用户名: 密码: 验证码:
多层螺旋管行星式离心过程的基础研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多层螺旋管行星式离心仪又称高速逆流色谱仪,是一种新型的液液分配色谱技术。与传统色谱相比,高速逆流色谱不使用固相载体作固定相,克服了固相载体带来的样品吸附、损失和污染等缺点,因此广泛应用于各种天然产物、合成物质的分离和分析。高速逆流色谱采用了一种特殊的行星式运动使两相溶剂在螺旋管内形成单向性动力学分布,可以保证在较高的流动相流量条件下,实现较高的固定相保留及两相溶剂高效率的混合分离,从而使样品在两相溶剂中得到充分的分配,达到高效率的分离。
     本文第一章对高速逆流色谱的研究进展进行了综述,包括逆流色谱的发展、高速逆流色谱的单向动力学平衡机理、高速逆流色谱的应用、溶剂系统的选择、洗脱模式、固定相保留值、高速逆流色谱仪器的发展以及逆流色谱的放大研究等。
     本文第二章研究了高速逆流色谱的固定相保留值。根据高速逆流色谱螺旋管内两相流体流动的两种基本情形:(1)层流流动,(2)液滴流流动,建立了描述操作参数(流量、转速)、两相系统的物性参数(两相密度差、粘度和界面张力)和仪器参数(螺旋管内径、公转半径)对固定相保留值影响的数学模型。通过分析固定相保留值的实验数据确定了模型参数以及两种流型转变的临界参数,并采用文献中不同的实验体系对模型进行了验证,包括制备型、半制备型和分析型、不同管材包括聚四氟乙烯和不锈钢,共计十六种溶剂系统的固定相保留值。
     本文第三章考察了高速逆流色谱分离中各种参数之间的关系,包括流量、转速对色谱峰保留时间和峰宽的影响;色谱峰峰宽和色谱峰保留时间之间的关系。根据这些参数之间的关系,可以估算分离度和分离效率。
     本文第四章研究了制备型高速逆流色谱中上样量的影响。根据Van Deemter的包括进样量影响的塔板理论,研究了进样量包括进样体积、浓度以及进样质量对色谱峰高和峰宽的影响,考察了Van Deemter理论在高速逆流色谱中的适用性,讨论了限制上样量的因素,包括分离度、分配等温线以及样品的溶解度等。
     本文第五章研究了高速逆流色谱中的传质特性和色谱洗脱峰模型。通常高速逆流色谱中物质的保留行为只与两相的分配有关,而且轴向扩散和相间传质是造成色谱峰展宽的主要原因。基于这两点假设本文建立了高速逆流色谱的传质-扩散模型,其中包括两个模型参数:轴向扩散系数和相间传质系数,并通过辨识色谱流出曲线得到了轴向扩散系数和相间体积传质系数的普遍关联式。在已知物质分配系数和固定相保留值的情况下,采用本文建立的色谱洗脱峰模型可以对色谱峰进行较准确的预测。
     本文第六章将高速逆流色谱应用于中药白术中有效成分苍术酮和白术内酯Ⅲ的分离。首先优化了白术挥发油的提取工艺,继而对高速逆流色谱分离条件包括溶剂系统、流量、转速、温度、进样量和洗脱模式进行了优化,并在优化条件下实现了白术挥发油中苍术酮和白术内酯Ⅲ的一步分离。
     最后,对本文的研究内容进行了总结,并对高速逆流色谱的进一步研究提出了一些建议。
Multilayer coil planet centrifuge, also called high-speed countercurrent chromatography (HSCCC), is a new type of liquid-liquid partition chromatography. HSCCC provides an advantage over the conventional column chromatography by eliminating the use of a solid support where dangers of irreversible adsorption from the support, loss and contamination of the sample are inevitably present. So far, it has been widely applied to analytical and preparative scale separations of natural product and other chemical substances. HSCCC utilizes a special synchronous planet motion which produces a unique unilateral hydrodynamic motion of the two solvent phases, and the special motion can guarantee the retention of the stationary phase and efficient mixing and settling of the two-phase solvent system against the flow of the mobile phase to produce excellent peak resolution, and provides the efficient partition and separation of the sample.
    Chapter 1 of the dissertation gives the literature review about the high-speed countercurrent chromatography, including development of CC-C, unilateral hydrodynamic equilibrium mechanism of HSCCC, application of HSCCC, selection of the two-phase solvent system, elution mode, retention of the stationary phase, development of HSCCC apparatus and its scale-up.
    Chapter 2 deals with the retention of the stationary phase. A mathematical model was proposed to describe the influences of operation conditions (flow rate, rotation speed), physical properties (density difference, viscosity and interfacial tension) and instrument parameters (tube diameter, revolution radius) on the retention of the stationary phase, by building on the flow behavior of the two phases in the coiled column, laminar flow or droplet flow. The model parameters, together with the critical value at which the transition between the laminar flow and droplet flow occurs, were determined by the analysis of experimental data of the retention of the stationary phase measured in this work. Furthermore, the proposed model was
    tested to predict the literature data of retention of the stationary phase for seven HSCCC apparatuses including preparative, semi-preparative and analytical types, with the coiled column material of polytetrafluorethylene (PTFE) and stainless steel, and for 16 two-phase systems.
    Chapter 3 explores the relationships between the operational variables affecting HSCCC, such as the influence of flow rate, rotation speed on the peaks retention time, peaks width, the relationship between the peaks width and peaks retention time. According to these relationships, resolution and efficiency can be estimated.
    Chapter 4 deals with the sample capacity of preparative HSCCC. Based on the plate theory of Van Deemter, the effects of the sample load including the sample volume, concentrantion and sample mass on the peak retention time and peak width were investigated in a preparative HSCCC, and the theory of Van Deemter was verified in preparative high-speed countercurrent chromatography. Furthermore, the factors limiting the mass load including the resolution between the peaks, the partition isotherm and the sample solubility were also discussed.
    Chapter 5 deals with the mass transfer and the elution profile model of HSCCC. A transfer-dispersive model was proposed to describe the effluent concentration profile, based on the assumption that retention of a peak is caused by partitioning over two phases, and peak broadening is caused by axial dispersion and mass transfer limitation. The model parameters of axial dispersion coefficient and volumetric mass-transfer coefficient were obtained by comparing model simulations to experimental data. Two correlations about axial dispersion and mass transfer coefficient were obtained. The model presented in this chapter can predict the effluent concentration profiles accurately with the known partition coefficient and the retention of the stationary phase.
    Chapter 6 deals with the application of preparative HSCCC in separation and purification of two main bioactive components, namely, atractylon and atractylenolide III from the traditional Chinese medicine Atractylodes macrocephala. First, the extraction process of essential oil of Atractylodes macrocephala was
    optimized, and then the HSCCC separation conditions including two-phase solvent system, flow rate, rotation speed, temperature, sample load and elution mode were also optimized. Under the optimized condition, one-step preparative separation of atractylon and atractylenolide III from essential oil of Atractylodes macrocephala was achieved.
    In Chapter 7, the final section, the research contents of this dissertation were summarized, and several aspects concerning the further investigations of HSCCC are suggested.
引文
[1] Craig L C. Identification of small amounts of organic compounds by distribution studies. Ⅱ. Separation by counter-current distribution, J Biol Chem, 1944, 155: 519-534.
    [2] Craig L C. Chapter 1 Countercurrent distribution in Comprehensive Biochemistry, Elsevier Publishing Co., Amsterdam, 1962, Vol. 4, 1-38.
    [3] Ito Y, Weinstein M A, Aoki I, Harada R, Kimura E, Nunogaki K. The coil planet centrifuge, Nature, 1966, 212: 985-987.
    [4] Harada R, Ito Y, Kimura E. A new method of osmotic fragility test of erythrocytes with coil planet centrifuge, Jap J Physiol, 1969, 19:306-314 (in Japanese).
    [5] Ito Y, Aoki I, Kimura E, Nunogaki K, Nunogaki Y. New micro liquid-liquid partition techniques with the coil planet centrifuge, Anal Chem, 1969, 41: 1579-1584.
    [6] Ito Y. Countercurrent chromatography, J Biochem Biophys Methods, 1981, 5: 105-129.
    [7] Ito Y, Bowman R L. Countercurrent chromatography: liquid-liquid partition chromatography without solid support, J Chromatogr Sci, 1970, 8:315-323.
    [8] Ito Y, Bowman R L. Countercurrent chromatography: liquid-liquid partition chromatography without solid support, Science, 1970, 167: 281-283.
    [9] Tanimura T, Pisano J J, Ito Y, Bowman R L. Droplet countercurrent chromatography, Science, 1970, 169: 54-56.
    [10] Foucault A P. Centrifugal partition chromatography, New York: Marcel Dekker Inc, 1994.
    [11] Murayama W, Kobayaski T, Kosuge Y, Yano H, Nunogaki Y, Nunogaki K. A new centrifugal counter-current chromatography, J Chromatogr, 1982, 239: 643-649.
    [12] Berthod A, Armstrong D W. Centrifugal partition chromatography. Ⅰ. General features, J Liq Chromatogr, 1988, 11: 547-566.
    [13] Berthod A, Armstrong D W. Centrifugal partition chromatography. Ⅱ. Selectivity and efficieney, J Liq Chromatogr, 1988, 11: 567-583.
    [14] Foucault A P, Bousquet O, Gaffic F Le, Cazes J. Countercurrent chromatography with a new centrifugal partition chromatographic system, J Liq Chromatogr, 1992, 15: 2721-2733.
    [15] Ito Y, Bowman R L. Countercurrent chromatography with flow-through coil planet centrifuge, Science, 1971, 173: 420-422.
    [16] Ito Y, Bowman R L. Countercurrent chromatography with the flow-through coil planet centrifuge, J Chromatogr Sci, 1973, 11: 284-291.
    [17] Ito Y, Bowman R L. Angle rotor countercurrent chromatography, Anal Biochem, 1975, 65: 310-320.
    [18] Ito Y, Bowman R L, Noble F W. The elution centrifuge applied to countercurrent chromatography, Anal Biochem, 1972, 49: 1-8.
    [19] Ito Y, Bowman R L. Horizontal flow-through coil planet centrifuge without rotating seals, Anal Biochem, 1977, 82: 63-68.
    [20] Ito Y, Suaudeau J, Bowman R L. New flow-through centrifuge without rotating seals applied to plasmapheresis, Science, 1975, 189: 999-1000.
    [21] Ito Y. Efficient preparative countercurrent chromatography with a coil planet centrifuge, J Chromatogr, 1981, 214: 122-125.
    [22] Ito Y, Sandlin J L, Bowers W G. High-speed countercurrent chromatography with a coil planet centrifuge, J Chromatogr, 1982, 244: 247-251.
    [23] Ito Y. High-speed countercurrent chromatography, Nature, 1987, 326: 419-420.
    [24] Ito Y. Development of high-speed countercurrent chromatography, Adv Chromatogr, 1984, 24: 181-226.
    [25] Ito Y. New continuous extraction method with a coil planet centrifuge, J Chromatogr, 1981, 207: 161-169.
    [26] Ito Y. Efficient preparative countercurrent chromatography with a coil planet centrifuge, J Chromatogr, 1981, 214: 122-125.
    [27] Ito Y, Sandlin J L, Bowers W G. High-speed preparative countercurrent chromatography (CCC) with a coil planet centrifuge, J Chromatogr, 1982, 244: 247-258.
    [28] Ito Y. High-speed countercurrent chromatography, CRC Crit Rev Anal Chem, 1986, 17: 65-143.
    [29] Ito Y. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed countercurrent chromatography: part Ⅰ. a helical column subjected to two types of synchronous planetary motion, J Chromatogr, 1984, 301: 377-386.
    [30] Ito Y, Bowman R L. Countercurrent chromatography with the flow-through coil planet centrifuge, J Chromatogr Sci, 1973, 11: 284-291.
    [31] Conway W D. Countercurrent chromatography: Apparatus, Theory and Application, VCH, New York, 1990.
    [32] 袁黎明,傅若农,张天佑.高速逆流色谱在植物有效成分分离中的应用,药物分析杂志,1998,18(1):60-64.
    [33] 字敏,袁黎明,刘频,艾萍,陈业高.高速逆流色谱分离青叶胆中的生物碱,林产化学与工业,2002,22(1):74-76.
    [34] Yang F, Ito Y. Preparative separation of lappaconitine, ranaconitine, N-deacetyllappaconitine and N-deacetylranaconitine from crude alkaloids of sample Aconitum sinomontanum Nakai by high-speed counter-current chromatography, J Chromatogr A, 2002, 943:219-225.
    [35] Yang F, Ito Y. pH-Zone-refining counter-current chromatography of lappaconitine from Aconitum sinomontanum Nakai, J Chromatogr A, 2001, 921: 281-285.
    [36] Yang F, Quan J, Zhang T, Ito Y. Preparative separatin of alkaloids from the root of Sophora flavescens Ait by pH-zone-refining counter-current chromatography, J Chromatogr A, 1998, 822: 316-320.
    [37] 袁黎明,吴平,夏滔,谌学先.高速逆流色谱制备分离中药黄柏中的生物碱,色谱,2002,20(2):185-186.
    [38] Du Q Z, Li Z, Ito Y. Preparative separation of isoflavone components m soybeans using high-speed counter-current chromatography, J Chromatogr A, 2001, 923: 271-274.
    [39] Du Q Z, Cai W, Xia M, Ito Y. Purification of (+)-dihydromyricetin from leaves extract of Ampelopsis grossedentata using high-speed countercurrent chromatography with scale-up triple columns, J Chromatogr A, 2002, 973: 217-220.
    [40] Du Q Z, Chen P, Jerz G, Winterhalter P. Preparative separation of flavonoid glycosides in leaves extract of Ampelopsis grossedentata using high-speed counter-current chromatography, J Chromatogr A, 2004, 1040:147-149.
    [41] 江和源,台建祥,吕飞杰.高速逆流色谱法分离制备大豆异黄酮中的大豆苷和染料木苷,食品科学,2004,25(1):85-88.
    [42] Chen L J, Games D E, Jones J, Kidwell H. Separation and identification of flavonoids in an extract from the seeds of Oroxylum indicum by CCC, J Liq Chromatogr Rel Tech, 2003, 26:1623-1636.
    [43] 江和源,程启坤,杜琪珍.高速逆流色谱在茶黄素分离上的应用,茶叶科学,2000,20(1):40-44.
    [44] Cao X, Tian Y, Zhang T, Li X, Ito Y. Separation and purification of isoflavones from Pueraria lobata by high-speed counter-current chromatography, J Chromatogr A, 1999, 855: 709-713.
    [45] 蔡定国,佘佳红,刘文庸,张兵,顾明娟.高速逆流色谱制备性分离精制白果内酯和橙皮甙对照品,中药新药与临床药理,1999,10(6):364-366.
    [46] Yang F, Quan J, Zhang T Y, Ito Y. Multidimensional counter-current chromatographic system and its application, J Chromatogr A, 1998, 803: 298-301.
    [47] 佘佳红,柳正良,蔡定国.高速逆流色谱分离制各白果内酯,中国新药杂志,2000,9(6):392-394.
    [48] Du Q Z, Xiong X, Ito Y. Separation of bioactive quadri-terpenic acids from the fruit of Ligustrum lucidum ait by high-speed countercurrent chromatography, J Liq Chromatogr, 1995, 18: 1997-2004.
    [49] 谭龙泉,张所明,欧庆瑜.薄层色谱在高速逆流色谱溶剂系统选择过程中的应用,分析化学,1996,24(12):1448-1451.
    [50] Whiteside R G, Games D E, Strawson C, Graham A S, Brown L. Application of high speed CCC for the purification of Lisinopril Diketopiperazine diastereomers, J Liq Chromatogr Relat Technol, 2001, 24: 1801-1810.
    [51] Ma Z, Zhang L, Han S. Separatin of samarium, gadolinium, terbium, gysprosium, erbium and ytterbium by high-speed countercurrent chromatography with organophosphate ester, J Chromatogr A, 1997, 766: 282-285.
    [52] Kitazume E, Sato N, Saito Y, Ito Y. Separation of heavy metals by high-speed countercurrent chromatography, Anal Chem, 1993, 65: 2225-2228.
    [53] 郑恒,魏日胞,陈香美.中药质量标准与中药指纹图谱,中国医院药学杂志,2003,23(2):112-113.
    [54] 沈平孃.高速逆流色谱(HSCCC)技术与色谱指纹谱,中成药,2001,23(5):313-315.
    [55] 黄宝康,秦路平,郑汉臣,苾鹤鸣.高速逆流色谱技术在天然产物分离及中药质控中的应用,中药材,2001,24(10):757-761.
    [56] 刘朝粲,王冬梅,白洁,王得坡.色谱技术在中药指纹图谱研究中的应用,色谱,2003,21(6):572-576.
    [57] 顾铭,欧阳藩,苏志国.高速逆流色谱法分离纯化丹参并尝试制订中药指纹图谱,生物工程学报,2003,19(6):740-744.
    [58] Gu M, Ouyang F, Su Z G. Comparison of high-speed counter-current chromatography and high-performance liquid chromatography on fingerprinting of Chinese traditional medicine, J Chromatogr A, 2004, 1022: 139-144.
    [59] Berthod A, Menges R, Armstrong D W. Direct Octanol-water partition coefficient determination using co-current chromatography, J Liq Chromatogr, 1992, 15: 2769-2785.
    [60] Berthod A, Mallet A I, Bully M. Measurement of partition coefficients in waterless biphasic liquid systems by countercurrent chromatography, Anal Chem, 1996, 68:431-436.
    [61] Berthod A, Bully M. High speed countercurrent chromatography used for alkyl benzene liquid-liquid partition coefficient determination, Anal Chem, 1991, 63, 2508-2512.
    [62] Schaufelberger D E, Johnson R W. Analytical high-speed countercurrent chromatography, Chemical Analysis, 1996, 132: 45-70.
    [63] Schaufelberger D E. Analytical high-speed countercurrent chromatography with photodiode array detection (HSCC-UV), J Liq Chromatogr, 1989, 12: 2263-2280.
    [64] 缪平,相秉仁,蔡定国.分析型逆流色谱的应用,中国中药杂志,1995,20(9):569-670.
    [65] Ito Y, Conway W D. High-speed countercurrent chromatography, Wiley Interscience, New York, 1996.
    [66] Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed countercurrent chromatography, J Chromatogr A, 2005, 1065:145-168.
    [67] Ito Y. in: E. Heftmann (Ed.), Chromatography V, Part A, Chapter 2, Journal of Chromatography Library, Elsevier, Amsterdam, 1992, pp. A69-A107.
    [68] Ito Y. in: A. Townshend, G. Fullerlove (Eds.), Encyclopedia of Analytical Science, vol. 2, Academic Press, London, 1995, pp. 910-916.
    [69] Oka F, Oka H, Ito Y. Systematic search for suitable two-phase solvent systems for high-speed countercurrent chromatography, J Chromatogr, 1991, 538: 99-108.
    [70] Li Z C, Zhou Y J, Chen F M, Zhang Z, Yang Y. Property calculation and prediction for selecting solvent systems in CCC, J Liq Chromatogr Relat Technol, 2003, 26: 1397-1415.
    [71] Zhang L, Li Z, Chen J, Bao T. Solution theory model for selection of solvent system in countercurrent chromatography, J Tsinghua University (Sci and Tech), 1997, 37:25-28 (in Chinese).
    [72] Chen J, Yu Y M, Li Z C. Accurate calculation for liquid-liquid equilibria of typical solvent systems used in CCC, J Liq Chromatogr Relat Technol, 2005, 28: 1937-1946.
    [73] 戴德舜,王义明,罗国安.高速逆流色谱溶剂体系软件在桂枝汤A部分研究中的应用,中成药,2001,23(9):625-628.
    [74] Berthed A, Carda-Borech S. A new class of solvents for CCC: The room temperature ionic liquids, J Liq Chromatogr Relat Technol, 2003, 26: 1493-1508.
    [75] Shibusawa Y, Yanagida A, Shindo H, Ito Y. Separation of apple catechin oligomers by CCC, J Liq Chromatogr Relat Technol, 2003, 26: 1609-1621.
    [76] Shinomiya K, Ito Y. Countercurrent chromatographic separation of biotic compounds with extremely hydrophilic organic-aqueous two-phase solvent sytems and organic-aqueous three-phase solvent systems, J Liq Chromatogr Relat Technol, 2006, 29: 733-750.
    [77] Shibusawa Y, Yamakawa Y, Noji R, Yanagida A, Shindo H, Ito Y. Three-phase solvent systems for comprehensive separation of a wide variety of compounds by high-speed counter-current chromatography, J Chromatogr A, 2006, 1133: 119-125.
    [78] Maryutina T A, Ignatova S N, Sutherland I A. Organic phase retention in CCC: Effect of temperature, tubing bore, mobile phase flow, and the addition of an extraction agent, J Liq Chromatogr Relat Technol, 2003, 26: 1537-1550.
    [79] Sun Q H, Sun A L, Liu R M. Preparative isolation and purification of four compounds from the Chinese medicinal herb Rhizoma Anemarrhenae by high-speed counter-current chromatography, J Chromatogr A, 2006, 1104: 69-74.
    [80] Chu X, Sun A L, Liu R M. Preparative isolation and purification of five compounds from the Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography, J Chromatogr A, 2005, 1097: 33-39.
    [81] Ito Y, Goto T, Yamada S, Matsumoto H, Oka H, Takahashi N, Nakazawa H, Nagase H, Ito Y. Application of dual counter-current chromatography for rapid sample preparation of N-methylcarbamate pesticides in vegetable oil and citrus fruit, J Chromatogr A, 2006, 1108: 20-25.
    [82] Fahey J W, Wade K L, Stephenson K K, Chou F, Edward L B, Dorothy C. Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography, J Chromatogr A, 2003, 996:85-93.
    [83] Menet J M, Rolet M C, Thiebaut D, Rosset R, Ito Y. Fundamental chromatographic parameters in countercurrent chromatography: influence of the volume of stationary phase and the flow rate, J Liq Chromatogr, 1992, 15: 2883-2908.
    [84] Du Q Z, Wu C J, Qian G J, Wu P D, Ito Y. Relationship between the flow rate of the mobile phase and retention of the stationary phase of the stationary phase in countercurrent chromatography, J Chromatogr A, 1999, 835: 231-235.
    [85] Sutherland I A, Du Q Z, Wood P D. The relationship between retention, linear flow and density difference in countercurrent chromatography, J Liq Chromatogr Relat Technol, 2001, 24: 1669-1683.
    [86] Sutherland I A. Relationship between retention, linear velocity and flow for counter-current chromatography, J Chromatogr A, 2000, 886: 283-287.
    [87] Maryutina T A, Ignatova S N. Countercurrent chromatography for the preconcentration and separation of inorganic compounds: influence of physicochemical properties of two phase liquid systems on the retention of the stationary phase, J Anal Chem, 1998, 53: 740-745.
    [88] Maryutina T A, Ignatova S N, Fedotov P S, Spivakov B Ya, Thiebaut D. Influence of composition and some physico-chemical properties of two-phase liquid systems on the stationary phase retention in a coil planet centrifuge, J Liq Chromatogr Relat Technol, 1998, 21: 19-37.
    [89] Fedotov P S, Thiebaut D. Retention of the stationary phase in a coil planet centrifuge: Effects of interfacial tension, density difference, and viscoisities of liquid phases, J Liq Chromatogr Relat Technol, 1998, 21: 39-52.
    [90] Maryutina T A, Ignatova S N, Fedotov P S, Spivakov B Ya. Effect of physicochemical properties of two-phase liquid systems on the retention of the organic phase in a rotating coil column, J Anal Chem, 1999, 54: 731-738.
    [91] Ignatova S N, Maryutina T A, Spivakov B Ya. Effect of physicochemical properties of two-phase liquid systems on the retention of stationary phase in a CCC column, J Liq Chromatogr Relat Technol, 2001, 24, 1655-1668.
    [92] Berthod A, Schmitt N. Water-organic solvent systems in countercurrent chromatography: liquid stationary phase retention and solvent polarity, Talanta, 1993, 40: 1489-1498.
    
    [93] Menet J M, Thiebaut D, Rosset R. Classification of countercurrent chromatography solvent systems on the basis of the capillary wavelength, Anal Chem, 1994, 66: 168-176.
    [94] Ignatova S N, Maryutina T A, Spivakov B Ya. Effect of physicochemical properties of two phase liquid systems on the retention of stationary phase in a CCC column, J Liq Chromatogr Relat Technol, 2001, 24: 1655-1668.
    [95] Berthod A. Practical approach to high speed countercurrent chromatography, J Chromatogr, 1991, 550: 677-693.
    [96] Sutherland I A, Booth A J, Brown L, Kemp B, Kidwell H, Games D, Graham A S, Guillon G G., Hawes D, Hayes M, Janaway L, Lye G. J, Massey P, Preston C, Shering P, Shoulder T, Strawson C, Wood P. Industrial scale up of countercurrent chromatography, J Liq Chromatogr Relat Technol, 2001, 24: 1533-1553.
    [97] Wood P L, Jaber B, Janaway L, Terlinden N, Sutherland I A. Effect of β-value on the head and tail distribution of the upper and lower phases in helical coils, J Liq Chromatogr Relat Technol, 2005, 28:1819-1837.
    [98] Philip L, Wood D H, Janaway L, Sutherland I A. Determination of J-Type centrifuge extra-coil volume using stationary phase retentions at differing flow rates, J Liq Chromatogr Relat Technol, 2003, 26: 141%1430.
    [99] Bhatnagar M, Ito Y. Foam countercurrent chromatography on various test samples and the effects of additives on foam affinity, J Liq Chromatogr, 1988, 11: 21-36.
    [100] Oka H, Harada K I, Suzuki M, Nakazawa H, Ito Y. Foam counter-current chromatography of bacitracin. I. Batch separation with nitrogen and water free of additivies, J Chromatogr, 1989, 482: 197-205.
    [101] Oka H, Harada K I, Suzuki M, Nakazawa H, Ito Y. Foam counter-current chromatography of bacitracin. Ⅱ. Continuous removal and concentration of hydrophobic components with nitrogen gas and distilled water free of surfactants or other additives, J Chromatogr, 1991, 538: 213-218.
    [102] Ito Y, Kitazume E, Bhatnagar M, Trimble F D. Cross-axis synchronous flow-through coil planet centrifuge (Type ⅩLL) Ⅰ. Design of the apparatus and studies on retention of stationary phase, J Chromatogr, 1991, 538: 59-66.
    [103] Shibusawa Y, Ito Y. Protein separation with aqueous-aqueous polymer systems by two types of counter-current chromatography, J Chromatogr, 1991, 550: 695-704.
    [104] Weisz A, Sober A L, Shinomiya K, Fales H M, Ito Y. A new preparative-scale purification technique: pH-zone-refining countercurrent chromatography, J Am Chem Soc, 1994, 116: 704-708.
    [105] Degenhardt A, Michael S, Peter W. Evaluation of different tubing grometries for high-speed countercurrent chromatography, J Chromatogr A, 2001, 922: 355-358.
    [106] Ito Y, Yang F W, Paul F. Improved spiral disk assembly for high-speed countercurrent chromatography, J Chromatogr A, 2003, 1017:71-81.
    [107] Ito Y. Chromatographic separation method and apparatus, US Patent: 6379973. United States, 2002.
    [108] Ito Y, Yang F Q, Paul F. Spiral disk assembly for HSCCC: column design and basic studies on chromatography resolution and stationary phase retention, J Liq Chromatogr Relat Technol, 2003, 26: 1355-1372.
    [109] Sutherland I A, Hawes D, Ignatova S, Janaway L, Wood P. Review of progress toward the industrial scale-up of CCC, J Liq Chromatogr Relat Technol, 2005, 28: 1877-1891.
    [110] Sutherland I A. Recent progress on the industrial scale-up of counter-current chromatography, J Chromatogr A, 2007, 1151: 6-13.
    [111] 李总成.逆流色谱的发展前景,化工进展,2005,24(7):816-817.
    [1] Conway W D. Countercurrent chromatography: Apparatus, Theory and Application, VCH, New York, 1990.
    [2] Mandava N B, Ito Y. Countercurrent chromatography, Theory and Practice, Marcel Dekker Publishers, New York, 1988
    [3] Ito Y. Recent advances in countercurrent chromatography, J Chromatogr, 1991, 538: 3-25.
    [4] Berthod A, Schmitt N. Water-organic solvent systems in countercurrent chromatography: liquid stationary phase retention and solvent polarity, Talanta, 1993, 40: 1489-1498.
    [5] Menet J M, Thiebaut D, Rossct R, Wesfreid J E, Martin M. Classification of countercurrent chromatography solvent systems on the basis of the capillary wavelength, Anal Chem, 1994, 66: 168-176.
    [6] Menet J M, Rolet M C, Thiebaut D, Rosset R, Ito Y. Fundamental chromatographic parameters in countercurrent chromatography influence of the volume of stationary phase and the flow rate, J Liq Chromatogr, 1992, 15: 2883-2908.
    [7] Foucault A P, Bousquet O, Le Goffic F. Importance of the parameter V_m/V_c in countercurrent chromatography: tentative comparison between instrument designs, J Liq Chromatogr, 1992, 15: 2691-2706.
    [8] Foucault A P, Bousquet O, Le Goffic F. Countercurrent chromatography with a new centrifugal partition chromatographic system, J Liq Chromatogr, 1992, 15: 2721-2733.
    [9] Berthod A. Practical approach to HSCCC, J Chromatogr, 1991, 550:677-693.
    [10] Du Q Z, Wu C J, Qian G J, Wu P D, Ito Y. Relationship between the flow rate of the mobile phase and retention of the stationary phase in countercurrent chromatography, J Chromatogr A, 1999, 835: 231-235.
    [11] Drogue S, Rolet M C, Thiebaut D, Rosset R. Separation of pristinamycins by high-speed countercurrent chromatography: Ⅰ. Selection of solvent system and preliminary preparative studies, J Chromatogr, 1992, 593: 363-371.
    [12] Berthod A, Mallet A I, Bully M. Measurement of partition coefficients in waterless biphasic liquid systems by countercurrent chromatography, Anal Chem, 1996, 68: 431-436.
    [13] Wood P L, Hawes D, Janaway L, Suthedand I A. Stationary phase retention in CCC: modeling the J-type centrifuge as a constant pressure drop pump, J Liq Chromatogr Relat Technol, 2003, 26: 1373-1396.
    [14] Ito Y. Speculation on the mechanism of unilateral hydrodynamic distribution of two immiscible solvent phases in the rotating coil, J Liq Chromatogr, 1992, 15: 2639-2675.
    [15] Fedotov P S, Kronrod V A, Maryutina T A, Spivakov B Y. Simulation of the mechanism of liquid stationary phase retention in a rotating coil column: hydrophobic liquid systems, J Anal Chem, 2002, 57: 30-37.
    [16] Fedotov P S, Kronrod V A, Maryutina T A, Spivakov B Y. Simulation of the mechanism of liquid stationary phase retention in a rotating coil column: hydrophilic liquid systems, J Anal Chem, 2002, 57: 173-177.
    [17] Yu H S, Sparrow E M. Stratified laminar flow in ducts of arbitrary shape, AIChE J, 1967, 13: 10-16.
    [18] Ito Y, Bowman R L. Countercurrent chromatography: liquid-liquid partition chromatography without solid support, Science, 1970, 167: 281-283.
    [19] Berthod A, Armstrong D W. Centrifugal partition chromatography. Ⅰ. General features, J Liq Chromatogr, 1988, 11: 547-566.
    [20] Berthod A, Armstrong D W. Centrifugal partition chromatography. Ⅱ. Selectivity and efficiency, J Liq Chromatogr; 1988, 11: 567-583.
    [21] Armstrong D W, Bertrand G L, Berthod A. Study of the origin and mechanism of band broadening and pressure drop in centrifugal countercurrent chromatography, Anal Chem, 1988, 60:2513-2519.
    [22] Van Buel M J, Van der Wielen L A M, Luyben K Ch A M. Pressure drop in centrifugal partition chromatography, J Chromatogr A, 1997, 773:1-12
    [23] Ito Y, Bowman R L. Preparative countercurrent chromatography with horizontal flow-through coil planet centrifuge, J Chromatogr, 1978, 147:221-231.
    [24] Ito Y. Speculation on the mechanism of unilateral hydrodynamic distribution of two immiscible solvent phases in the rotating coil, J Liq Chromatogr, 1992, 15: 2639-2675.
    [25] Ito Y. New horizontal flow-through coil planet centrifuge for countercurrent chromatography, J Chromatogr, 1980, 188: 33-42.
    [26] Ito Y. New angle rotor coil planet centrifuge for countercurrent chromatography, J Chromatogr, 1986, 358: 313-323.
    [27] Menet J M, Ito Y. Studies on a new cross-axis coil planet centrifuge for performing countercurrent chromatography. Ⅱ. Path and acceleration of coils and comparison with type J coil planet centrifuge, J Chromatogr, 1993, 644: 231-238.
    [28] Wu S H, Tai Y P, Pan Y J, Sun C R. Effect of gravitational force on type-J countercurrent chromatography by mathematical analysis, J Chromatogr A, 2006, 1103: 243-247.
    [29] Wood P L. The hydrodynamics of countercurrent chromatography in J-type centrifuges, Brunel University, July, 2002, Ph. D. Thesis.
    [30] Logsdail D, Lowes L, Hanson C. Recent advance in liquid-liquid extraction, Pergamon Press, Oxford, 1971.
    [31] Warshay M, Bogusz E, Johnson M, Kintner R C. Ultimate velocity of drops in stationary liquid media, Can J Chem Eng, 1959, 37: 29-36.
    [32] Van Buel M J, Van Halasema F E D, Van der Wielen L AM, Luyben K Ch AM. Flow regimes in oentrifugal partition chromatography, AIChE J, 1998, 44: 1356-1362
    [33] Wood P L, Hawes D, Janaway L, Suthedand I A. Determination of J-Type oentrifuge extra-coil volume using stationary phase retentions at differing flow rates, J Liq Chromatogr Relat Technol, 2003, 26: 1417-1430.
    [34] Suthedand I A, Muytjens J, Prins P, Wood P L. A new hypothesis on phase distribution in oountercurrent ohromatography, J Liq Chromatogr Relat Technol, 2000, 23: 2259-2276.
    [35] Li Z C, Zhou Y J, Chen F M, Zhang L, Yang Y. Property calculation and prediction for selecting solvent systems in CCC, J Liq Chromatogr Relat Technol, 2003, 26: 1397-1415.
    [36] Berthod A, Billardello B. Test to evaluate countercurrent chromatographs liquid stationary phase retention and chromatographic resolution, J Chromatogr A, 2000, 902: 323-335.
    [37] Ignatova S N, Sutherland I A. A fast, effective method of characterizing new phase systems in CCC, J Liq Chromatogr Relat Technol, 2003, 26: 1551-1564.
    [38] Sutherland I A, Booth A J, Brown L, Kemp B, Kidwell H, Games D, Graham A S, Guillon G G, Hawes D, Hayes M, Janaway L, Lye G L, Massey P, Preston C, Shering P, Shoulder T, Strawson C, Wood P. Industrial scale up of countercurrent chromatography, J Liq Chromatogr Relat Technol, 2001; 24: 1533-1553.
    [1] Conway W D, Ito Y. Resolution in countercurrent chromatography, J Liq Chromatogr, 1985, 8: 2195-2207.
    [2] Berthod A, Armstrong D W. Centrifugal partition chromatography: Ⅱ selectivity and efficiency, J Liq Chromatogr, 1988, 11: 567-583.
    [3] Bousquet O, Foucault A P, Goffic F Le. Efficiency and resolution in countercurrent chromatography, J Liq Chromatogr, 1991, 14: 3343-3363.
    [4] Oka H, Ikai Y, Hayakawa J, Harada K I, Nagase K, Suzuki M, Nakazawa H, Ito Y. Discrepancy between the theoretical plate and peak resolution for optimizing the flow rate in countercurrent chromatography, J Liq Chromatogr, 1992, 15: 2707-2719.
    [5] Armstrong D W, Bertrand G L, Berthod A. Study of the origin and mechanism of band broadening and pressure drop in centrifugal countercurrent chromatography, Anal Chem, 1988, 60: 2513-2519.
    [6] Armstong D W. Theory and use of centrifugal partition chromatography, J Liq Chromatogr, 1988, 11: 2433-2446.
    [7] Foucault A P, Camacho Frias E, Bordier C G, Goffic F Le. Centrifugal partition chromatography: stability of various biphasic systems and pertinence of the "Stokes Model" to describe the influence of the centrifugal field upon the efficiency, J Liq Chromatogr, 1994, 17: 1-17.
    [8] Matsuda K, Matsuda S, Ito Y. Toroidal coil counter-current chromatography Achievement of high resolution by optimizing flow rate, rotation speed, sample volume and tube length, J Chromatogr A, 1998, 808: 95-104.
    [9] Berthod A, Billardello B. Test to evaluate countercurrent chromatographs liquid stationary phase retention and chromatographic resolution, J Chromatogr A, 2000, 902: 323-335.
    [10] Sutherland I A, Hawes D, van den Heuvel R, Janaway L, Tinnion E. Resolution in CCC: the effect of operating conditions and phase system properties on scale-up, J Liq Chromatogr Relat Technol, 2003; 26: 1475-1491.
    [11] Berthod A, Bully M. High-speed countercurrent chromatography used for alkylbenzene liquid-liquid partition coefficient determination, Anal Chem, 1991, 63: 2508-2512.
    [12] Berthod A, Mallet A I, Bully M. Measurement of partition coefficients in waterless biphasic liquid systems by countercurrent chromatography, Anal Chem, 1996, 68: 431-436.
    [13] Foucault A P, Bousquet O, Goffic F LE. Importance of the parameter V_m/V_c in countercurrent chromatography: tentative comparison between instrument designs, J Liq Chromatogr, 1992, 15: 2691-2706.
    [14] Foucault A P, Camacho Frias E, Bordier C G, Goffic F Le. Centrifugal partition chromatography: stability of various biphasic systems and pertinence of the "Stokes Model" to describe the influence of the centrifugal field upon the efficiency, J Liq Chromatogr, 1994, 17: 1-17.
    [1] Yao S, Li Yi, Kong L Y. Preparative isolation and purification of chemical consitituents from the root of Polygonum multiflorum by high-speed counter-current chromatography, J Chromatogr A, 2006, 1115: 64-71.
    [2] Sun Q S, Sun A L, Liu R M. Preparative isolation and purification of four compounds from the Chinese medicinal herb Rhizoma Anemarrhenae by high-speed counter-current chromatography, J Chromatogr A, 2006, 1104: 69-74.
    [3] Zhou T T, Fan G R, Hong Z Y, Chai Y F, Wu Y T. Large-scale isolation and purification of geniposide from the fruit of Gardenia jasminodes Ellis by high-speed counter-current chromatography, J Chromatogr A, 2005, 1100: 76-80.
    [4] Chu X, Sun A L, Liu R M. Preparative isolation and purification of five compounds from the Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography, J Chromatogr A, 2005, 1097: 33-39.
    [5] Du Q Z, Wu C J, Qian G J, Wu P D, Ito Y. Relationship between the flow-rate of the mobile phase and retention of the stationary phase in counter-current chromatography, J Chromatogr A, 1999, 835: 231-235.
    [6] Sutherland I A. Relationship between retention, linear velocity and flow for counter-current chromatography, J Chromatogr A, 2000, 886: 283-287.
    [7] Sutherland I A, Hawes D, Van den Heuvel R, Janaway L, Tinnion E. Resolution in CCC: the effect of operating conditions and phase system properties on scale-up, J Liq Chromatogr Relat Technol, 2003, 26: 1475-1491.
    [8] Van Deemter J J, Zuiderweg F J. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chem Engng Sci, 1956, 5: 271-289.
    [9] Kostanian A E. Modelling counter-current chromatography: a chemical engineering perspective, J Chromatogr A, 2002, 973: 39-46.
    [10] Kostanian A E, Berthod A, Ignatova S N, Maryutina T A, Spivakov B Ya, Sutherland I A. Countercurrent chromatographic separation: a hydrodynamic approach developed for extraction columns, J Chromatogra A, 2004, 1040: 63-72.
    [11] Wu S J, Sun A L, Liu R M. Separation and purification of baicalin and wogonoside from the Chinese medicinal plant Scutellaria baicalensis Georgi by high-speed counter-current chromatography, J Chromatogr A, 2005, 1066: 243-247.
    [12] Zhao C X, He C H. Preparative isolation and purification of atractylon and atractylenolide III from the Chinese medicinal plant Atractylenoldes macrocephala by high-speed counter-current chromatography, J Sep Sci, 2006, 29: 1630-1636.
    
    [13] Du Q Z, Wu P D, Ito Y. Low-speed rotary countercurrent chromatography using a convoluted multilayer helical tube for industrial separation, Anal Chem, 2000, 72: 3363-3365.
    
    [14] Du Q Z, Jerz G, He Y C, Li L, Xu Y J, Zhang Q, Zheng Q X, Winterhalter P, Ito Y. Semi-industrial isolation of salicin and amygdalin from plant extracts using slow rotary counter-current chromatography, J Chromatogr A, 2005, 1074: 43-46.
    [1] Conway W D. Countercurrent chromatography: Apparatus, Theory and Application, VCH, New York, 1990.
    [2] Kostanian A E. Modeling counter-current chromatography: a chemical engineering perspective, J Chromatogr A, 2002, 973: 39-46.
    [3] Kostanian A E, Berthod A, Ignatova S N, Maryutina T A, Spivakov B Ya, Sutherland I A. Countercurrent chromatographic separation: a hydrodynamic approach developed for extraction column, J Chromatogr A, 2004, 1040: 63-72.
    [4] Sutherland I A, Folter J de, Wood P. Modeling CCC using an eluting countercurrent chromatography distribution model, J Liq Chromatogr Rel Tech, 2003, 26: 1449-1474.
    [5] Marchal L, Legrand J. Mass transport and flow regimes in centrifugal partition chromatography, AIChE J, 2002, 48: 1692-1704.
    [6] Van Buel M J, Van der Wielen L A M, Luyben K Ch A M. Effluent concentration profiles in centrifugal partition chromatography, AIChE J, 1997, 43: 693-702.
    [7] Van Buel M J, Van Halsema F E D, Van der Wielen L A M, Luyben K Ch A M. Flow regimes in centrifugal partition chromatography, AIChE J, 1998, 44: 1356-1362.
    [8] Van Deemter J J, Zuiderweg F J. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chem Engng Sci, 1956, 5: 271-289.
    [9] 林炳昌.色谱模型理论导引,科学出版社,北京,2004.
    [10] 乐军,陈光文,袁权,罗灵爱,Le Gall Herve.微通道内气-液传质研究,化工学报,2006,57(7):1296-1303.
    [11] Danckwerts PV. Significance of liquid-film coefficients in gas absorption. Ind Eng Chem. 1951, 42: 1460-1467.
    [12] Foucault AP, Camacho Frias E, Bordier CG, Goffic F Le. Centrifugal partition chromatography: stability of various biphasic systems and pertinence of the "Stoke's Model" to describe the influence of the centrifugal field upon the efficiency, J Liq Chromatogr. 1994, 17: 1-17.
    [13] Wilson E J, Geankoplis C J. Liquid mass transfer at very low Reynolds numbers in packed beds, lndEng Chem Fundam, 1966, 5: 9-14.
    [14] Otillinger F, Blass E. Mass transfer in centrifugal extractors, Chem Eng Technol, 1988, 11: 312-320.
    [15] Li Z C, Zhou Y J, Chen F M, Zhang Z, Yang Y. Property calculation and prediction for selecting solvent systems in CCC, J Liq Chromatogr Relat Technol, 2003, 26: 1397-1415.
    [16] Zhang L, Li Z, Chen J, Bao T. Solution theory model for selection of solvent system in countercurrent chromatography, J Tsinghua University (Sci and Tech), 1997, 37:25-28 (in Chinese),
    [17] Chen J, Yu Y M, Li Z C. Accurate calculation for liquid-liquid equilibria of typical solvent systems used in CCC, J Liq Chromatogr Relat Technol, 2005, 28: 1937-1946.
    [18] Sutherland I A, Hawes D, Van den Heuvel R, Janaway L, Tinnion E. Resolution in CCC: the effect of operating conditions and phase system properties on scale-up, J Liq Chromatogr Rel Tech, 2003, 26: 1475-1491.
    [19] Ignatova S N, Sutherland I A. A fast, effective method of characterizing new phase systems in CCC, J Liq Chromatogr Rel Tech, 2003, 26: 1551-1564.
    [20] Li H B, Chen F. Preparative isolation and purification of phillyrin from the medicinal plant Forsythia suspensa by high-speed counter-current chromatography, J Chromatogr A, 2005, 1083: 102-105.
    [21] Chen J H, Wang F M, Lee F S C, Wang X R, Xie M Y. Separation and identification of water-soluble salvianolie acids from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography and ESI-MS analysis, Talanta, 2006, 69: 172-179
    [22] Du Q Z, Li L, Jerz G. Purification of astilbin and isoastilbin in the extract of smilax glabra rhizome by high-speed counter-current chromatography, J Chromatogr A, 2005, 1077: 98-101.
    [23] Ma X F, Tian W X, Wu L H, Cao X L, Ito Y. Isolation of quercetin-3-O-L-rhamnoside from Acer truncatum Bunge by high-speed counter-current chromatography, J Chromatogr A, 2005, 1070: 211-214.
    [24] Chen F, Li H B, Wong R N S, Ji B, Jiang Y. Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography, J Chromatogr A, 2005, 1064: 183-186.
    [25] Li H B, Chen F. Preparative isolation and purification of gastrodin from the Chinese medicinal plant Gastrodia elata by high-speed counter-current chromatography, J Chromatogr A, 2004, 1052: 229-232.
    [26] Yan J Z, Tong S Q, Chu J J, Sheng L Q, Chen G. Preparative isolation and purification of syringin and edgeworoside C from Edgeworthia chrysantha Lindl by high-speed counter-current chromatography, J Chromatogr A, 2004, 1043: 329-332.
    [27] Li H B, Chen F. Preparative isolation and purification of chuanxiongzine from the medicinal plant Ligusticum chuanxiong by high-speed counter-current chromatography, J Chromatogr A, 2004, 1047: 249-253.
    [28] Jiang Y, Lua H T, Chen F. Preparative purification of glycyrrhizin extracted from the root of liquorice using high-speed counter-current chromatography, J Chromatogr A, 2004, 1033: 183-186
    [1] 李家实.中药鉴定学,上海科学技术出版社,1998.
    [2] 江苏新医学院.中药大辞典(上册),上海科技出版社,1985.
    [3] 李岩,孙思予,周卓.白术对小鼠胃排空及小肠推进功能影响的实验研究,辽宁医学杂志,1996,16(4):186-186.
    [4] 马晓松,樊雪萍,陈忠,邢诒善.白术促进小鼠胃肠运动机制的探讨,中国医院药学杂志,1995,15(4):167-168.
    [5] 马晓松,邢诒善.白术对离体豚鼠回肠收缩的影响,新消化病学杂志,1996,4(11):603-604.
    [6] 马晓松,樊雪萍,陈忠,李崇文,邢诒善.白术对动物胃肠运动的作用及其机制的探讨,中华消化杂志,1996,16(5):261-264.
    [7] 孙喜才,张健,邱根全.白术抑癌机理的探讨,陕西中医,1988,9(6):282-283.
    [8] 吕圭源,李万里.白术抗衰老作用研究,现代应用药学,1996,13(5):26-29.
    [9] 李怀荆,熊蓉艳.白术水煎剂对老年小鼠抗衰老作用的影响,佳木斯医学院学报,1996,19(1):9-10.
    [10] 周海虹,徐兆兰,杨端琴.白术提取物对子宫平滑肌作用的研究,安徽中医学院学报,1993,12(4):39-40.
    [11] 余上才,章育正,赵慧娟,于丽华.枸杞子和白术免疫调节作用的实验研究,上海免疫学杂志,1994,14(1):12-14.
    [12] 张宏桂,张宏,吴广宣,宋风瑞,时述武,赫萍.白术倍半萜成分的化学研究,白求恩医科大学学报,1993,19(6):560-561.
    [13] 王翕,刘玉瑛,史天良,张鸿翔,杨广文.白术挥发油抗实体瘤的作用研究,中国药物与临床,2002,2(4):239-240.
    [14] 关晓辉,曲娴,杨志萍,黄唯莉,孙红霞.白术挥发油对小鼠免疫功能的影响,北华大学学报(自然科学版)、2001,2(2):122-124.
    [15] 董岩,辛炳炜.白术化学成分研究新进展,山东医药工业,2003,22(3):32-33.
    [16] 毛俊浩,吕志良,曾群力,阮红.白术多糖对小鼠淋巴细胞功能的调节,免疫学杂志,1996,12(4):233-236.
    [17] 汤新慧.白术多糖对小鼠免疫功能的影响.中医研究,1998.11(2):7-9.
    [18] Endo K, Toguohi T, Toguchi F, et al. Antiinflammatory principles of Atractylodes, Chem Pharm Bull, 1979, 27: 2954-2958.
    [19] 汤德芳,郝玉珩,刘佐雅.平江白术根茎挥发油的成分及其抑瘤作用研究,药学通报,1984,19(9):43-44。
    [20] 李伟,文红梅,张爱华,葛建华,吴皓.白术质量标准研究Ⅰ—HPLC法测定2种白术内酯的含量,药物分析杂志,2001,21(3):170-172.
    [21] 蒲含林,王正濂,黄巧娟,许实波,林永成,吴雄宇.双白术内酯对豚鼠离体心房肌的作用,中国药理学通报,2000,16(1):60-62.
    [22] 陈柳蓉,邵青,陆蕴.紫外分光光度法测定白术中苍术酮的含量,浙江医科大学学报,1996,25(6):270-271.
    [23] 陈仲良.中药白术的化学成分Ⅱ.白术三醇的α甲基丁酰衍生物,化学学报,1989,47:1022-1024.
    [24] 黄宝山.白术内酯Ⅳ的分离鉴定,植物学报,1992,34(8):616-617.
    [25] 林永成,金涛,袁至美,吴雄宇.中药白术中一种新的双倍半萜内酯,中山大学学报(自然科学版),1996,35(2):75-76.
    [26] 吴素香,吕圭源,李万里,李阳春,陈素红,张丽英.白术超临界CO_2萃取工艺及萃取物的化学成分研究,中成药,2005,27(8):885-887.
    [27] 张强,李章万.白术挥发油成分的分析,华西药学杂志,1997,12(2):119-120.
    [28] 周枝凤,沈菊文,龚范,梁逸曾,邱细敏.白术挥发油成分分析及其色谱指纹图谱研究初探,中草药,2004,35(1):5-8.
    [29] 邱琴,崔兆杰,刘廷礼,张善东.白术挥发油化学成分的GC-MS研究,中草药,2002,33(11):980—981.
    [30] 闫克里,刘玉瑛,史天良,张菊仙,张鸿翔,张素华.气—质联用对不同提取法的白术油化学成分的分析,中国药物与临床,2002,2(5):339-340.
    [31] 林启寿.中草药成分化学,北京:科学出版社,1977.
    [32] 顾玉诚,任丽娟,张岚.白术多糖的研究Ⅰ.AM-1、2的分离纯化与性质,中草药,1992,23(10):507-508.
    [33] 顾玉诚,任丽娟.中药白术免疫活性成分多糖的研究,中国药学杂志,1993,28(5):275-277.
    [34] 邱细敏,唐小异,刘胜姿,凌晓,戴丽华,毛秀华.白术多糖葡萄糖的含量测定,湖南师范大学学报(医学版),2004,1(1):47-49.
    [35] 邱细敏,卢岳华,沈品,刘爱霞,张毅,李丽立.不同产地白术多糖含量测定,药物鉴定,2005,14(4):40-41.
    [36] 万丽,刘玮琦,杜江,何潮,龙波南.不同产地白术多糖含量测定,世界科学技术—中医药现代化—基础研究,2003,5(2):48-50.
    [37] 乔小云,姚峰,李俏,王玉玺.影响白术多糖提取工艺的因素探讨,中成药,2001,23(4):293-294.
    [38] 池玉梅,李伟,文红梅,崔小兵,蔡皓,毕肖林。白术多糖的分离纯化和化学结构研究,中药材,2001,24(9):647-648.
    [39] 田庚元,单俊杰.抗肿瘤和免疫调节白术多糖、生产方法和用途,中国CN:1397566A.2003.02.19
    [40] 田庚元,单俊杰.降血糖活性的白术糖复合物、生产方法和用途,中国CN:1398630A.2003.02.26
    [41] 李爱红,孙建民,孙汉文.白术中微量元素的溶出特性和形态分析,微量元素与健康研究,2001,18(3):37-39.
    [42] Endo K, Toguchi T, Toguchi F, Hikino H, Yamahara J, Fujimura H. Antiinflammatory and autoxidation of atractylon, Chem Pharm Bull, 1979; 12: 755-760.
    [43] Tang D F, Hao Y H, Liu Z Y, Miao S L, Wei H, Hao J. The constituients of the essential oil from koidz of Atractylodes macrocephala produced in Pingjiang and their antitumour effect, Chin Pharm Bull, 1984, 19: 43.
    [44] Wang C C, Chen L G, Yang L L. Cytotoxie aotivity of sesquiterpenoids from Atractylodes ovata on Leukemia cell lines, Planta Medica, 2002, 68: 204-208.
    [45] 陈建民,俞敏倩,沈银柱,刘植义,黄占景.组织培养白术和天然白术化学成分的比较,植物学报(英文版),1991,33:164-167.
    [46] Li H B, Chen F. Isolation and purification of baicalein, wogonin and oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography, J Chromatogr A, 2005, 1074: 107-110.
    [47] Gu M, Ouyang F, Su Z G. Comparis on of high-speed counter-current chromatography and high-performance liquid chromatography on fingerprinting of Chinese traditional medicine, J Chromatogr A, 2004, 1022: 139-144.
    [48] Ma C J, Li G. S, Zhang D L, Liu K, Fan X. One step isolation and purification of liquiritigenin and isoliquiritigenin from Glycyrrhiza uralensis Risch. using high-speed counter-current chromatography, J Chromatogr A, 2005, 1078, 188-192.
    [49] Du Q Z, Wu C J, Qian G J, Wu P D, Ito Y. Relationship between the flow rate of the mobile phase and retention of the stationary phase of the stationary phase in countereurrent chromatography, J Chromatogr A, 1999, 835: 231-235
    [50] Sutherland I A. Relationship between retention, linear velocity and flow for counter-current chromatography, J Chromatogr A, 2000, 886: 283-287.
    [51] Booth A J, Sutherland I A, Lye G J. Modeling the performance of pilot scale countercurrent chromatography: scale-up predictions and experimental verification of erythromycin separation, Biotechnol and Bioeng, 2003, 81: 640-649.
    [52] Slacanin I, Marston A, Hostettmann K. Modifications to a high-speed counter-current chromatography for improved separation capability, J Chromatogr, 1989, 482: 234-239.
    [53] Marson A, Borel C, Hostettmarm K. Separation of natural products by centrifugal partition chromatography, J Chromatogr, 1988, 450: 91-99.
    [54] Agnely M, Thiebaut D. Dual-mode high-speed counter-current chromatography: retention, resolution and examples, J Chromatogr A, 1997, 790: 17-30.
    [55] Gluck S J, Martin E J. Extended oetanol-water partition coefficient determination by dual-mode centrifugal partition chromatography, J Liq Chromatogr, 1990, 13: 3559-3570.
    [56] Menges R A, Bertrand G L, Armstrong D W. Direct measurement of octanol-water partition coefficients using centrifugal partition chromatography with a back-flushing technique, J Liq Chromatogr, 1990, 13: 3061-3065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700