用户名: 密码: 验证码:
纳米碳管的盐水通道行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1991年Iijima发现纳米碳管以来,纳米碳管以其众多独特的性能已经得到了广泛的研究和应用。本文在前人研究的基础上,将纳米碳管以密堆积的方式构筑水和离子的膜通道,采用分子动力学方法模拟了300K、1.01×105Pa下不同尺寸的扶手椅型纳米碳管中水分子和盐离子的扩散和渗透行为。
     通过分子动力学模拟可以发现,在膜两侧不存在渗透压差的情况下,水分子可以通过自扩散的形式进入狭窄的(6,6)纳米碳管,并且可以在纳米碳管内快速传递,钠离子不能通过自扩散形式进入直径较小的(6,6)纳米碳管,只能通过尺寸较大的(8,8)纳米碳管且传递速度小于水分子,主要是钠离子以水合离子的形式存在,故只能通过直径较大的(8,8)碳管。此外,本文得到了水分子和钠离子在(6,6)和(8,8)碳管内的平衡构型,水分子在(6,6)碳管内以氢键相连形成一条纵列,在(8,8)管内,水分子形成四条交错的纵列,钠离子位于管内轴线位置且被包裹在水分子中间。
     在自扩散研究的基础上,本文进一步模拟了膜两侧存在渗透压差的情况下(6,6)、(7,7)、(8,8)、(9,9)、(10,10)、(11,11)六种不同直径的纳米碳管内水分子和盐离子的渗透行为,纳秒级的模拟让我们得到了水分子和盐离子在管内的平衡构型、水分子在管内的径向密度分布和轴向密度分布等静态性质,管内水分子数目随时间的变化、水通量变化、水分子和钠离子在管内的轴向运动等动态行为,最后,本文计算了不同直径的纳米碳管膜对盐离子的截留效率,综合各个管内水通量的变化情况,本文在六种不同直径的纳米碳管中筛选出了性能最佳的(8,8)纳米碳管,其大的水通量和高的阻盐率有望作为一种有效的渗透膜为实现海水淡化作出贡献。总之,本文作为一种基础性研究,希望通过对纳米碳管中受限水分子和盐离子微观性质和行为的研究,为纳米碳管内受限流体的研究以及海水淡化领域正渗透的研究提供理论参考和技术支持。
Since the discovery of carbon nanotube in 1991 by Iijima, extensive studies and applications have been carried out due to its some unique characteristics. Based on the studies reported by some researchers, the diffusion and osmotic behaviors of water molecules and ions through membranes formed from armchair carbon nanotubes with different diameters are investigated by dynamic simulations at 300K,1.01×105Pa in this thesis.
     Simulation results show that water molecules can enter the narrow (6,6) carbon nanotubes by self-diffusion when there is no osmotic pressure, while Na+ can only come into the wide (8,8) carbon nanotubes by diffusion. This may be because Na+ is coordinated with water molecules, (8,8) carbon nanotube is roomy enough to allow the Na+ to enter with its hydration shell intact. Moreover, the equilibrated configurations of water and ions in (6,6) and (8,8) carbon nanotubes are also obtained in this work. That is, water molecules form one single-file which is linked by hydrogen bond in (6,6) carbon nanotubes, whereas in (8,8) carbon nanotubes, water molecules form four interlaced single-files. And, Na+ is encapsulated in water molecules located in axial position.
     In addition, the transport behaviors of water molecules and ions through the (6, 6), (7,7), (8,8), (9,9), (10,10), (11,11) armchair carbon nanotubes under osmotic pressure are also performed in this work. According to the simulations in the scale of nanosecond, we get equilibrated configurations of water and ions, radial and axial density profile of water inside different carbon nanotube membranes. Furthermore, the relevant information, such as the number of water molecules inside carbon nanotubes, water flux, axial movement of water and ions are also acquired. Finally, we calculate the efficiency of salt rejection possessed by the carbon nanotube membranes. Simulation results show that the membrane composed of (8,8) carbon nanotube can achieve not only the optimum salt rejection property but also the largest water flux. In a word, as a kind of fundamental study, we hope this work aiming at microscopic property and conduction study of confined water molecules and ions in carbon nanotubes can provide theoretic reference and technical support for the potential applications of carbon nanotubes in the field of seawater desalination.
引文
[1]惠绍棠,阮国岭,于开录.海水淡化与循环经济[M].天津人民出版社,2005,12:1-10.
    [2]国家发展改革委环资司.国外海水淡化发展现状、趋势及启示[J].中国经贸导航,2006,(12):34-35.
    [3]艾钢,吴建平,朱忠信.海水淡化技术的现状和发展[J].净水技术,2004,23(3):24-40.
    [4]陈飞宇,金鑫.全球海水淡化产业发展现状及对我国的启示[J].MARKET·市场经纬.2008,21:53-54.
    [5]王俊红,高乃云,范玉柱,施利毅.海水淡化的发展及应用[J].工业水处理,2008,28(5):6-9.
    [6]张国亮,潭永文,程义方.膜技术在水资源开发利用中的应用[J].中国环保产业,2001:22-23.
    [7]Cath T Y, Childress A E, Elimelech M. Forward osmosis:Principle, application, and recent developments[J]. Journal of Membrane Science,2006, (281):70~87.
    [8]McCutcheon J R, McGinnis R L, Elimelech M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process[J]. Desalination,2005,174:1~11.
    [9]高从增,郑根江,汪锰等.正渗透-水纯化和脱盐的新途径[J].水处理技术,2008,34(2):1-8.
    [10]Perdd P. Water desalination takes a step forward[J]. Environmental Science & Technology, 2006,40(11):3454~3455.
    [11]McCutcheon J R, McGinnis R L, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis:Influence of draw and feed solution concentrations on process performance[J]. Journal of Membrane Science,2006,278:114~123.
    [12]Choi Y J, Choi J S. Toward a combined system of forward osmosis and reverse osmosis for seawater desalination[J]. Desalination,2009,247:239~246.
    [13]Howy N G, Wanling Tang, Wond W. Performance of Forward (Direct) Osmosis Process: Membrane Structure and Transport Phenomenon[J]. Environ. Sci. Technol,2006,40, 2408~2413.
    [14]Baoxia Mi, Elimelech M. Chemical and physical aspects of organic fouling of forward osmosis[J]. Journal of membrane science,2008,320:292~302.
    [15]Ismail A F, Goh P S, Sanip S M, Aziz M. Transport and separation properties of carbon nanotube-mixed matrix membrane[J]. Separation and Purification Technology,2009,70: 12-26.
    [16]Popov V N. Carbon nanotubes:properties and application[J]. Materials Science and Engineering R,2004,43:61~102.
    [17]Kai Shen, Huifang Xu, Yingbin Jiang, Pietra T. The role of carbon nanotubes in purification and hydrogen adsorption[J]. Carbon,2004,42:2315~2322.
    [18]Paradise M, Goswami T. Carbon nanotubes-production and industrial application[J]. Materials and Design,2007,28:1477~1489.
    [19]Chong Gu, Guanghua Gao, Yangxin Yu, Tomoshige N. Simulation for separation of hydrogen and carbon monoxide by adsorption on single-walled carbon nanotubes[J]. Fluid Phase Equilibria,2002, (194):297~307.
    [20]Fangqiang Zhu, Schulten K. Water and proton conduction through carbon nanotubes as models for biological channels[J]. Biophysical Journal,2003,85:236~244.
    [21]Thomas J A, McGaughey J H, Ottoleo K A. Pressure-driven water flow through carbon nanotubes:Insights from molecular dynamics simulation[J]. International Journal of Thermal Sciences,2010,49:281~289.
    [22]Noya A, Parka H G, Fornasieroa F, Holta J K, Grigoropoulosb C P, Bakajina O. Nanofluidics in carbon nanotubes[J]. Nanotoday,2007,2(6):22~29.
    [23]Goldsmith J, Martens C C. Molecular Dynamics Simulation of SaltRejection in Model Surface-Modified Nanopores[J]. J. Phys. Chem. Lett,2010,1(2):528~535.
    [24]Alder B J, Wainwright T E. Phase transition for a hard-sphere system[J]. The Journal of Chemical Physics,1957,27(5):1208~1209.
    [25]文玉华,朱如曾等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73.
    [26]韩强,姚小虎.碳纳米管的原子模拟和连续体描述[M].科学出版社,2007:228.
    [27]杨萍,孙益民.分子动力学模拟方法及其应用[J].安徽师范大学学报,2009,32(1):51-54.
    [28]孙祉伟.经典流体的计算机模拟实验-蒙特卡洛法和分子动力学法[J].力学与实践,1983,5(6):59-62.
    [29]蔡锡年.分子动力学和物理力学[M].科学出版社,1986:100-110.
    [30]陈致英.金属晶界力学性质的计算机模拟[J].力学进展,1991,21(1):169-176.
    [31]丁家强,陈致英.纳米铁热力学性质的分子动力学行为[J].原子与分子物理学报,2000,32(6):739-743.
    [32]李辉,边秀房,王伟民.纯铝熔体的微观动力学行为[J].原子与分子物理学报,2000,17(1) 123-128.
    [33]孙伟,常明,杨保和.分子动力学模拟纳米晶体铜的结构与性质[J].物理学报,1998,47(4):591-597.
    [34]常明,杨保和,常皓.纳米晶体微观畸变与弹性模量的模拟研究[J].物理学报,1999,48(7):1215-1222.
    [35]文玉华,周富信,刘日武,周承恩.纳米晶铜单向拉伸变形的分子动力学模拟[J].力学学报,2002,34(1):29-36.
    [36]申海兰,赵靖松.分子动力学模拟方法概述[J].装备制造技术,2007,(10):29-34.
    [37]汪文川.分子模拟—从算法到应用[M].化学工业出版社,2002:51-65.
    [38]杨小震.分子模拟与高分子材料[M].科学出版社,2001:47-58.
    [39]李斌.纳米金原子团簇熔点的分子动力学模拟研究[D].2008:9-10.
    [40]Allen M P, Tildesley D J. Computer simulation of liquids[M]. England:Oxford Clarendon Press.1987:1~408.
    [41]樊康旗,贾建援.经典分子动力学模拟的主要技术[J].M EMS器件与技术,2005,3:133-137.
    [42]Rahman A. Correlations in the motion of atoms in liquid argon[J]. Physical Review A,1964, 136:405~411
    [43]Daw M S, Baskes M L. Embedded atom method derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B,1984,9(12):6443~6453.
    [44]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998:60-80.
    [45]Rahman A, Stillinger F H. Molecular dynamics study of liquid water[J]. Journal of Chemical Physics,1971,55(7):3336~3359.
    [46]Walker R. Simulating a DNA polyA-polyT Decamer (Updated for Amber 10 & AmberTools 1.2). Amber tutorial B 1.2010:1-6.
    [47]Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford University Press, 1988:1~408.
    [48]Iijima S, Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56~58.
    [49]Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes[J]. Chem.Rev, 2008,108(12):5014~5034.
    [50]Striolo A. The mechanism of water diffusion in narrow carbon nanotubes[J]. Nano letters. 2006,6(4):633~639.
    [51]王俊,朱宇,周健等.受限于不同螺旋性的纳米碳管中水的分子动力学模拟[J].化学学报,2003,61(12):1891-1896.
    [52]Qing Shao, Jian Zhou, Linghong Lu. Anomalous Hydration Shell Order of Na+ and K+ inside Carbon Nanotubes[J]. NANO LETTERS,2009,9(3):989~994.
    [53]邵庆,黄亮亮,陆小华等.受限于纳米碳管中的乙醇分子的结构和扩散的分子动力学模拟研究[J].化学学报,2007,65(20):2217-2223.
    [54]Gordillo M C, Marti J. Hydrogen bond structure of liquid water confined in nanotubes[J]. Chemical Physics Letters,2000,329:341-345.
    [55]Alexiadis A, Kassinos S. The density of water in carbon nanotubes[J]. Chemical Engineerring Science,2008,63:2047~2056.
    [56]Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Letters to nature,414:188.
    [57]Fangqiang Zhu, Schulten K. Water and Proton Conduction through Carbon Nanotubes as Models for Biological Channels[J]. Biophysical Journal,2003,85(1):236~244.
    [58]Kalra A, Garde S, Hummer G.. Osmotic water transport through carbon nanotube membranes [J]. PNAS,2003,100(18):10175~10180.
    [59]Dellago C, Naor M M. Hummer G. Proton Transport through Water-Filled Carbon Nanotubes[J]. PHYSICAL REVIEW LETTERS,2003,90(10):105902.
    [60]Corry B. Desining Carbon Nanotube Membranes for Efficient Water Desalination[J]. J.Phys.Chem.B,2008,112 (5):1427~1434.
    [61]Peter C, Hummer G.. Ion Transport through Membrane-Spanning Nanopores Studied by Molecular Dynamics Simulations and Continuum Electrostatics Calculations[J]. Biophysical Journal,2005,89(4):2222~2234.
    [62]Rempe S B, Pratt L R. The hydration of Na+ in liquid water[J]. Fluid Phase Equilibria,2001, 183:121~132.
    [63]Malani A, Ayappa K G, Murad S. Effect of confinement on the hydration and solubility of NaCl in water [J]. Chmical Physics Letters,2006,431:88~93.
    [64]Pomes R, Roux B. Molecular mechanism of H1 conduction in the single-file water chain of the gramicidin channel [J]. Biophys. J,2002,82:2304~2316.
    [65]Schulten Z, Schulten K. A model for the resistance of the proton channel formed by the proteolipid of ATPase[J].Eur. Biophys. J,1985,11(3):149~155.
    [66]Schulten Z, Schulten K. Proton conduction through proteins:an overview of theoretical principles and applications[J]. Methods Enzym,1986,127:419~438.
    [67]Sui H, Han B G, Lee J K, Walian P, Jap B K. Structural basis of water-specific transport through the AQP1 water channel[J]. Nature,2001,414:872~878.
    [68]Tajkhorshid E, Nollert P, Jensen M Q, Miercke L J W, Connell J O, Stroud R M, Schulten K. Control of the selectivity of the aquaporin water channel family by global orientational tuning[J]. Science,2002,296(5567):525~530.
    [69]Vasenkov S, Karger J. Different time regimes of tracer exchange in single-file systems[J]. Phys. Rev. E,2002,66:052601~052604.
    [70]Wind S J, Appenzeller J, Martel R, Derycke V, Avouris P. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes[J]. Appl. Phys. Lett,2002,80(20): 3817-3819.
    [71]Ramon G F, Abascal J L, Carlos V. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface[J]. J. Chem. Phys,2006, 124(14):144506.
    [72]Krynicki K, Green C D, Sawyer D W. Pressure and temperature dependence of self-diffusion in water[J]. Faraday Discuss. Chem. Soc,1978,66:199~208.
    [73]Netz P A, Starr F W, Stanley H E, Barbosa M C. Static and dynamic properties of stretched water[J]. J. Chem. Phys.2001,115(1):344~348.
    [74]Starr F W, Sciortino F, Stanley H E. Dynamics of simulated water under pressure. Phys[J]. ReV. E,1999,60:6757.
    [75]Demurov A, Radhakrishnan R, Trout B L. Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations[J]. J. Chem. Phys, 2002,116(2):702~709.
    [76]Goto K, Hondoh T, Higashi A. Determination of self-diffusion coefficients of self-interstitials in ice with a new method of observing climb of dislocations by X-ray topography[J]. Jpn. J. Appl.Phys,1986,25:351~357.
    [77]Marty, Nagy J, Gordillo M C, Guardia E. Molecular simulation of liquid water confined inside graphite channels:Thermodynamics and structural properties[J]. J. Chem. Phys,2006, 124(9):094703.
    [78]Pertsin A, Grunze M. Water-Graphite Interaction and Behavior of Water Near the Graphite Surface[J]. J. Phys. Chem. B,2004,108(4):1357~1364.
    [79]Leng Y, Cummings P T. Fluidity of Hydration Layers Nanoconfined between Mica Surfaces [J]. Phys. ReV. Lett,2005,94:026101-026104.
    [80]Vaitheeswaran S, Yin H, Rasaiah J C. Water between plates in the presence of an electric field in an open system[J]. J. Phys. Chem. B,2005,109(14):6629~6635.
    [81]Stillinger F H, Rahman A. Improved simulation of water by molecular dynamics[J]. J. Chem. Phys,1974,60:1545~1557.
    [82]吕经烈.中空纤维膜技术及其应用[J].海洋技术,2002,21(4):73-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700