用户名: 密码: 验证码:
博莱霉素发酵培养基及发酵条件优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
博莱霉素(Bleomycin)是从轮枝链霉菌(Streptomyces verticillus)发酵产物中发现的具有抗肿瘤活性的多组分糖肽类抗生素,各组分区别在于末端胺的不同。博莱霉素是广谱,低毒的抗肿瘤药物,对恶性淋巴瘤、头颈部癌、乳腺癌和食道癌有良好的疗效,还对发病率高,又无有效药物治疗的肝癌有较满意的疗效。因此提高博莱霉素在发酵液中的含量具有非常重要的意义。
     从博莱霉素的摇瓶发酵着手,对培养基组成和培养条件进行了优化,并考察了前体加入时间和加入浓度对博莱霉素产量的影响。考察了碳源、有机氮源、无机氮源、磷酸盐和CuSO_4对博莱霉素发酵的影响,确定了最佳发酵培养基配方为:葡萄糖1%,麦芽糖3%,可溶性淀粉3%,大豆蛋白胨0.5%,黄豆饼粉3%,玉米浆1%,豆油0.5%,NaCl 0.3%,K_2HPO_4 0.1%,ZnSO_4 0.05%,CHSO_4 0.01%,NaNO_3 0.3%,优化后的发酵培养基使链霉菌Streptomyces verticillus U-43在摇瓶培养条件下博来霉素的产量达到41.23μg/ml。在对链霉菌Streptomyces verticillus U-43的培养条件优化的过程中,分别考察了接种龄、接种量、发酵培养基初始pH值、摇瓶装液量对发酵的影响,结果表明:链霉菌Streptomyces verticillus U-43的最适接种龄为48h,最佳培养温度为28℃,发酵培养基的最适初始pH为6.0,接种量为6%,摇瓶装液量为80ml/500ml△。经发酵培养条件优化后,链霉菌Streptomyces verticillus U-43在摇瓶培养条件下博莱霉素的产量达到46.11μg/ml。采用优化的发酵培养基配方和发酵条件,并在发酵进行至60h添加0.04mg/ml的前体精胺,可明显提高效价,其摇瓶效价达62.21μg/ml。
     以摇瓶发酵实验为基础,进行了博莱霉素发酵由摇瓶到16L发酵罐的放大,考察了轮枝链霉菌(Streptomyces verticillus)U-43在16L发酵罐中的代谢特性,包括发酵过程中的pH、糖代谢、氮代谢、生物量、溶氧、效价,确定了发酵的溶氧临界点不低于20%、发酵周期为192h以及发酵过程的pH应控制在6.4附近。连续上了三批发酵罐,结果表明在16L发酵罐上的博莱霉素发酵单位可达105.11μg/ml。
Bleomycins that have antineoplastic property are a group of multi-component glycopeptide antibiotics produced by Streptomyces Vertillus. The difference of the components lies in the difference of the amine in the end. Bleomycins are broad antineoplastic medicine with low toxicity, they have a good curative effect on malignant lymphoma, and cancers of cervix, galactophore, esophagus, as well as liver cancer, which has a high incidence but no effective way to cure. So it is very important to improve the bleomycins content in the fermentation fluid.We optimize the components of the medium and the condition of culture, observe the impact of adding time and concentration of precursors on the yield of bleomycin. The impact of Carbon,organic substances, inorganic nitrogen,phosphate, and CuSO_4 on the fermentation of bleomycin. The optimum medium is: glucose1%, maltose 3%,soluble starch3%, soy peptone 0.5%, bean powder 3%, corn plasm1%, bean oil 0.5%, NaCl 0.3%, K_2HPO_4 0.1 % , ZnSO_4 0.05% , CuSO_4 0.01% , NaNO_3 0.3%. With the optimized fermentation medium, the yield of bleomycin produced by Streptomyces verticillus U-43 can reach 41.23μg/ml under the condition of flask culture. On the process of optimizing culture condition , impact of the innoculation time, innoculation content, primary pH of fermentation medium, flask column on fermentation have been studied.the results show that the innoculation time is 48h, optimum temperature 28℃, most appropriate primary pH 6.0, innoculation content 6%, flask column 80ml/500ml. After optimization of culture condition, the output can reach 46.11μg/ml. Using the optimised fermentation medium and condition,and addition of the precursor refined amine 0.04 mg/ml when the fermentation comes to 60h..Based on the results in shake flasks, bleomycin fermentation was scaled up in a 16L fermentor.The metabolic characteristic of Streptomyces verticillus U-43 in the 16L fermentor ,including pH, sugar and nitrogen metablization,biomass,dissolved oxygen, productivity of per unit.it is established that the critical point of the dissolved oxygen should be no lower than 20%, the fermentation period is 192 hours,and pH should be controlled at about 6.4,the findings of three consecutive fermentation show that the fermentation unit of bleomycin can reach 105.11 μg /ml.
引文
1.白冬梅,付卫明,赵学明等.代谢通量分析优化米根霉R1021发酵生产L(+)-乳酸过程[J].无锡轻工大学学报,2002,21(6):555-560
    2.白秀峰,何建勇,倪孟祥等,发酵工艺学,中国医药科技出版社,2003.8,3
    3.蔡慧农,王灼维等,产转谷氨酰胺酶链霉菌的发酵罐生产工艺研究,食品与发酵工业,2003,29(8):13-19
    4.蔡宇杰,诸葛斌,张锡红.遗传算法与神经网络耦联法优化生淀粉酶发酵培养基[J].无锡轻工大学学报,2001,20(4):422-425
    5.常中义,江波,碳源对轮枝链霉菌SK-2合成谷氨酰胺转胺酶的影响,生物技术,2000,10(5):20-21
    6.陈宁,熊明勇等.L-缬氨酸生产菌的选育及基于遗传算法的发酵培养基优化[J].天津轻工业学院学报,2002,12(4):19-23
    7.陈斌,庄英萍,郭美锦,储炬,张嗣良.中心组合设计优化梅岭霉素发酵培养基[J].高技术通讯,2002.12,29-34
    8.陈宏文,方柏山.基于遗传算法的木糖醇发酵培养基的优化[J].无锡轻工大学学报,2001,20(1):21-25
    9.陈敏,刘万卉,王静馨,用模式识别法优化微生物培养基的营养条件,微生物学通报,1996,23(3):176-180.
    10.陈敏,王静馨,纪东升,唐美燕.应用回归正交实验设计和梯度法优化酵母发酵过程中的pH及温度参数[J].食品与发酵工业,1993,3,20-25
    11.陈敏,王静馨,刘力卉.模糊综合评价法在微生物发酵过程优化e p的应用[J].微生物学通报,1995,22(4):225-228
    12.陈敏,王静馨.发酵工艺条件的多目标优化[J].生物技术,1995,5(4):37-39
    13.陈敏,王静馨.模糊正交法用于锌酵母发酵培养基条件优化的研究[J].食品与发酵工业,1994,5:24-29
    14.陈向东,肖灿鹏,汪辉.关联度分析法优化克拉维酸发酵培养基[J].药物生物技术,2001,8(1):39~41
    15.范代娣,党政等,红霉素摇瓶发酵实验工艺条件,西北大学学报(自然科学版),2000,30(1):43-46
    16.范代娣,陈斌等,红霉素发酵工艺优化研究,生物工程学报,1999,15(1):104-108
    17.方柏山,陈宏文,谢晓兰,基于神经网络和遗传算法的木糖醇发酵培养基优化研究,生物工程学报,2000,16(5):648-650
    18.方开泰,均匀设计与均匀设计表,北京:科学出版社,1994,69-97.
    19.宫衡,李小明,伦世仪.响应面法优化赖氨酸发酵培养基[J].生物技术,1995,5(4):13-15
    20.何艳玲,生物防腐剂纳他霉素发酵工艺的研究,天津轻工业学院硕士研究生毕业论文,2002
    21.贺仲雄,模糊数学及其应用,天津科学技术出版社,1985,190-193
    22.胡爱红,莫章桦.GL-7-ACA酰化酶发酵培养基的均匀优化设计[J].生命科学研究,2004,8(1):90-91
    23.胡升,梅乐和,姚善泾.响应面法优化纳豆激酶液体发酵[J].食品与发酵工业,29(1):13-17
    24.黄剑,姚庆祥,应用均匀设计进行盐酸克林霉素工艺的研究,中国药物化学杂志,1992,2(3):61—64.
    25.金文珊,许鸿章,争光霉素复合物中两种新组分的研究,中国抗生素杂志,1994,19(5):328-335
    26.李军 陈汝贤,博莱霉素族抗生素研究概况,中国新药杂志,2003,12(8):612-615
    27.李军,博宁霉素的生物合成和博安霉素的化学改造,中国协和医科大学硕士学位论文,2003 许鸿章,戴丽华,争光霉素A6和它在争光霉素复合物中的地位,药学学报,1988,23(9):667-671
    28.刘峰,陈浦云等,红霉素高产变株F1-57的选育及发酵工艺研究,福建师范大学学报(自然科学版),2003,19(2):61-64
    29.刘峰,杨桂英,改变庆大霉素发酵工艺对其组分及效价的影响,福建师范大学学报(自然科学版),2003,19(3):70-73
    30.刘建忠,翁丽萍,计亮年.表面响应法优化黑曲霉过氧化氢酶的发酵工艺[J].微生物学通报,2002,29(5):17-22
    31.龙建友,吴文君,拮抗链霉菌No.24菌株发酵条件优化研究,西北农林科技大学学报(自然科学版),2005,33(4):52-56
    32.梅乐和,姚善泾,生化生产工艺学,科学出版社,1999,26
    33.孟根水,利福霉素B产生菌的推理选育及发酵工艺优化,浙江工业大学硕士研究生毕业论文,2002
    34.孟根水,孙新强等,利福霉素B发酵工艺研究,中国抗生素杂志,2003,28(3):137-140
    35.阮丽军,万古霉素高产菌种的推理选育及发酵工艺优化,浙江大学硕士研究生毕业论文,2002
    36.阮丽军,赵成建等,万古霉素产生菌的选育与发酵培养基优化,中国抗生素杂志,2003,28(3):134-138
    37.宋培国,中生菌素发酵的研究,中国农业科学院硕士学位论文,1995,2-7
    38.孙新强,螺旋霉素高产菌种选育及发酵工艺优化,浙江工业大学硕士研究生毕业论文,2002
    39.田云龙,碳源和氮源对中生菌素发酵影响的研究,中国农业科学院硕士学位论文,2001,3-11
    40.王海彬,阿维菌素菌种的选育及发酵工艺优化的研究,浙江工业大学硕士研究生毕业论文,2003
    41.王静馨.发酵培养基的模式识别法优化[J].生物技术,1997,7(5):34-35
    42.王欣荣,刘淑奎等,螺旋霉素发酵工艺的研究,中国抗生素杂志,2002,27(12):720-721
    43.王亚军,姚善泾,吴天星,响应面法优化Saccharomyces cerevisia FL-1培养基,化学反应工程与工艺,2003,19(4):300-305
    44.魏春,宋文军,陈宁.利用均匀设计和MATLAB软件优化L-异亮氨酸发酵条件[J].天津轻工业学院学报,2003,18(1):18-22
    45.吴亚铭,吕永平等,吉他霉素发酵培养基的改进,中国抗生素杂志,2004,29(1):55-56
    46.徐咏全,张蓓等.采用模式识别法优化肌苷发酵条件[J].天津轻工业学院报,2003,18(3):6-11
    47.徐子钧,李剑,梁风来.利用SAS软件优化L-乳酸发酵培养基[J].微生物学通报,2004,31(3):85-88
    48.许鸿章,于雷,博宁霉素(Z-893)的分离纯化和结构测定,中国抗生素杂志,2003,28(8):465-467,490
    49.轩海连,金霉素高产菌的选育及发酵工艺的研究,工业微生物,2003,33(4):20-22
    50.薛履中,工程最优化技术,天津大学出版社,1989,172-177
    51.杨东靖,陈冠群等,纳他霉素高产菌株的链霉素抗性选育及其发酵工艺的优化,药物工程技术,2003,10(2):84~87
    52.杨铭、张礼和、臧传兵等.博莱霉素同系物对癌基因表达的影响,生物化学杂志,1997,13(1):50-53
    53.杨铭、朱树梅、刘洁等.博安霉素与DNA相互作用的分子机理,生物化学杂志,1995,11(5):609-614
    54.于广成,郭殿武等,大观霉素发酵培养基优化,中国医药工业杂志,1998,29(12):54-55
    55.俞定安,陈瑾璧,青霉素产生菌产黄青霉绿色孢子菌种发酵研究,抗生素1979,5(3):4-8 周启,王道本,农用抗生素和微生物杀虫剂,中国农业出版社,1995年5月第1版
    56.虞悝,许永寿,李妙儿,平阳霉素发酵中若干问题的探讨,上海第三制药厂,1976,7-14
    57.张克旭,氨基酸发酵工艺学,北京:中国轻工业出版社,1992,651-652.
    58.张嗣良,储炬,庄英萍.抗生素发酵过程优化技术研究[J].中国抗生素杂志,2002,27(9):572-577
    59.张文莉,博莱霉素产生菌的选育、发酵工艺及培罗霉素定向生物合成的研究,同济大学硕士学位论文,2003
    60.张苑,多杀菌素高产菌种的推理选育和发酵工艺的优化,浙江大学硕士研究生毕业论文,2004
    61.赵春燕,姚恩泰等,抗肿瘤抗生素力达霉素的发酵工艺,中国新药杂志,2005,14(9):1160-1162
    62.郑建明,氨甘霉素的菌种选育和发酵工艺的改进,浙江大学硕士研究生毕业论文,2004
    63.钟环宇,许建军,江波.利用响应面分析法优化-氨基丁酸发酵培养基[J].无锡轻工大学学报,2004,23(3):20-25
    64.钟环宇,许建军,江波,利用响应面分析法优化一氨基丁酸发酵培养基,无锡轻工大学学报,2004,23(3):20-25
    65.周华,韦萍,郭峰等,稳健性设计在转氨酶发酵优化过程中的应用,化工学报,2002,53(12):1238-1241
    66.剧银昌,林可霉素发酵工艺改进,中国抗生素杂志 1999,24(4):310-311
    67.邹国林,李鹏,博莱霉素研究进展,生命的化学,1994,14(5):42-44
    68. Adrian H T. Chromatographic methods for the analysis of vancomycin[J]. J chromatography, 1987;410: 373-382
    69. Bailey J E, Ollis D F. Biochemical Engineering Fundamentals[M]. New York: Me Graw-Hill, 1986
    70. Bastin G, Dochain D. Online Estimation and Adaptive Control of Bioreactors[M]. Amsterdam-Oxfor-Newyork-Tokyo: Elsevier, 1990
    71. Boeck, L. D., F. P. Mertz, R. K. Wolter et al. N-demethylvancomycin, a novel antibiotic produced by a strain of Nocardia orientalis. Taxonomy and fermentation. J. Antibiotics, 1984;37: 446-453
    72. Chabala J C, Mrozik H, Tolman R L. et al. J MedChem, 1980, 23(10): 1134
    73. Demain, A. L. 1968. Regulatory mechanisms and the industrial production of microbial metabolites. Lloydia 31: 395-418
    74. Demain, A. L., Aharonowitz, Y. and Martin, J. F. 1983. Metabolic control of secondary biosynthetic pathways. In Biochemistry and genetic regulation of commercially important antibiotics. Edited by L. C. Vining. Addison-Wesley, Reading, MA. PP. 49-72.
    75. Egerton J A, Ostlind D A, Blair L S. et al. Antimicrob A gents Chemther, 1979, 15(3): 372
    76. Egerton J A, Ostlind D A, Blair L S. et al. Antimicrob Agents Chemther, 1979, 15(3): 372
    77. Froyshov, O. 1977. The production of bacitracin synthetase by Bacillus licheniformis. FEMS Lett. 44: 75-78
    78. Haavik, H. I. 1974. Studies on the formation of bacitracin in Bacillus licheniformis: effect of glucose. J. Gen. Microbiol. 81: 383-390.
    79. Hammond S. J., Williams M. P., Willams D. H., et al. On the biosynthesis of the antibiotic vancomycin. J. Chem. Soc. Chem. Commun, 1982;344-346
    80. Hendlin, D. 1949. The nutritional requirement of a bacitracin-producing strain of Bacillus subtilis. Arch. Biochem. Biophys. 24: 435-446.
    81. Ismail A, Soultani S, Ghoul M. Biotechnol Prog, 1998, 14(6): 874
    82. James J. M., Alan T. B., and Alan W. B. Vancomycin production in batch and continuousculture. Biotechnology and Bioengineering. 1996;49: 412-420
    83. Lurie, L. M., Verkhotseva, T. P. and Levitov, M. M. 1975. Penicillin biosynthesis and two-phase pattern of Penicillium chrysogenum development. Antibiotiki(Moscow)20: 291-295.
    84. Malik, V. S., and Vining, L. C. 1970. Metabolism of chloramphenicol by the producing organism. Can. J. Microbiol. 16: 173-179
    85. Monod J. The growth of bacterial Cutures[J]. Ann Review of Microbiol, 1949, 3, 371
    86. Moser A. Bioprocess technology, Kinetics and Reactors[M]. New York: Springer Verlag, 1988
    87. Ooijkaas L P, Wilkinson E C, Tramper J, et al. Biotechnol Bioeng, 1999, 64(1): 92
    88. Payne G. G., and Wang H. Y. Phosphate feeding to permit growth while maintaining secondary product synthesis. Appl Microbiol Biotechnol, 1988;27: 572-576
    89. Pirp, S. J., andRighelato, R. C. 1967. Effect of growth rate on the synthesis of penicillin by Penicillium chrysogenum in batch and chemostat cultures. Appl. Microbiol. 15: 1284-1290.
    90. Sarkar, N., and H. Paulus. 1972. Function of peptide antibiotics in sporulation. Nature (London) New Biol. 239: 228-230
    91. Sztaricskai F, Borda J, Puskas M M, et al. High performance liqud chromatography of antibiotics ofvancomycin type [J]. JAntibiot, 1983;36(12): 1691
    92. Uwe Saner, Douglas C. Cameron, James E. Bailey. MetabolicCapacity of Bacillus subtilis for the Production ofPul-ineNucleosides, Riboflavin, and FolicAcid[J]. Bioteehnol. Bioeng., 1998, 59(2): 227-238.
    93. Vining, L. C. 1986. Secondary metabolism. In Biotechnology. Vol. 4. Edited by E. Rehm and Read. VCH Verlagsgesellschaft, Weinheim. pp. 19-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700