用户名: 密码: 验证码:
急尖长苞冷杉叶片形态与生理特征对海拔梯度的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Response of Leaf Morphology and Physiological Characteristics to Elevation Gradient in Abies Georgei var. Smithii
  • 作者:林玲
  • 论文级别:硕士
  • 学科专业名称:生态学
  • 学位年度:2008
  • 导师:郑维列
  • 学科代码:071012
  • 学位授予单位:西藏大学
  • 论文提交日期:2008-05-01
摘要
急尖长苞冷杉在色季拉山分布海拔跨度达1500m以上,该树种生长过程中沿海拔梯度与环境间的响应关系尚不清楚。为此,我们选用大多数植物生态学家认为不但采样方便,而且最能反应植物与环境间响应关系的器官――叶,来研究2900m到4300m跨度范围,急尖长苞冷杉沿海拔梯度变化对环境的适应机制。本文通过对其15个连续海拔梯度上叶片的形态、生物量、氮含量和碳同位素的研究,阐明:(1)急尖长苞冷杉叶片性状是如何随着海拔梯度的变化而发生变化的;(2)急尖长苞冷杉叶片氮含量和稳定碳同位素是如何随着海拔梯度的变化而发生变化的,并解释其适应环境,保证碳代谢正常进行的机制;(3)探讨急尖长苞冷杉叶片稳定碳同位素与叶片氮含量及比叶重之间的关系。结果如下:
     1.随海拔的升高,叶宽不表现明显的规律,这说明叶宽急尖长苞冷杉比较保守的形态性状,受外界环境因子影响较弱。由于随海拔升高温度逐步下降,湿度逐步升高,叶长和叶面积则与海拔梯度变化呈现显著的曲线相关;叶长和叶面积,在2900-3800m随海拔升高而增大,这与该树种喜欢冷湿的特性相关,3800-4300m反而随海拔升高而减小,是由于较低的土壤温度限制了植物根系对土壤水分的吸收,从而受到了一个逐渐增大的水分胁迫。
     2.叶片生物量(叶片干重和比叶重)在2900-3800m随海拔升高而增大,3800-4300m,随海拔的升高反而减小。这说明,3800m以下叶片同化CO2的能力在逐步增大,从而叶干物质积累增多。3800m以上受CO2浓度降低,紫外辐射加强等胁迫因子影响,叶片同化CO2能力减弱,叶片生物量减少。
     3.对急尖长苞冷杉叶片中δ13C沿海拔梯度的变化研究,发现δ13C变化范围小且平均值较低,并且叶片δ13C与海拔梯度之间并不是一个线性增加的关系,而是不规则的变化关系。急尖长苞冷杉叶片中δ13C与海拔梯度这种不规则的变化关系,可能是色季拉山不同树种种间对水分竞争以及温度、降水等因子共同作用的结果。
     4.特定重量叶片氮(Nmass)含量除在3800m有异常变动外,其余海拔带变化不明显;说明叶氮含量与叶干物质含量不随海拔梯度变化而变化,3800m处的异常增大是因为受特定小环境的影响显著。特定面积叶片氮(Narea)含量沿海拔梯度呈显著的曲线相关,在2900-3800m随海拔升高而显著增大,3800-4300m随海拔的升高反而显著减小;这说明3800m以下,随海拔的升高急尖长苞冷杉最大光合能力在逐步增大,3800以上,区域温度下降明显,土壤温度下降也非常明显,较低的土壤温度限制了急尖长苞冷杉根系对土壤水分的吸收从而产生了水分胁迫,外加海拔升高UV-B辐射加强等其它因素影响,急尖长苞冷杉随海拔的升高光合能力减弱。
     5.对特定面积氮含量与比叶重关系分析表明,Narea与LMA呈显著的正相关(R2=0.85794),是因为急尖长苞冷杉对其生存环境的进化适应而使更多的氮分配到叶片的光合器官内,所以叶片氮含量相对较大,并导致叶片单位面积生物量也增大。
Abies georgei var. smithi is mainly occurred at the elevations above 1500m. Whereas the relationships between growing procedure of this tree species along altitudinal gradient and the environmental conditions are unclear. In our present study, leaf ecophysiological traits, which were closely related to the environmental conditions, were measured at an altitudinal range from 2900 to 4300m to study adaptation mechanisms of the Abies georgei var. smithi to varied environments. By measuring stomatal properties, biomass, nitrogen concentration per mass and stable isotope composition of leaves at 15 altitudinal gradient, we were aimed to address the following questions:
     (1) How leaf traits of Abies georgei var. smithi varied with altitudinal gradients; (2) how leaf chemical elements including nitrogen concentration per mass and stable isotope composition in the leaves of Abies georgei var. smithi varied with altitudinal gradients and tried to explain the mechanisms that maintained balanced carbon metabolism; (3) to find the relationships between stable carbon isotope composition and leaf nitrogen concentration per mass and specific leaf weight (SLW). Results are:
     1. Leaves wide showed significant orders along with altitudinal gradient, which indicated a relatively conservative property in leaf morphology of the Abies georgei var. smithi and the influence of environment on this property was weak. The leave length and area had curvilinear correlations with variance in altitudes, probably due to decreases in temperature and increases in relative humidity. Leaves length and area increased with altitude at range of 2900-3800m, which might be correlated to a special a property of this tree, which often favors to cold and wet condition. However, the leaves length and area decreased with altitudinal increases at 3800-4300m. The reason for this might be that the low soil temperature restricts plant root to absorb soil water and gradually enlarges water intimidation. In addition, another reason might be that, at high altitudinal site, decreased leaves length and area are just apparent adaptation property of leaves to the cold and dry climatic condition.
     2. Leaf biomass (dry weight of leaf and SLW) increased with increasing altitudesl at range of 2900-3800m, but decreased with increasing altitudes at range of 3800-4300m. These indicate that the capability of CO2 assimilation in leaves increases gradually below 3800m, which further promotes dry material accumulation of leaves. While above 3800m, due to the decreased CO2 and increased ultraviolet radiation,decreases in leaf biomass production were detected.
     3. By studyingδ13C in leaves of Abies georgei var. smithi, we found that the variations ofδ13C were small and the mean values were low. In addition, there were no linear relationship betweenδ13C of leaves and altitudinal gradient and the variation were not regular. The irregular correlation betweenδ13C of Abies georgei var. smithi leaves and altitude might be results of joint effect of interspecies competition between different tree species at Sejila mountain and temperature as well as precipitation etc.
     4. Except were there abnormal variation at 3800m of altitude, the insignificant variation in nitrogen concentration per mass(Nmass)of specific leaf weight at other altitudinal gradients indicated that Nmass of leaf and dry material of leaves do not vary with altitudes. The abnormal increasing in Nmass and dry material content of leaves at 3800m were significantly effected by specific microclimatic condition. Nitrogen concentration of specific leaf area had curvilinear correlation with altitudinal gradients. At the range of 2900-3800m, the nitrogen concentration of specific leaf area decreased significantly with increases of altitude which indicated that below 3800m the maximum photosynthetic capability of the Abies georgei var. smithi increased gradually with increasing altitudes. Above 3800m, the regional temperature falls significantly and the soil temperature decreases significantly as well. The relatively low soil temperature restricts Abies georgei var. smithi roots to uptake soil water and further produce water intimidation. In addition, UV-B radiation increases with increasing altitudes, the photosynthetic capability of Abies georgei var. smithi was weak.
     5.Analizing nitrogen content of specific leaf area and SLW indicate that there is a positive correlation between Narea and LMA(R2=0.85794)because Abies georgei var. smithi had made an evolutionary adaptation to its environment and allocate much more nitrogen to its photosynthetic organ and causes the biomass of leaf per unit of area increases with the increase of nitrogen concentration of leaves.
引文
安黎哲,戴怡龄,陈拓,徐世健等.乌鲁木齐河源区不同海拔的火绒草叶片结构特征的比较研究.冰川冻土,2004,26(4):274-281
    贲桂英,师生波,韩发. 高寒草甸生态系统微气候和植物的生理生态适应.高原生物学集刊,1997,13:217-224.
    边巴多吉,郭泉水,次柏,罗大庆.2004.西藏冷杉原始林林隙对草本植物和灌木树种多样性的影响.应用生态学报,15(2):191-194.
    边巴多吉,罗大庆.藏东南亚高山暗针叶林林隙灌木数量特征初步研究.林业科学研究,2003.16(sp.):20-22.
    蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学 Ⅰ .叶片解剖特征的比较.植物生态学报,2001,25:90-98
    蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应.应用生态学报, 2004,15:201-204
    柴勇,樊国盛,李乡旺,郑维列.西藏色季拉山种子植物垂直带谱的划分与分布特点研究.广西植物,2004,24(2):107-112.
    陈拓,杨梅学,冯虎元,徐世健等.青藏高原北部植物叶片碳同位素组成的空间特征.冰川冻土,2003,25(1):83-87
    陈维培,张四美.莲的生态解剖学研究.生态学报,1988,3 (3) :277-282.
    陈章和,朱素琴,李韶山,郭志华,张德明.UV-B 辐射对东南亚热带森林木本植物幼苗生长的影响.云南植物研究,2000, 22:467-472
    崔海亭.山地生态学与高山林线研究.北京:科学出版社,2005..
    段喜华,孙立夫,马书荣等.不同海拔高度泡沙参叶片形态研究.植物研究,2003,23(3):334-337.
    范晶,赵惠勋,李敏.比叶重及其与光合能力的关系.东北林业大学学报,2003,31(5):52-58
    费松林,方精云,樊拥军,赵坤,刘雪皎,崔克明.贵州梵净山亮叶水青冈叶片和木材的解剖学特征及与生态因子的关系.植物学报,1999,41:1002-1009
    冯虎元.紫外辐射和干旱胁迫对春小麦复合作用机理的研究.兰州大学生命科学院,博士论文 2001 傅抱璞.山地气候.北京:科学出版社. 1983.
    高建平,王彦涵,陈道峰.不同产地华中五味子叶表皮结构和导管分子的解剖学特征及其与环境因子的关系.西北植物学报,2003,23:715-723
    何斌.西北地区大气 CO2 浓度和碳同位素组成特征及其环境意义.中国科学院兰州地质研究所硕士论文,1997
    何若韫. 植物低温逆境生理.北京:中国农业出版社,1995:107-141.
    何涛,吴学明,张改娜等.不同海拔火绒草叶绿体超微结构的比较.云南植物研究,2005, 27 (6):639-643.
    何亚平,费世民,刘建全等,高山植物繁育系统研究进展初.四川林业科技,2005,26(4):43-49
    何亚平,刘健全.青藏高原高山植物麻花艽的传粉生态学研究.生态学报,2004,24 (2) :215-220.
    贺金生,陈伟烈,王勋陵.高山栋叶的形态结构及其对生态环境的适应Ⅰ叶片解剖特征的比较.植物生态学报,1994,18(3):219-227
    胡建莹,郭柯,董鸣.高寒草原优势种叶片结构变化与生态因子的关系.植物生态学报,2008,32(2):370-378
    胡启武,宋明华,欧阳华,刘贤德.祁连山青海云杉叶片氮、磷含量随海拔变化特征.西北植物学报,2007,27(10):2072-2079
    黄界,辛学兵.急尖长苞冷杉树冠营养元素含量空间变异特征研究.林业科学研究,2003,16(sp.):13-19.
    姜汉侨,段昌群,杨树华等.植物生态学.北京:高等教育出版社,2004
    蒋高明. 植物生理生态学中的稳定碳同位素技术及其应用.生态学杂志,1996,15 (2): 49 -54.
    孔庆云,辛学兵,黄界.西藏色季拉山冷杉树冠营养元素的分布特征.林业科学研究,2007,20(6):807-813
    李博,赵斌,彭容豪等译.陆地生态系统生态学原理.北京:高等教育出版社,2005
    李芳兰,包维楷,刘俊华,吴宁.岷江上游干旱河谷海拔梯度上白刺花叶片生态解剖特征研究.应用生态学报,2006,17(1)∶ 5-10
    李芳兰,包维楷,刘俊华.岷江上游干旱河谷海拔梯度上四川黄栌叶片特征及其与环境因子的关系.西北植物学报,2005a,25(11):2277-2284.
    李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应.植物学通报,2005b,22(增刊):118-127
    李杰,贺学礼,李景侠.河北小五台山不同海拔高度胡枝子叶片解剖结构特征的比较.河北大学学报(自然科学版),2007,27(2):184-187
    李凯辉,胡玉昆,王鑫,范永刚等.不同海拔梯度高寒草地地上生物量与环境因子关系.应用生态学报,2007,18(9):2019-2024
    李明财,刘洪艳,宋大伟,李来兴.青藏高原东部高山植物的水分利用效率与氮素利用效率研究.西北植物学报,2007(a),27(6):1216-1224
    李明财,罗天祥,刘新圣,孔高强.高山林线急尖长苞冷杉不同器官的稳定碳同位素组成分布特征.应用生态学报,2007(b),18(12)::2654- 2660
    李蟠,孙玉芳,王三根,王小丹等.贡嘎山地区不同海拔冷杉比叶质量和非结构性碳水化合物含量变化. 应用生态学报,2008,19 (1):8-12
    李相博,陈践发,张平中,刘光琇.青藏高原(东北部) 现代植物碳同位素组成特征及其气候信息.沉积学报,1999,17(2):325-329.
    李永华,罗天祥,卢琦等.青海省沙珠玉治沙站 17 种主要植物叶性因子的比较.生态学报,2005,25(5): 994-999
    李有忠.海拔高度的变化对植物叶片内部结构的影响.青海师范大学学报(自然科学版),1995(4):34-40
    李玉霖,崔建垣,苏永中.不同沙丘生境主要植物比叶面积和叶干物质含量的比较.生态学报,2005,25(2): 304-311.
    林光辉,何渊.稳定碳同位素技术与全球变化.见:李博主编《现代生态学讲座》.北京:中国科学院技术出版社,1996,161-187
    林植芳,林桂珠,孙国辉等.生长光强对亚热带自然林两种木本植物 δ13C,Ci 和 WUE 的影响.热带亚热带植物学报,1995,3(2):77-82
    刘金环,曾德慧,Don Koo Lee.科尔沁沙地东南部地区主要植物叶片性状及其相互关系.生态学杂志,2006,25(8):921-925
    刘全宏,王孝安,田先华.太白红杉叶的形态解剖学特征与环境因子的关系.西北植物学报,2001,21:885-893
    刘志民,杨甲定,刘新民.青藏高原几个主要环境因子对植物的生理效应.中国沙漠,2000,20(3):309-313.
    卢存福,简令成,匡廷云.高山植物的抗寒抗冻特性.植物学通报,1998,15 (3):17-22.
    卢杰,辛学兵,罗大庆等.急尖长苞冷杉林树干养分元素含量研究.林业科学研究,2003,16(sp.):44-47.
    罗大庆,边巴多吉.藏东南色季拉藓类冷杉林群落特征研究.林业科学研究,2003,16(sp.):7-12.
    罗大庆,郭泉水,黄界,潘刚,辛学兵,郑维列.西藏色季拉原始冷杉林死亡木特征研究.生态学报,2004,24(3):635-639.
    罗大庆,郭泉水,薛会英,边巴多吉..藏东南亚高山冷杉林林隙特征与干扰状况研究.应用生态学报,2002,13(7):777-780.
    罗建,郑维列,潘刚,王景升.色季拉山区高山寒带种子植物区系研究.武汉植物学研究,2006,24(3):215-219.
    罗健. 青藏高原大 CO2,植物,现代沉积物碳同位素组成研究.兰州: 中国科学院兰州地质研究所, 1998.
    孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能.植物生态学报,2007,31(1):150-165
    牛书丽,蒋高明,李永庚.C3 与 C4 植物的环境调控.生态学报,2004,24(2): 308-314
    欧志英,彭长连.高浓度 CO2 对植物影响的研究进展.热带亚热带植物学报,2003,11:190-196
    潘刚,辛学兵,王景升.西藏色季拉山急尖长苞冷杉林小气候特征的初步研究.西藏科技,2004, (4):48-51.
    朴春河,朱建明,朱书法等.植物营养元素和 δ13C 值随海拔而变化的特征及营养元素相互作用对碳同位素分馏作用的影响.2004,19(增刊):412-418
    祁建,马克明,张育新.北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较.生态学报,2008,28(1):112-128
    祁建,马克明,张育新.辽东栎叶特性沿海拔梯度的变化及其环境解释.生态学报,2007,23(3):930-937
    青藏高原综合科学考察队.西藏植物志(第 1~5 卷).北京:科学出版社. 1987.
    任青山,王景升,张博,罗建,潘刚.藏东南冷杉原始林不同形态水的水质分析.东北林业大学学报,2002,30(2):52-54.
    任青山,杨小林,崔国发,王景升,黄瑜,WEI Xiao-hua,LI Qing-lin.西藏色季拉山林线冷杉种群结构与动态.生态学报,2007,27(7):2669-2677.
    任青山.西藏冷杉原始森林土壤物理性质特征分析.林业科学,2002,38(3):57-62.
    苏波, 韩兴国, 李凌浩等.中国东北样带草原区植物 δ13C 值及水分利用效率对环境梯度的响应.植物生态学报,2000,20 (6) :648 - 655.
    王桂芹,赵岩,段亚军.高山红景天解剖学研究.植物研究,2004,24 (1):93-96.
    王景升,任青山,兰小中.急尖长苞冷杉原始森林降水分配格局.林业科技,2002,27(6):7-10.
    王景升,王文博,普琼.西藏色季拉山主要林型土壤的水文功能.东北林业大学学报,2005,33 (2) : 48-51.
    王景升.藏东南急尖长苞冷杉生长状况研究.西藏科技,2004.9:55-57
    王为义,黄荣福.垫状植物对青藏高原高山环境的形态 2 生态学适应的研究.高原生物学集刊,1990,9:13-26.
    王为义.高山植物结构特异性的研究.高原生物学集刊,1985,4: 19-32.
    王勋陵,王静.植物的形态结构与环境.兰州:兰州大学出版社,1989
    王贞红,辛学兵,边巴多吉等.西藏色季拉山藓类冷杉林下植被生物量和养分特征研究.林业科学研究,2003,16(sp.):28-34.
    吴学明. 五种高山藏医药用植物茎叶的结构特征研究.西北植物学报,1996,16 (1) : 56-60.
    谢永宏,于丹,耿显华.CO2 浓度升高对沉水植物菹草叶表型及生理生化特征的影响.植物生态学报,2003,27(2):218-222
    辛学兵,王景生,翟明普.2004.西藏色季拉山急尖长苞冷杉林生态系统的元素降水输入研究.林业科学,40(1):18~23.
    辛学兵,翟明普.西藏色季拉山冷杉林生态系统的养分循环.林业科学研究,2003,16(6):668-676.
    徐凤翔.西藏色季拉山东西坡不同海拔带的生境与森林类型研究.西藏科技,1992,(1):21-41.
    徐凤翔.西藏色季拉山森林植被类型、生态环境及经营措施研究的综合报告.见:徐凤翔主编.西藏高原森林生态研究.沈阳:辽宁大学出版社. 1995.
    许振柱,周广胜.陆生植物对全球变化的适应性研究进展.自然科学进展,2003,13:113-144
    严昌荣,韩兴国,陈灵芝.北京山区阔叶林优势种叶片特点及其生理生态特性.生态学报,2000,20(1):53-60
    杨扬,孙航. 高山和极地植物功能生态学研究进展.云南植物研究,2006,28 (1) :43-53
    张富民,李学禹.中国甘草属植物的形态变异与生态环境的关系.新疆环境保护,1997,19(1):32-37
    张学江.中国卧龙自然保护区不同海拔川滇高山栎群体的遗传变异.中国科学院成都生物研究所博士论文,2006
    张亚杰,冯玉龙.不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系.植物生理与分子生物学学报,2004,30(3):269-276
    章英才,闫天珍.花花柴叶片解剖结构与生态环境关系的研究.宁夏农学院学报,2003,24(1):31-34
    赵平,曾小平,孙谷畴.陆生植物对 UV-B 辐射增强响应研究进展.应用与环境生物学报,2004,10:122-127
    郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系.生态学报,2007,27(1):171-181
    钟国辉,辛学兵.西藏色季拉山暗针叶林凋落物层化学性质研究.应用生态学报,2004,15(1):167-169.
    周广泰,刘凤琴,吴学明等.青海高山植物解剖特点的研究.青海师范大学学报(自然科学版),1992,4:45-60.
    Acock B. Effects of carbon dioxide on photosynthesis, plant growth and other processes. In: Kimball BA, Rosemberg N, Hartwell L, eds. Impact of carbon dioxide, trace gases and climate change on global agriculture. Madison, Wisconsin, USA: ASA, CSSA, SSA, 1992.156-153.
    Beniston M. Environmental change in mountains and uplands. London:Arnold/Hodder and Stoughton: Chapman and Hall Publishers. 2000
    Caldeira, M.C, Ryel, R.J., Lawton, J.H. & Pereira, J.S. Mechanisms of positive biodiversity-production relationships: insights provided by δ13C analysis in experimental Mediterranean grassland plots. Ecology Letters, 2001,4:439–443.
    Cordell S, Goldstein G, Mueller-Dombois D,et al. Physiological and morphological variation inMetrosideros polymorpha, a dominantHawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity.Oecologia, 1998,113:118~196.
    Devitt DA,Scith SD,Neuman DS.Leaf carbon isotope radios in three landscape species growing in an arid environment.J Arid Environment,1997,36(2):249-257
    Erschbamer B. Responses of some Austrian glacier foreland plants to experimentally changed microclimatic conditions. In: Walther GR, Burga CA, Edwards PJ, eds. Fingerprints of climate change. Adapted behavior and shifting species range. New Yoke: Kluwer Academic/Plenum Publishers, 2001. 263-279.
    Esper J. and F.H. Schweingruber. Large-scale treeline changes recorded in Siberia. Geophys. Res. Lett. 2004. 31:302–312. Friend A.D. F.I. Woodward, and V.R. Swistsur. Field measurements of photosynthesis, stomatal conductance,
    leaf nitrogen and δ13C along altitudinal gradients in Scotland. Functional Ecology,1989. 3:117-122
    Grams T.E.E., Kozovits A.R., H?berle K.H., Matysseik R., Dawson, T.E. Combining δ13C and δ18O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. Plant, cell and Environment, 2007,30, 1023-1034.
    Hultine, K.R. and J.D. Marshall. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia ,2000.123:32–40.
    Jumpponen A., Mulder C.P.H., Huss-Danell K., H?gberg P. Winners and losers in herbaceous plant communities: insights from foliar carbon isotope composition in monocultures and mixtures. Journal of Ecology, 2005,93, 1136–1147.
    K rner C. The nutritional status of plants from high altitudes: A worldwide comparison.Oecologia, 1989,81:379~391.
    Kerner. Die Abbangigkeit der Pflanzengestalt von Kilm a und Boden. Innsbruck: Wager, 1896. 29 - 45. K?rner C. Alpine plant life. Springer-Verlag, Berlin. 1999
    K?rner, C., G.D. Farquhar and Z. Roksandic. A global survey of carbon isotope discrimination in plants from high altitude. Oecologia,1988.74:623–632.
    Leffner, A.J. & Caldwell, M.M. (2005) Shifts in depth of water extraction and photosynthetic capacity inferred from stable isotope proxies across an ecotone of Juniperus osteosperma (Utah juniper) and Artemisia tridentata (big sagebrush). Journal of Ecology, 93, 783–793.
    Leitonen I, Repo T, H?nninen H. 1997. Changing environmental effects on frost hardiness of Scot pine during dehardening. Annals of Botany 79: 133-138.
    MacDonald, G.M., A.A. Velichko and C.V. Kremenetski. Holocene treeline history and climate change across northern Eurasia. Quat. Res. 2000. 53:302–311.
    Morecroft M D, Woodward F I, Marrs R H. Altitudinal trends in leaf nutrient contents, leaf size and13C ofAlchemilla alpina. Functional Ecology, 1992,6:730~740.
    Pauli H, Gottfriend M, Grabherr G. High summits of the Alps in a changing climate. The oldest observation series on high mountain plant diversity in Europe. In: Walther GR, Burga CA, Edwards PJ, eds. Fingerprints of climate change. Adapted behavior and shifting species range. New Yoke: Kluwer Academic/Plenum Publishers, 2001.139-149.
    Pe?uelas J, Filella I.Phenology: responses to a warming world. Science 2001.294: 793-795. Poorter H, Evans J R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area.Oecologia, 1998,166:26~37.
    Qiang, W.Y., X.L. Wang, T. Chen, H.Y. Feng, L.Z. An, R.Q. He and G. Wang. Variations of stomatal density and carbon isotope values of Picea crassifolia at different altitudes in the Qilian Mountain. Trees, 2003. 17:258–262.
    Thornley JHM, Cannell MGR. Temperate grassland responses to climate change: an analysis using the Hurley pasture model. Annals of Botany .1997. 80: 205-221.
    Vitousek, P.M., C.B. Field and P.A. Matson. Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia 1990. 84:362–370.
    Warren, C.R., J.F. McGrath and M.A. Adams. Water availability and carbon isotope discrimination in conifers. Oecologia ,2001.127: 476–486.
    Williams, K., Richards, J.H. & Caldwell, M.M. Effect of competition on stable carbon isotope ratios of two tussock grass species. Oecologia, 1991.88, 148–151
    Zhao CM, Chen LT, Ma F, Yao BQ, Liu JQ. Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Picea crassifolia). Tree Physiology .2008.28:133–141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700