3):13-17.
    [22]闫文凯.高纯净GCrl5轴承钢组织演变与控制工艺的研究[D].云南:昆明理工大学硕士论文.2010,03.
    [23]杨吉春,郭殿峰.U74重轨大方坯开坯后中心碳偏析的演变分析[J].包头钢铁学院学报,2006,25(6):119-122.
    [24]钟华,李晶,陈威等.光电直读光谱法测定重轨钢中碳偏析的方法研究[J].理化检验-化学分册,2003,39(8):458-460.
    [25]周德光,徐君浩.轴承钢连铸坯碳偏析的形成机理及影响因素[J].冶金科技,1999,2:30-34.
    [26]王日红.连铸坯中心碳偏析的特点及其控制[J].江苏冶金,1998,1:48-50.
    [27]Shenhua Song R. G Faulkner. Determination of Neutron Irradiation-Induced Phosphorus Segregation on Grain Boundaries in a P-doped 2.25CrlMo Steel [J]. Journal of Materials Science & Technology,2004,20(1):81-85.
    [28]陈学群,常万顺.碳钢中磷的偏析对坑孔腐蚀的影响[J].中国腐蚀与防护学报,2001,21(4):193-199.
    [29]陈凤秋10CrNiCu连铸方坯和球扁钢的偏析及其对性能的影响[D].黑龙江:哈尔滨工程大学硕士论文.2008,01.
    [30]冯科,徐楚韶,陈登福等.连铸坯微观及宏观偏析数学模型的研究进展[J].特殊 钢,2002,23(4):8-12.
    [31]Kyung Shik OH, etal. Macro-segregation behavior in continuously cast high carbon steel and billets at the final stage of solidification in combination stirring [J]. ISIJ International, 1995,35 (7):860-875.
    [32]董瀚.合金钢的现状与发展趋势[J].特殊钢,2000,10:20-24.
    [33]朱立光,宋实,刘新生等.连铸板坯宏观偏析的研究闭[J].河北理工学院学报,1997(1):22-25.
    [34]Choudhary S.K. Ghosh. Morphology and macro-segregation in continuously cast steel billets [J]. ISIJ International,1994,34(4):335-347.
    [35]MaPles A. L. Poirier D. R. Convection in the Two-Phased Zone of Solidifying Alloys [J]. Metallurgical Transactions,1984,15B:163.
    [36]马长文,沈厚发,黄天佑.方坯连铸中心偏析的数值模拟[J].铸造,2004,53(8):617-620.
    [37]Kremer K. J., Heinen K. H., etal. Process technology and quality control for the continu-ous casting of special steel billets [J]. MPT Metall. Plant Tech.1987,10(1):42-52.
    [37]Beckermann C. Modeling of macro-segregation:Past, Present, and future. Proc. Merton C. Flemings Symp [C]. On Solidification Mat. Proc.2000:297-310.
    [38]安树均,张炳成.连铸坯偏析研究发展近况[J].首钢科技,2006,4:8-12.
    [39]陈雷.电磁搅拌连铸坯中白亮带的形成机理和影响因素[J].武汉钢铁学院学报,1987,4:68-75.
    [40]索进平,杨柏华,王贤胜等.微量元素对微合金非调质钢组织和性能的影响[J].理化检验-物理分册,2000,36(4):155-158.
    [41]索进平,董瀚.40MnV钢中微合金元素氮-氧化物的析出行为[J].特殊钢,2005,26(4):19-22.
    [42]郑志强,陈克燕,索进平等.钢水连铸时稀土元素的脱硫作用[J].特殊钢,2001,,22(1):13-15.
    [43]Kim Y. J., Kou S.. Experimental study on Process variables in crystal growth by OHNO continuous casting [J]. Metall. Trans. A.,1988,19(7):1849-1852.
    [44]Sivesson, Raihle P. Thermal soft reduction in continuously cast slabs [J]. Mater. Sci. En-g.A,1993,173(1):299-304.
    [45]周德光,傅杰,王平等.轴承钢连铸坯碳偏析的形成机理及影响因素[J].北京科技大学学报,1999,21(2):131-134.
    [46]钱刚,阮小江,蔡燮鳌等.连铸轴承钢大方坯中心偏析的成因及对策[J].钢铁,2002, 37(5):16-18.
    [47]史俊芳,钟云波,任忠鸣等.强磁场对Cu-90%Pb合金凝固中比重偏析的影响[J].上海金属,2006,28(1):22-27.
    [48]于艳,刘俊江,徐海澄.结晶器电磁搅拌对连铸坯质量的影响[J].钢铁,2005,40(2):31-33.
    [49]齐雅丽,贾光霖,赵玉华.电磁搅拌对铸锭凝固组织的影响[J].沈阳航空工业学院学报,2004,21(2):17-18.
    [50]V. Ludlow., A. Normanton高碳钢连铸小方坯中心偏析最小化对策[J].世界钢铁,2006,4:48-53.
    [51]Oh K S., Park J K.. Quality improvement of continuously cast blooms for high grade tire cord steel [J]. Iron Steelmak.1996,23(3):65-68.
    [52]Chen Y K., Feng F A.. Improvement of center segregation for high carbon steel bloom [J]. Steelmaking Conf Proc.1996,79:505-512.
    [53]马育民.65Mn冷轧带钢脱碳层的研究[J].轧钢,1995,6:22-24.
    [54]赵中英.高速线材生产的弹簧钢盘卷的表面脱碳分析[J].宝钢技术,2003,3:56-58.
    [55]刘春兰,刘建伟.大型弹簧表面脱碳试验研究[J].汽轮机技术,1995,12:376-380.
    [56]大谷三郎.冷却条件硅锰弹簧钢脱碳的影响[J].铁和钢,1980.
    [57]朱应波.钢在加热时的脱碳数学模型[J].特殊钢,1989(3):1-4.
    [58]陈卫,刘勇,王顺兴.碳的扩散系数和传递系数的一种计算方法[J].河南科技大学学报,2003,9:11-13.
    [59]段正祥,余际星,吴昶等.利用菲克扩散定律计算脱碳层厚度[J].锻压装各与制造技术,2008,4:73-75.
    [60]何庆龙,林继成,石冰.菲克定律与扩散的热力学理论[J].安庆师范学院学报,2006,11:38-39.
    [61]D. Mereier, X. Decoopman. Model to determine the depth of a diffusion layer by normal indentations to the surfaee [J]. Surface & Coatings Technology,2008:3419-3426.
    [62]黄灿.重轨钢的脱碳研究[D].武汉:武汉科技大学,2004.
    [63]陈南岳.现代加热炉过程控制技术及其数学模型[J].冶金自动化,1985.9:11-21.
    [64]杨永耀,吕勇哉.钢坯加热炉计算机控制动态数学模型的开发[J].自动化学报,1987,13:257-264.
    [65]王中杰,关守平,柴大佑.加热炉自适应钢坯温度预报模型的开发[J].钢铁研究学报, 1999,11:70-74.
    [66]杜仕璐,林叶锦.加热炉最小能耗优化控制策略的研究[J].自动化与仪器仪表,2000,8:9-11
    [67]张凯举,邵诚.钢铁工业加热炉先进控制技术及其发展[J].冶金自动化.2003,27(1):45-49.
    [68]Chetan P Malhotra Satyam S Sahay. Model-based Control of Reheating Furnaees [J]. Iron & Steel Revie,2002,45 (10):64-68,70.
    [69]Timothy A Vesloeki. Development and Verification of slab Reheating Furnace Mathematical Model [J]. Iron and Steel Engineer,1982,59 (4):46-47.
    [70]H E Pike, S J Citron. Optimization study of a reheating furnace. Automatica,1970,6 (1): 41-44.
    [71]G K Lausterer, W H Ray, H R Martens. Real time distributed Parameter state Estimation applied to two-dimension heat ingot [J]. Automatica,1978,14(4):335-344.
    [72]Darryl G Carpenter, Charies W Proetor. Temperature control and optimization of a reheat furnace using a distributed control system [J]. Iron and Steel Engineer,1987,64(8):45-47.
    [73]卓钊.重轨钢连铸坯的加热工艺优化[D].湖北:武汉科技大学硕士论文.2009,4.
    [74]陈文辉.弹簧钢脱碳研究[D].北京:北京交通大学硕士论文.2009,06.
    [75]周善初,邓至谦等.金属材料及热处理[M].中南工业大学出版社,1988.86-99.
    [76]张希旺.微合金钢Q345的CCT曲线及断裂韧性研究[D].湖南:中南大学硕士论文.2008,06.
    [77]张世中等.钢的过冷奥氏体转变曲线图集[M].冶金工业出版社,1993.412.
    [78]陈振业.变形工艺对微合金钢组织的影响[D].湖北:武汉科技大学硕士论文.2009,03.
    [79]朱伏先,刘彦春,李艳梅等.Q345钢奥氏体再结晶行为对组织和性能的影响[J].东北大学学报,2005,26(6):566-569.
    [80]韩伟德.金相试样制备与显示技术[M].中南大学出版社,2005.40.
    [81]Ming-Chun Zhao, Ke Yang, Fu-Ren Xiao, Yi-Yin Shan. Continuous cooling transforma-tion of undeformed and deformed low carbon pipeline steels. Materials Science and Engineering,2003.126-136.
    [82]Thompson S. W., Colvin D. J., GKrauss. Austenite Decomposition Continuous Cooling of HSLA-80 Plate Steel. Metallurgical and Transactions,1996.1557-1571.
    [83]Lee J. L., Wang S. C., Cheng G.H.. Transformation Processing and Products for C-Mn steels During Continuous Cooling. Material Science and Technology,1989.674-681.
    [84]Chino H.. Low-Carbon Microalloyed Steels for Gas Pipe-line. Pipe Technology Conf., Oostende, Belgim, PartA, Session4,1990.1-6.
    [85]田村今男,阿久津忠良.高强度低合金钢的控制轧制和控制冷却[M].王国栋译,北京:冶金工业出版社,1992,45.
    [86]Fujiwara K., Okaguchi S., Ohtani H.. Effect of hot deformation on bainite structure in low carbon stecl [J]. ISIJ International,1995.1006-1012.
    [87]Okamoto S., Toyama M., Inoue T.. The Iron and Steel Institute of Japan [M].1987,475.
    [88]Begley J. A, and Landes J. D. The J-integral as a fracture criterion. Fracture Toughness, ASTM STP 514, Philadelphia, PA:American Society for Testing and.
    [89]朱应波,35H李桂萍,高峰等(编译).国外中高碳合金钢生产技术[M].北京:冶金工业出版社,1993.
    [90]惠卫军,董瀚,翁宇庆.汽车悬挂工具钢及弹簧用钢的发展动向[J].钢铁研究学报,2001,13(2):67-72.
    [91]惠卫军,董瀚,王琪等.高强度中高碳合金钢的疲劳性能[J].断裂分析,1998,(3):28-30.
    [92]Oren E C. Automotive Materials and Technologies for the 21stCentury [J]. Iron & Steel Maker,1998,25(9):67-71.
    [93]Ultra Light Steel Auto Body Demenstrates Value of Steel in the Automobile's Future. High Strength Steel Bulletin 12, Auto/steel Partnership, Southfield [J]. MI,1996, (3).
    [94]饭久保知人,伊藤幸生.化学成分对中高碳合金钢强度的影响[J].日本金属学会会报,1984,23(6):526-528.
    [95]阿久津忠良,田村今男.高强度悬架ばね用钢の开发[J].电气制钢,1992,63(1):70-75.
    [96]Won Jong Nam, Hae Chang Choi. High Strength Steel Wire Rod for Suspension Coil Spring [J]. Wire Journal International,1996, (5):94-97.
    [97]徐德祥,尹锺大.弹簧钢高强度化及合金元素的作用[J].金属热处理,2003,28(12):30-35.
    [98]祖荣祥.低含碳量中高碳合金钢的研究[J].工具钢及弹簧工程,988,(2):42.
    [99]祖荣祥,碳及合金元素对中高碳合金钢性能的影响[J].钢铁研究总院学报,1986,6(4):59-66.
    [100]张亚信,安树均.制造汽车板簧的新型中高碳合金钢28锰硅硼钢[P].中国:CN85100775A,1986.
    [101]杨培义,杨其萍.新型汽车板簧用钢[P].中国:CN85100259A,1986.
    [102]祖荣祥.低碳中高碳合金钢性能的研究[J].钢铁研究学报,1989,(3):37-44.
    [103]杨培义,杨其萍.新型汽车板簧用钢的研究[J].钢铁研究总院学报,1986,,6(3):39-45.
    [104]吴仁培,方书生28MnSiB低碳合金中高碳合金钢及其热处理[J].金属热处理,1989,14(11):54-56.
    [105]朱应波.低碳硅锰中高碳合金钢的特性与应用[J].金属热处理,1991,16(5):38-40.
    [106]马鸣图,李志刚,卢向阳等.几种中高碳合金钢脱碳敏感性的对比[J].物理测试,1991,(3):126.
    [107]张健军.低碳马氏体中高碳合金钢的设计及应用可行性探讨[J].特殊钢,1991,12(5):19-23.
    [108]何家谦.35Si2Cr中高碳合金钢的研制[J].特殊钢,1992,13(4):27-29.
    [109]Akio Yoneguchi, Jefferey Schaad, Yutaka Kurebayashi and Yukio Ito. Development of High Strength Spring Steel and Its Application to Automotive Coil Spring [R].2000 Society of Automotive Engineers. Inc.,2000:101-107.
    [110]Tata H J, Driscoll E R, Kary J J. Paper No.800480, SAE Congress, SAE, Warrendale, PA [R],1980:1215.
    [111]Yamamoto, etal. Spring Steel Having a Good Sag-Resistance and a Good Hardena-bility [P]. U. S. Patent:4,544,406,1985-10-01.
    [112]Sugimoto, etal. Spring Steel Having Good Durability and Sag-Re-sistance [P]. United States Patent:5009843, Apr.23,1991.
    [113]Toshiro Yamamoto. Steels for Vehicle Suspension Springs [P]. U K Patent Application: GB2112810A,27 Jul.1983.
    [114]Iikubo Tomohito. High Strength Spring Steel [P]. EUR. Pat.:EP0265273,1988.
    [116]Kawakami H, Yamada Y, Ashida S, and Shiwaku K. Effect of Chemical Composition on Sag Resistance of Suspension Spring [R]. SAE Paper,820128,1983.
    [117]Borik F, etal. SAE Tech. Paper Series No.790409 [C],1979.
    [118]Toshio Ozone, Mamoru Kurimoto, Toshiro Yamamoto and Ryoheikobayashi. Precipit-ation strengthened spring steel for automotive suspensions [R]. SAE paper 820129,1982:1.
    [119]Yamada, etal. Spring Steel for Vehicles [P]. U. S. Patent:4409026,1983-10-11.
    [121]Furr S T. Laboratory Studies of Low-Chromium and Chromium-Free Steels for Susp- ension Coil Springs [J]. Society of Automotive Engineers, Inc.800479(1980):1851-1861.
    [122]马鸣图,李志刚.钒对中高碳合金钢35SiMnB淬透性和等温转变曲线的影响[J].特殊钢,2001,22(6):13-14.
    [123]马鸣图,李志刚,卢向阳.钒对35SiMnB中高碳合金钢脱碳敏感性的影响[J].特殊钢,2001,22(5):9-11.
    [124]Assefpour Dezfuly M, Brownrigg A. Parameters Affecting Sag Resistance in Spring Steels [J]. Metallurgical Transactions A,1989,20A(10):1951-1959.
    [125]Yoshirou Koyasu, Masato Yanase. Development of high fatigue strength spring steel [J]. Wire Journal International,1996, (5):88-91.
    [127]Lewellyn D T. Metallurgy of boron-treated low-alloy steels [J]. Metals Tech,1974, (1): 517.
    [128]Namiki K, Sugiura S, Umegaki S, etal. SAE Technical paper Series 890531 [R].
    [129]Nkamura S, Htano A. SAE Technical Paper Series 960315 [R].
    [130]周峰.薄板坯连铸连轧(CSP)轧制区组织模拟[D].湖北:武汉科技大学硕士论文.2004,05.
    [131]Angel ZUFIA, Manuel LLANOS. Mathematical Simulation and Controlled Cooling in an EDC Conveyor of a Wire Rod Rolling Mill [J]. ISIJ International,2001,41(10):1282-1288.
    [132]小指军夫.控制轧制控制冷却-改善材质的轧制技术发展[M].北京:冶金工业出版社,2002.
    [133]Dennis S., Farias D., Simon A. Mathematical Modeling Coupling Phase Transformati-ons and Temperature Evolutions in Steels [J]. ISIJ International,1992,32(3):316-325.
    [134]韩宝云.冶金工业中计算机仿真技术的应用[J].钢铁,1997,32(1):76-79.
    [135]张钧.连铸945钢CCT曲线的测定及其应用[D].黑龙江:哈尔滨工程大学硕士论文.2002,08.
    [136]张黄强.合金钢CCT曲线研究[D].湖北:武汉科技大学.2008,4.
    [137]Chen Y., Feng F., Lin K., etal. Improvement of Center Segregation for High Carbon Steel Bloom [A]. Steel making Conferee Proceedings [C], U. S. A IRON&STEEL SOCIETY, 1996.
    [138]WuWei, WangChunHuai, GanYong etc. Study on Surface Fine Cracks of Shipbuilding Steel Plate Containing Nb and Ti [J]. Steel,2002,37(7):41-44.
    [139]Deguang ZHOU,Jie FU. Ping WAN G. Carbon Segregation of Bearing Steel Concast-ing Billet [J]. Journal of Materials Science and Technology,2000.16(3):273-276.
    [140]Ni full. Analysis on Central Segregation of Strand [J]. Steel,2001,6:22-25.
    [141]ZhouDeGuang, FuJie, JinYongDeng slab of as-cast. CSP characteristics [J]. journal of steel, (8):47-50.
    [142]卢胜军,陈亮,孙理等.弹簧钢盘条脱碳研究[J].金属制品,2009,4:26-28.
    [143]杨成威.EAF-LF/VD-HCC工艺夹杂物行为研究[D].湖北:武汉科技大学硕士论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700