用户名: 密码: 验证码:
压电晶片主动控制截止阀的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阀作为液、气压系统中的重要元件,实现对流体压力、流向和流量的控制,特别是微小型流体控制阀作为系统中不可或缺的流体控制部件,在需要精密流量输出和控制的流体系统中得到了越来越广泛的应用,比如微流体输送控制系统、微型液体燃料电池控制系统、微型喷射系统、微气体压缩系统等。与传统常规控制阀相比微小型流体控制阀结构简单、尺寸小、工作效率高、稳定性强,可以很好的提高流体系统的控制精度和动态特性。
     压电驱动器直接作用于流体系统即形成了流体的压电驱动与控制。压电驱动与控制技术在流体系统中的运用具有很大的应用潜力,近年来压电驱动控制类流体设备逐步得到深入研究,压电型微小流体控制阀成为了其中热门研究方向。本文结合国家自然科学基金重点课题和教育部高等学校科技创新工程重大项目,围绕压电晶片主动控制截止阀展开研究工作。提出采用圆形压电振子覆盖硅胶薄膜设计制作截止阀,利用电信号控制时压电振子一阶模态下的变形对振子中心位置处的阀口开度进行控制。通过理论建模、有限元仿真分析、精密加工设计、参数优化、试验测试等方法进行深入研究。
     1.截止阀用压电驱动器的作用机理和有限元分析
     分析了阀用压电晶片驱动器的作用机理和工作特性。对压电振子进行了有限元仿真分析和试验测试,仿真和试验测试结果表明:圆形压电振子在驱动电压作用下的一阶模态变形呈现轴对称分布;通过分析截止阀的工作原理和特点,得到圆形压电振子符合截止阀用驱动器的要求,圆形压电振子在一阶谐振频率内的变形时突起的端部能够密封和开启阀口。
     2.截止阀的优化设计和仿真研究
     基于缝隙流动的流量和压力损失理论对截止阀的流场进行了有限元仿真模拟,结果表明:截止阀的结构参数直接影响阀的截止性能和流量。基于多目标优化的Pareto理论,以最小的受力面积和最大的流量作为优化目标,建立了多目标优化函数模型,在进化算法基础上,增加差分算法以提高优化过程自适应性,经差分进化算法优化后得到一组Pareto最优解。
     3.截止阀在液体压力下的试验研究
     对截止阀用压电振子进行了固液耦合理论建模,理论表明截止阀用压电振子在固液耦合作用时挠曲变形的刚度系数不变,阻力系数和质量系数发生变化。经水中试验测试,截止阀用压电振子在固液耦合作用时变形特点依旧为轴对称分布,且径向截面变形呈现抛物线形。固液耦合作用时,压电振子的振幅有所减少,一阶谐振频率降低。搭建了液体压力下的截止阀的试验研究平台,对截止阀阀口位置处的振子位移直接进行测试,进而对理论流量实测流量进行分析。试验得到截止阀在液体压力下的输出特性,研究结果表明:截止阀在阀口全开下实测流量略小于阀口开度下的计算流量;截止阀随正向驱动电压的增大流量迅速增大,反向施加驱动电压时截止性能良好;截止阀的输出可以很好的跟随低频方波信号的变化。在此平台下对不同阀口半径的截止阀进行了对比试验研究,结果表明:优化结构的截止阀的工作压力区间大,流量特性和截止性能相对更好。
     4.截止阀在气体压力下的试验研究
     对压电振子在液体压力下和气体压力下以及空气中的输出特性进行了对比分析,经测试表明:在相同压力的流体系统中,对压电晶片主动控制截止阀施加一定电压幅值时,在水压下的阀口开度较小,而气压下的阀口开度基本不变。搭建了气体压力下截止阀的试验研究平台,对阀口位置处振子的位移进行了气体压力下的测量,同时采用排水法测量截止阀在气体压力下的工作流量。试验结果表明:截止阀在气体压力下流量控制性能良好。通过试验测试对比分析了不同阀口半径阀的工作特性,结果表明:优化结构的截止阀的工作压力区间大,且输出性能和控制性能更好。
     5.截止阀的控制系统分析和驱动电源的设计
     分析了截止阀的控制特性,提出了开环控制和测试方案。测试控制系统需要具有满足截止阀要求的驱动电源。在此基础上,设计了基于直流变换器原理的开关式电路,研究开发了截止阀开环控制时的便携式驱动电源,电源输出功率比传统的驱动电源高,且输出电压稳定、频率可调。
     本文对压电晶片主动控制截止阀深入研究表明:所设计的压电晶片主动控制截止阀工作压力范围较大,截止性能良好,在工作压力范围内几乎无泄漏;阀的流量控制精度较高,并且尺寸较小、结构简单、控制方便,能够很好地同流体系统匹配。
It is important for the valves to control the pressures,the flow rates and thedirections in fluidic systems. Especially for micro-fluidic, valve is indispensable ascomponents of fluidic systems, requires precision control of the output.This type ofvalves has been more and more widely used in such as micro fluidic delivery controlsystems, micro liquid fuel cell control systems, micro-injection systems andmicro-gas compression systems.Micro fluidic valve has the advantage of simplystructure, small size, high efficiency and stability. In this point, it is different fromthe conventional fluidic controlling valves. It is a well way to improve the controlprecision and dynamic characteristics of fluidic systems.Piezoelectric driving modelhas great potential in the fields of fluidic systems.
     When the fluidic system is actuated by the piezoelectric actuator, thepiezoelectric actuating and control is set up. The technology of piezoelectricactuating and control has great potential in fluidic system and attracts manyresearchers to join in thin area. This topic is based on the National ScienceFoundation and the key projects of the ministry of education of higher school onscience and technology innovation and mainly research on the piezoelectric waferactive control stop-valves. A novel valve made by a sort of circle piezoelectricvibrator covering silicon thin film is proposed in this paper. The vibrator worksunder the first mode to control the opening of the valve which is actuated by electricsignal. Theoretical mode, finite element analysis (FEA), precision machining,optimal design and experimental test are conducted to research the proposed valve.
     1.The working principle and the FEA of the actuator in stop-valve
     The driving principle and the working characteristic of the valve is analyzed.The FEA and the experimental test were conducted and the results show that the firstmode of the valve is axial symmetry and the deformation of the circle piezoelectricvibrator which can match the working process of opening and sealing.
     2.The optimal design and simulation of the valve
     The flow field of the valve was anlyzed by the FEA, basing on the flow of thegap and the loss of the pressure. The results show that the performance and the flowof the valve were mainly decided by the parameter of the structure. Based on the model of the multi-objective optimization, a group of the Pareto best solution wasobtained by the Differential Evolution Algorithm.
     3Experimental test of the stop-valves under the liquid pressure
     Solid-liquid coupling analysis model of the valve was built and the theoreticalresults show that the stiffness coefficient of the flexural deflection is constant andthe resistance coefficient and the quality coefficient are change when thepiezoelectric vabrator work under the effect of the solid-liquid coupling. Thedeformation of the circle vabrator is still axial symmetry under the liqud pressure,and the deformation of the radial section is parabola. The deformation of thevabrator and the frequency of the first mode are reduced under the effect of thesolid-liquid coupling. The experimental system is built to test the valve under theliquid pressure. The displacement of the vabrator on the valve port is tested tocompare with the testing flow. The output charateristic character of the valve showsthat the testing flow is lower than the theoretical flow; the flow of the valveincreases with the increase of the driving voltage and well cut-off performance canobtained when a reverse voltage is supplied; the output of the valve can follow thechange of the square signal. Experimental test of the valve with different valve portradius is conducted. The result show that the optimized stop-valves can achievelarge working pressure range, well flow and cut off charateristic.
     4Experimental researches of the stop-valves under the gas pressure
     The output performances of the valve under gas and liquid are compared byexperimental test. The results show that the displacement of the valve under the gasis higher than that under the liquid. The experimental system is built to test thedisplacement of the valve under the air pressure and the vacuum dewatering methodis used to test the working flow of the valve. The experimental results show that thevalve can achieve wll flow control under the air pressure. The performance ofdifferent valve port radius of the valve is tested and the results show that theoptimized stop-valves can achieve large working pressure range, better outputperformace and easier control.
     5Analysis and design of the control systems and drive power of the stop-valves
     Basd on the control characteristic, open-loop control strategy is proposed. Adriving power supply is needed to match the stop-valves. Considering this reason, aswitch circuit based on the principle of DC Transform is designed and a portabledriving power supply for the open-loop control is researched. The output power is better than the traditional type and the output voltage of the power supply is stabilizeand the frequency is controllable.
     The results show that the proposed active stop-valves with piezoelectric wafershave a wide work frequency range, well closing performance and almost have noleaks in working pressure range. The valve has high precision in flow control,simple and smart structure, easy control strategy. It can be well matched to thefluidic systems.
引文
[1] R.E. Cote, Back to the future-integrated passive devices, Adv. Microelect.(January/February)(1999)20–21
    [2] H. B.Zhao, K. Stanley, J. Wu, E. Czyzewska, Structure and characterization of aplanar normally closed bulk-micromachined piezoelectric valve for fuel cellapplications[J], Sens. Actuat. A: Phys.120(2005)134–141.
    [3] Jae Sung Yoon,Jong Won Chui,Min Soo Kim,Yeong-Eun You,Doo-Sun choiStudies on the performance characteristics and improvements of thepiezoelectrically-driven micro gas compressors[J] microelectronic engineering86(2009)2297-2304
    [4] E. Heinonen, J. Juuti, H. Jantunen, Characteristics of piezoelectric cantileversembedded in LTCC [J].Eur. Ceram. Soc.27(13–15)(2007)4135–4138.
    [5] Z. Huang, G. Leighton, R. Wright, F. Duval, H.C. Chung, P. Kirby, R.W.Whatmore, Determination of piezoelectric coefficients and elastic constant ofthin films by laser scanning vibrometry techniques[J].Sens. Actuat. A: Phys.135(2006)660–665.
    [6] A,Doll, M.Wischke, H.-J.Schrag, A.Geipel, F. Goldschmidtboeing, P. Woias,Characterization of active silicon microvalves with piezoelectric membraneactuators [J]Microelectronic engineering84(2007)1202-1206
    [7] Long Ma, Wanqing Wang,Qi Wang, Identifification of the Bouc-wenhysteresis model for piezoelectric actuated micro/nano electromechanicalsystem[J]journal of computational theoretical nanoscience10,1-6,2013
    [8] M.Sobocinski, J. Juuti, H. Jantunen, L. Golonk, Piezoelectric unimorphvalve assembled on LTCC substrate[J].Sensors and Actuators APhysical,149(2009)315-319
    [9] A. Masiello, S. Dal Bello, M. Fincato, F. Rossetto Performance of modifiedpulse-operated piezoelectric valves for the gas inlet system of RFX[J].FusionEngineering and Design82(2007)2282–2287
    [10] Jie.sun,Jinh Hao Ng,Ying His Fuh, Comparison of micro-dispensingperformance between micro-vlave and piezoelectric printhead[J] MicrosystTechnol (2009)15:1437-1448
    [11] Ma L,Li WQ,Wang Q, Huang HC,Identification of the Bouc-Wen HysteresisModel for piezoelectric Actuated Micro/Nano Electromechanical System[J]Journal of computational and theoretical nanoscience10.1166/jctn.2013..2796983-988
    [12] Jong M Park, Ryan P Taylor, Allan T Evans, Tyler R Brosten,.A piezoelectricmicrovalve for cryogenic applications[J]Micromech. Microeng.18(2008)015023(10pp)
    [13] Y Bernard and A Razek,.Low pressure piezoelectric valve designSMARTMATERIALS AND STRUCTURES[J].21(2012)064009(5pp)
    [14] Thomas Lemke, Giovanni Biancuzzi, Hagen Feth, Jochen Huber, FrankGoldschmidtboing, Fabrication of normally-closed bidirectional micropumpsin silicon-polymer technology featuring photopatternable silicone valvelips[J].Sensors and Actuators A Physical,158(2011)213-222
    [15] Chia-Jui Hsu.horn-jiunn Sheen, A microfluidic flow-converter based on adouble-chamber planar micropump [J].Microfluid Nanofluid (2009)6:669-678
    [16] LU L J, WU J K Mode Analysis of Liquid-Sold Couping System ofMiropump for Biochips[J]2005,26(4):459一465.(in Chinese)
    [17] Hsiao-Kang Ma,Bo-Ren Hou,Cheng-Yao Lin, et al. The improvedperformance of one-side actuating diaphragm micropump for a liquid coolingsystems[J]. International Communications in Heat and Mass Transfer,2008,35(8):957-966.
    [18] Van de Pol F C M, Wonnink D G J, Elwenspock M, Fluitman J H J. Athermopneumatic actuation principle for a microminiature pump and othermicro-mechanical devices[J]. Sensors and Actuators,1989,17:139]
    [19] J. Steigert, O. Brett, C. Muller, M. Strasser, N. Wangler, H. Reinecke, M. Daub,R.Zengerle, A Versatile and flexible low-temperature full-wafer bondingprocessof monolithic3D microfluidic structures in SU-8[J] Journal ofMicromechanicsand Microengineering18(2008)095013.
    [20] S.-C. Yao, X. Tang, C.-C. Hsieh, Y. Alyousef, M. vladimer, G.K. Fedder, C.H.Amon,Micro-electro-mechanical systems (MEMS)-based micro-scale directmethanol fuel cell development[J] Energy31(2006)636–649.
    [21] B,Watson,J.Friend,L.Yeo.Piezoelectric ultrasonic micro/mill-scale actuators.[J]Sensors and ActuatorsA:Physical.2009.152:219-233
    [22]沈传亮,程光明,曾平等压电驱动式高频电液伺服阀试验研究[J]哈尔滨工业大学学报2008.09
    [23]控制阀的市场研究报告[C/QL]2011http://www.docin.com/p-410116430.htm
    [24]李少军,李艳,夏毅敏.压电执行器及其在高响应液压控制阀上的应用[J]液压与气动1999.07
    [25]高军霞可编程压电式电气比例阀的研究[D]浙江大学硕士学位论文
    [26]曲兴田,董景石,赵宏伟压电双晶片直接驱动式伺服阀的研究[J]液压与气动2007.08
    [27]鄂世举,吴博达,杨志刚压电式微小驱动器的发展及应用[J]压电与声光,2006.24(6)447~451
    [28]尹执中,胡桅林,过增元.微流动系统的发展概况[J].流体机械,2000.28(4):33-36.
    [29] Piezoelectric actuated popet valve to modulate pilot pressures and controlmain valve activation:[J] US6,202,670/O'Neill-538841(2000.03.20),Int. CL.GOS.DOI6/20
    [30] A Fernandes, J Pouget. Accurate modelling of piezoelectric plates: single-layered plate[J]. Archive of Applied Mechanics,2001,71(8):509-524C
    [31] Liu, T Cui, Z Zhou. Modal analysis of a unimorph piezoelectricaltransducer[J]. Microsystem Technologies,2003.9(6-7):474-479
    [32] I Fazal,MC Elwenspoek.Design and analysis of a high pressurepiezoelectricactuated microvalve[J]. Jourrnal of Micromechanics and Miicroengineering2007.10:2366-2379
    [33]张福学,王丽坤.现代压电学(上册)[M],北京:科学出版社.2002年
    [34]张涛,孙立宁.压电陶瓷基本特性研究[J].光学精密工程1998.Vol.6,No.5,26-32
    [35] Tao Zhang, Qing-Ming Wang.Valveless piezoelectric micropump for fueldelivery in direct methanol fuel cell (DMFC) devices[C]. Journal of PowerSources,2005140(1):72-80
    [36] Guiqin Wang, Bhavani V. Sankar, Louis N. Cattafesta. Analysis of a compositepiezoelectric circular plate with initial stresses for MEMS[C]. Proceedings of2002ASME International Mechanical Engineering Congress and Exposition,2002(11):17-22
    [37] Dana.Young,Vibration of rectangular by the Ritz method [J] Journal ofApplied Mechanics1950,17(4):448-453
    [38]阚君武,吴一辉,宣明,程光明等泵用两叠片圆形压电振子的弯曲振动分析[J].机械工程学报2005.01
    [39]铁摩辛柯, S.沃诺斯基(美).《板壳理论》翻译组译.板壳理论[M].北京:科学出版社,1977
    [40]程昌钧,朱媛媛.弹性力学[M].上海:上海大学出版社.2005
    [41]徐芝纶,弹性力学[M].北京:高等教育出版社,2005
    [42]胡仁喜,王庆五,闫石. ANSYS8.2机械设计高级应用实例[M].北京:机械工业出版社,2005
    [43]小飒工作室编最新经典ANSYS及Workbench教程[M].电子工业出版社.2004
    [44]白葳,喻海良.通用有限元分析ANSYS8.0基础教程[M].北京:清华大学出版社,.2005
    [45]朴林华,栾桂冬,张福学.压电泵振动模态的有限元分析[M].压电与声光,2004,26(6):503-505
    [46]刘品宽,孙立宁.双压电复合薄圆板驱动器的理论分析[J].压电与声光,200224(2):111-115.
    [47]华顺明.压电式粘滑精密运动机构驱动理论与试验研究[D].吉林大学博士学位论文
    [48]李鹏主动阀压电泵的理论与试验研究[D]吉林大学博士学位论文
    [49]沈兴全.液压传动与控制[M].北京:国防工业出版社,2005
    [50]杨尔庄.液压技术的发展动向及展望[M].液压气动与密封.2003(4):1-7
    [51]曹鑫铭.液压伺服系统[M].北京:冶金工业出版社.1991
    [52]张也影.流体力学[M].北京:高等教育出版社.1986
    [53]刘斌春航空发动机工程热力学基础[M].长春:海潮出版社.2009
    [54] D. Xu, L. Wang, G. Ding, Y. Zhou, A. Yu and B. Cai,[J]Sensors and ActuatorsA: Physical93(1).87(2001)
    [55] G. H. Feng and E. S. Kim, Journal of Micromechanics and Microengineering14,429(2004)
    [56]孙靖用于区间参数多目标优化问题的遗传算法[D]中国矿业大学博士学位论文2012.05
    [57] Rachmawati L., Srinivasan D.. Preference incorporation in multi-objectiveevolutionary algorithms: A survey [C]. Proc of IEEE Congress onEvolutionary Computation. New York:IEEE Press,2006:962-968.
    [58] Deb K., Koksalan M Guest editorial: Special issue on preference-basedmulti-objective evolutionary algorithms [J]. IEEE Transactions onEvolutionary Computation,2010.14(5):669-670.
    [59] Singh H. K., Isaacs A., Ray T.A Pareto corner search evolutionary algorithmand dimensionality reduction in many-objective optimization problems [J].IEEE Transactions on Evolutionary Computation,2011.15(4):539-556.
    [60] Reed P. M., Kollat J. B Save now, play later multi-period many-objectivegroundwater monitoring design given systematic model errors and uncertainty[J]. Advances in Water Resources,2012,35(1):55-68.
    [61] Figueira J. R., Tavares G., Wiecek M. M Labelling algorithms for multipleobjective integer knapsack problems [J]. Computer&Operations Research,2010.37(4):700-711.
    [62] Ursem R. K., Justesen P. D Multi-objective distinct candidates optimization:Locating a few highly different solutions in a circuit component sizingproblem [J]. Applied Soft Computing,2012,12(1):255-265.
    [63] Zitzler E,Thiele L, Bader J,On set-based Transactions on EvolutionaryComputation,2010multiobjective optimization [J]. IEEE14(1):58-79.
    [64]谢涛,陈火旺,多目标优化与决策问题的演化算法[J]中国工程科2002.02
    [65]肖晓伟,肖迪,林锦国,多目标优化问题的研究概述[J]计算机应用研2011.03
    [66] Fowler J. W., Gel E. S., Koksalan M. M., KorhonenR,Marquis J. L.,Wallenius J..Interactive evolutionary multi-objective optimization forquasi-concave preference functions [J]. European Journal of OperationalResearch,2010.206(2):417-425.
    [67] Come D. W., Knowels J. D., Oates M. J.. The Pareto-envelope based selectionalgorithm formulti-objective optimization [C]. Proc of6th InternationalConference on Parallel ProblemSolving from Nature. Berlin: Springer UerlagPress,2000:869-878.
    [68] Branke J., Deb K., Miettinen K., Slowinski R. Multi-Objective Optimization一Interactive and Evolutionary Approaches [M]. Berlin: Springer VerlagPress.2008.
    [69] Sengupta A., Pal T K.On comparing interval numbers [J]. European Journalof Operational Research,2000.127(1):28-43
    [70] Rockafellar R. T.. Convex analysis [M]. New Jersey: Princeton UniversityPress.1970.
    [71] Zitzler E., Thiele L., Laumanns M., Fonseca C. M., Fonseca VCr.Performanceassessment of multi-objective optimizers: An analysis and review [J]. IEEETransactions on Evolutionay Computation,2003.7(2):117-132.
    [72] Zitzler E., Thiele L., Bader J., On set-based Transactions on EvolutionaryComputation,2010multiobjective optimization [J].IEEE14(1):58-79.
    [73] While L., HingstonR,Barone L., Huband SAfaster algorithm for calculatinghypervolume [J]. IEEE Transactions on Evolutionary Computation.2006.10(1):29-38.
    [74] IBader J., Zitzler E.. HypE: An algorithm for fast hypervolume-basedmany-objective optimization [J]. Evolutionary Computation,2011,19(1):45-76.
    [75] Takagi H Interactive evolutionary computation: Fusion of the FC capabilitiesoptimization and human evaluation [C]. Proc of IEEE. New York: IEEEPress20011275一1296.
    [76] Miettinen K., Makela M. M., Kaario K.. Experiments with classification-basedscalarizing functions in interactive multiobjective optimization [J]. EuropeanJournal of Operational Research,2006.175(2):931-947.
    [77] Konak A., Coit D. W., Smith A. E.. Multi-objective optimization usinggenetic algorithms:Atutorial [J]. Reliability Engineering and System Safety,2006.91(9):992-1007.
    [78] Bader J., Zitzler E.. HypE: An algorithm for fast hypervolume-basedmany-objective optimization [J]. Evolutionary Computation,2011,19(1):45-76.
    [79] Bui L. T., Abbass H. A., Barlow M., Bender A.. Robustness against thedecision-maker's attitude to risk in problems with conflictingobjectives [J]. IEEE Transctions on Evolutionary Computation,2012.16(1):1-19.
    [80]徐斌基于差分进化算法的多目标优化算法的研究及其应用[D]华东理工大学博士学位论文2013.06
    [81]方道元,张挺,变黏性Navier-Stokes方程组[D]浙江大学出版社2008.12
    [82] X Jsson Three disenmisonal dynamic analysis of a piezoelectric valvelessmicropump: effects of working fluidicimece[J]2012-88978November9-15,2012.Houston, Texas, USA
    [83] W.Jason Flow Behaviour of Fluid-Structure Interaction (FSI) System ofPiezoelectric Actuated Valveless Micropump (PAVM) Liquid-solid CoupleSystem of micropump [J] Acta Mechanica, Solida Sinica Vol.19, No.1,March.2006
    [84]苗红梅,薛琳娜,论哈密顿原理[J]延安大学学报2012.01
    [85]魏焕卫,宋丰波,杨敏,孙剑平,基于明德林解的土钉内力计算方法[J]岩土力学2011,32(S1)6-14DOI:ISSN:1000-7598CN:42-1199/03
    [86] L.Xac Multi-mode parametric coupling in an electromechanical resonator [J]APPLIED PHYSICS LETTERS103.153105(2013)
    [87]杨翊仁,张继业.不可压缩粘性流中板状梁的振动附加质量和附加阻尼[J]核动力工程.1998.19(5):443-449
    [88]鲁立君,吴健康.生物芯片压电微流体泵液-固耦合系统模态分析[J].固体力学学报,2005,26(4):459-465.
    [89]白兰冯志庆吴一辉无阀微泵动态特性的固液耦合分析[J]机械工程学报2008.07
    [90]杨明伟,周兆英压电振子结构参数对微雾化器耦合特性的影响[J]MEMS器件与技术2009.04
    [91]杨明伟,周兆英压电致动微雾化器的压电-固-液耦合特性分析[J]压电与声光2009.12
    [92]霍静,圆形压电单晶执行器的挠度特性的模拟、分析与优化[D].硕士学位论文重庆.重庆大学.2010
    [93]程光明,曾平,杨志刚等超声压电马达矩形复合板振子的耦合振动分析[J]压电与声光,1996.18(6):386-389
    [94] A Fernandes, J Pouget. Accurate modelling of piezoelectric plates:single-layered plate[J]. Archive of Applied Mechanics,2001,71(8):509-524C
    [95] Liu, T Cui, Z Zhou. Modal analysis of a unimorph piezoelectricaltransducer[J]. Microsystem Technologies,2003.9(6-7):474-479
    [96] Guiqin Wang, Bhavani V. Sankar, Louis N. Cattafesta. Analysis of a compositepiezoelectric circular plate with initial stresses for MEMS[C]. Proceedings of2002ASME International Mechanical Engineering Congress and Exposition,2002(11):17-22
    [97] Xiao-Hui Xu, Yan Feng, Bao-Qing Li, Jia-Ru Chu Integration of displacementsensor into bulk PZT thick film actuator for MEMS deformable mirror[J]Sensors and Actuators A: Physical147(2008)242–247
    [98]严家騄,王永青工程热力学[M]中国电力出版社.2004.06
    [99]崔强,杨卫娟王智化等微喷管内气体流动的实验研究与数值模拟[J]研究与探讨2011.11
    [100]孙晓峰双振子压电泵设计理论与结构优化技术研究[D]吉林大学博士学位论文2009
    [101]张宏壮压电双晶片型二自由度惯性冲击精密驱动器理论与试验研究[D]吉林大学博士学位论文2006
    [102]杨东平,杨志刚,杨国欣,程光明,双弯曲驻波压电振子的振动及其相位关系研究[J]压电与声光2002,22(3)177-179,196
    [103]何立鹏微小型主动阀压电泵的结构设计理论及控制系统的研究[D]吉林大学博士学位论文
    [104]曾平,程光明,刘九龙,孙晓锋,赵艳龙.双腔薄膜阀压电泵的试验研究[J],光学精密机械工程2005.311~317, V13(N3)
    [105] Hua-Bin Fang Fabrication and performance of MEMS-based piezoelectricpowergenerator for vibration energy harvesting Microelectronics Journal37(2006)1280–1284
    [106]曾平,程光明,刘九龙,等.集成式计算机芯片水冷系统的研究[J].西安交通大学学报,2005,39(11):1207-1210
    [107]程光明,刘国君,杨志刚.基于悬臂梁阀的微型压电泵的试验研究.机械科学与技术,2005,24(10):1181-1221
    [108]曾平,刘国君,杨志刚,程光明.球阀式压电薄膜泵的初步研究[J],压电与声光,2005.V27(N2):118~120
    [109] C. Giraud-AudineArts et A simplified power supply for piezoelectric actuatorsused in forging processes[C]978-1-4244-8452-2/11/.2011IEEE
    [110] Inho Jeon,Hyunseok Nam,Heeyoung Lee,Youngkook Ahn,Jeongjin Roh An80-V integrated boost converter for piezoelectric actuators in smartphones [C]Analog Integr Circ Sig Process (2013)75:531–537
    [111] Rongyuan Li, Norbert Fr leke, Joachim Boker Analysis and Design of a NovelThree-Level LLCC Inverter Supplying an Airborne PiezoelectricBrakeActuator[C]1-4244-0655-2/07IEEE
    [112] C. Wallenhauer a, A. Kappel a, B. Gottlieb a, T. Schwebel a, T. Lith b Efficientclass-B analog amplifier for a piezoelectric actuator drive[J] Mechatronics19(2009)56–64
    [113]国海峰,肖站,李生,基于MC34063控制的压电陶瓷泵电源研制[J]压电与声光2009.12
    [114]杨邦文新型实用功率放大电路集锦[D]人民邮电出版社2001.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700