用户名: 密码: 验证码:
支持机械产品概念设计的功能知识聚类方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
概念设计是机械产品开发周期中具有决定性意义的阶段。研究者指出概念设计是计算机辅助设计(CAD)的重要任务:概念设计对加工制造产品质量有很大影响,在概念设计阶段所生成的方案会影响基本的产品形状和材料选择。在接下来的细节设计阶段,任何针对概念设计所产生缺陷的修改或者妥协都变得极为困难甚至是不可能的。很多加工工艺(如浇铸、铸造和车工)都间接的由概念设计阶段所决定。缩短产品研发时间并能开发既满足市场需求又具备创新性的产品成了企业制胜的关键。传统的基于实例的设计方法虽然能够大幅度的提高概念设计的效率,但是由于在实例检索和实例修改阶段仅局限在本领域的实例模型中,因而对概念设计中的创新性需求缺乏有效支持。
     本课题通过研究概念设计的特点,采用知识工程的相关技术,从剖析产品功能的角度,提出基于功能知识聚类的计算机辅助概念设计方法。本课题主要的研究成果有:
     1.提出了概念设计中的功能知识模型建立方法。通过分析概念设计阶段所能获取的信息如设计需求、物理约束、设计经验等,提出了基于约束的功能知识模型(Constrained Functional Knowledge Model,CFKM)建模方法。该方法主要针对功能和结构这两类关键设计要素进行知识表示,并将两者的映射关系通过基于OWL的本体语言关联起来,从而建立基于约束的功能结构映射模型。
     2.提出了约束功能知识模型的语义相似度聚类方法。建立了功能谓词的标准语义模型,提出了语义相似度的概念和计算方法。开发了基于语义相似度的模糊逻辑语义聚类算法。构建了模糊语义计算模型来解决术语冲突问题。
     3.提出了约束功能知识模型的结构特征约束协同聚类( Collaborative Clustering)方法。研究了结构特征约束的数据类型包括语义型、二进制型、数值型和模糊型等。并对各种数据类型对应的距离计算方法进行了深入研究。提出了在多特征约束共同作用情况下的协同距离概念,通过定义协同因子来获得多特征约束的协同距离。开发了基于协同相似度的结构特征约束聚类算法,并用小样本数据进行了验证。
     4.提出了基于结构相容度分析的概念解空间约减策略。提出了通过结构组合来生成初始概念解空间的方法。定义了基于全局约束的结构相容度指数(Compatability Index)的概念,以此作为结构相容度的定量分析指标。采用模糊多目标判定作为相容度定性分析指标。通过综合定性和定量分析的结果,对初始概念解空间进行约减,从而得到可用概念解空间,最后进一步得到以概念图表示的设计解方案。
     5.实例分析和系统应用。开发了基于约束功能知识模型的辅助概念设计系统软件,以多模态分子医学影像设备的概念设计为例,验证了本文所提出的理论方法的有效性。
Conceptual design is a crucial task in mechanical product development cycle. Researchers have pointed out that conceptual design is extremely important in computer-aided design but it is difficult to carry out. Conceptual design has massive impact on manufacturing and product quality. Many manufacturing processes (such as molding, casting and machining) are predetermined indirectly by conceptual design stage. The concept generated at the conceptual design stage will influence basic product shape and material selection. In the following detail design, it is impossible to compromise or correct any poor design that comes from previous stage. In nowadays industrialized society, resources and equipment are geographically distributed as well as knowledge and expertise. To keep up the competency of enterprises, shorten product development timelines and develop creative product for the market are of critical importance. Traditional case based design methodology has largely increased the design efficiency. The drawback of case based design is that it lacks effective support for design creativity due to its single disciplinary nature. During case retrieval and case modification, the work is done within one area and one area alone. Thus it is necessary to develop a new design method that could ultilize multidisciplinary knowledge.
     My research is grounded on the characteristics of conceptual design, utilizing related technology of knowledge-based engineering to propose a computer-aided intelligent design approach based on functional knowledge clustering. Major research achievements are as follows:
     1. Propose a constrained functional knowledge model (CFKM) for function knowledge in conceptual design. The model is based on the information obtained in conceptual design stage such as design requirements, physical constrains, design experience and etc. The knowledge modeling focuses on two major design elements which are function and structure; apply OWL ontological language to establish the mapping relations between them as well as constrains.
     2. Propose a functional semantic clustering approach for CFKM. Build up a semantic model for function predicates in CFKM; develop a semantic clustering algorithm based on semantic similarity of function predicates. Construct fuzzy linguistic computation model to resolve terms conflict.
     3. Propose a collaborative clustering approach of structural constrains for CFKM. Define collaborative similarity of structural constrains by analyzing different constrain types and their corresponding data categories. Propose a collaborative fuzzy clustering algorithm to deal with multi-constain occasions. The algorithm is demonstrated on small-scale data sets.
     4. Propose a conceptual design solution space reduction approach. For the clustering sets obtained from previous steps, initial conceptual design solution space is formed by structure combination operation. Structure compatibility analysis is carried out on a quality and quantity bases. Fuzzy multi-objective decision making approach is adapted as quality analysis and the concept of Compatibility Index (CI) is proposed to be the norm of quantity analysis.
     5. Design case validation and system application. A CFKM-based conceptual design system is developed based on the methodology proposed in the paper. The conceptual design process of multi-mode molecular imaging device is demonstrated to prove the effectiveness of the system and the methodology proposed in the current research.
引文
[1] Pahl, G. Engineering design: a systematic approach[M]. Springer Verlag, 2007.
    [2] French, M. J. Conceptual design for engineers[M]. Springer Verlag, 1999.
    [3]彭颖红,胡洁. KBE技术及其在产品设计中的应用[M].上海交通大学出版社, 2007.
    [4]邹慧君,王立群.机械设计中机构选型初探[J].机械设计与研究, 1989, (4): 12-15.
    [5]邹慧君,顾明敏.“机构系统方案设计专家系统”初探(一)—知识库管理系统的建立[J].机械设计, 1996, 13 (5): 26-28.
    [6]邹慧君,顾明敏.机构系统方案设计专家系统初探(二)——推理系统的建立和应用[J].机械设计, 1996, 6 (8): 12-14.
    [7]潘云鹤,耿卫东,童欣.面向智能CAD的分层构造自动型方法[J].软件学报, 1996, 7 (5): 280-285.
    [8]王小同,范立础.智能设计系统的IDS模型[J].模式识别与人工智能, 1996, 9 (2): 112-118.
    [9] Roy, U.,Bharadwaj, B.,Kodkani, S. S., et al. Product development in a collaborative design environment[J]. Concurrent Engineering, 1997, 5 (4): 347-365.
    [10] Huang, G. Q.,Mak, K. L. Web-based morphological charts for concept design in collaborative product development[J]. Journal of Intelligent Manufacturing, 1999, 10 (3): 267-278.
    [11] Huang, G. Q.,Mak, K. L. Web-based collaborative conceptual design[J]. Journal of Engineering Design, 1999, 10 (2): 183-194.
    [12] Rodgers, P. A.,Huxor, A. P.,Caldwell, N. H. M. Design support using distributed web-based AI tools[J]. Research in Engineering Design, 1999, 11 (1): 31-44.
    [13] Bracewell, R. H.,Sharpe, J. E. E. Functional descriptions used in computer support for qualitative scheme generation—“Schemebuilder”[J]. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 1996, 10 (4): 333-345.
    [14] Parunak, H. V. D. What can agents do in industry, and why? An overview of industrially-oriented R&D at CEC[J]. Cooperative Information Agents II Learning, Mobilityand Electronic Commerce for Information Discovery on the Internet, 1998, 1435: 1-18.
    [15] Cutkosky, M. R.,Engelmore, R. S.,Fikes, R. E., et al. PACT: An experiment in integrating concurrent engineering systems[J]. Computer, 1993, 26 (1): 28-37.
    [16] George, T.,Cutkosky, M. R.,Larry, J. L., et al. SHARE: A Methodology and Environment for Collaborative Product Development[J]. Post-Proceedings of the IEEE Infrastructure for Collaborative Enterprises, 1993.
    [17] Brown, D. C.,Dunskus, B.,Grecu, D. L., et al. SINE: support for single function agents[C]. Proceedings of AIENG, 1995, 95:525-532.
    [18] Hague, M. J.,Taleb-Bendiab, A. Tool for the management of concurrent conceptual engineering design[J]. Concurrent Engineering, 1998, 6 (2): 111-129.
    [19] Varma, A.,Dong, A.,Chidambaram, B., et al. Web-based tools for engineering design[C]. In The Fourth International Conference on Artificial Intelligence in Design, 1996; 1-10.
    [20] Campbell, M. I.,Cagan, J.,Kotovsky, K. A-design: An agent-based approach to conceptual design in a dynamic environment[J]. Research in Engineering Design, 1999, 11 (3): 172-192.
    [21] Kota, S.,Lee, C. L. A functional framework for hydraulic systems using abstraction/decomposition hierarchies[J]. Computers in Engineering, 1990, 1:327-340.
    [22] Freeman, P.,Newell, A.,Carnegie-Mellon Univ Pittsburgh Pa Dept Of Computer, S. A model for functional reasoning in design[M]. Citeseer, 1971.
    [23] Tor, S. B.,Britton, G. A.,Zhang, W. Y. Functional Modeling in Conceptual Die Design[J]. 2003, 1:1-6.
    [24] Li, S.,Hu, J.,Peng, Y. H. Representation of functional micro-knowledge cell (FMKC) for conceptual design[J]. Engineering Applications of Artificial Intelligence, 2010, 23 (4): 569-585.
    [25] Umeda, Y.,Ishii, M.,Yoshioka, M., et al. Supporting conceptual design based on the function-behavior-state modeler[J]. AIEDAM: Artificial Intelligence for Engineering, Design, and Manufacturing, 1996, 10 (4): 275-288.
    [26] Qian, L.,Gero, J. S. Function–behavior–structure paths and their role in analogy-based design[J]. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 1996, 10 (4): 289-312.
    [27] Gero, J. S. Design prototypes: a knowledge representation schema for design[J]. AI magazine, 1990, 11 (4): 26-36.
    [28] Tomiyama, T.,Umeda, Y.,Yoshikawa, H. A CAD for functional design[J]. CIRP Annals-Manufacturing Technology, 1993, 42 (1): 143-146.
    [29] Finger, S.,Dixon, J. R. A review of research in mechanical engineering design. Part I: Descriptive, prescriptive, and computer-based models of design processes[J]. Research in Engineering Design, 1989, 1 (1): 51-67.
    [30] Finger, S.,Dixon, J. R. A review of research in mechanical engineering design. Part II: Representations, analysis, and design for the life cycle[J]. Research in Engineering Design, 1989, 1 (2): 121-137.
    [31] Gu, C. C.,Hu, J.,Peng, Y. H., et al. FCBS model for functional knowledge representation in conceptual design[J]. 2011.
    [32] MacQueen, J. Some methods for classification and analysis of multivariate observations[M]. In 1967; 14.
    [33] Park, H.,Lee, J.,Jun, C. A K-means-like Algorithm for K-medoids Clustering and Its Performance[J]. Proceedings of ICCIE, 2006.
    [34] Ng, R. T.,Han, J. Clarans: A method for clustering objects for spatial data mining[J]. IEEE transactions on knowledge and data engineering, 2002, 1003-1016.
    [35] Zhang, T.,Ramakrishnan, R.,Livny, M. BIRCH: A new data clustering algorithm and its applications[J]. Data Mining and Knowledge Discovery, 1997, 1 (2): 141-182.
    [36] Guha, S.,Rastogi, R.,Shim, K. CURE: an efficient clustering algorithm for large databases[M]. In 1998; 73-84.
    [37] Karypis, G.,Han, E. H.,Kumar, V. Chameleon: Hierarchical clustering using dynamic modeling[J]. Computer, 1999, 32 (8): 68-75.
    [38] Birant, D.,Kut, A. ST-DBSCAN: An algorithm for clustering spatial-temporal data[J]. Data & Knowledge Engineering, 2007, 60 (1): 208-221.
    [39] Ankerst, M.,Breunig, M. M.,Kriegel, H. P., et al. OPTICS: ordering points to identify the clustering structure[M]. In 1999; 49-60.
    [40] Keim, D. A.,Hinneburg, A. Clustering techniques for large data sets—from the past to the future[M]. In 1999; 141-181.
    [41] Wang, W.,Yang, J.,Muntz, R. STING: A statistical information grid approach to spatial data mining[M]. In 1997; 186-195.
    [42] Dharwadker, A. The Clique Algorithm[J]. From http://www.geocities.com/dharwadker/clique, 2006.
    [43] Sheikholeslami, G.,Chatterjee, S.,Zhang, A. Wavecluster: A multi-resolution clustering approach for very large spatial databases[M]. In 1998; 428-439.
    [44] Dunn, J. C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Cybernetics and Systems, 1973, 3 (3): 32-57.
    [45] Bezdek, J. C. Pattern recognition with fuzzy objective function algorithms[M]. Kluwer Academic Publishers, 1981.
    [46] Eschrich, S.,Ke, J.,Hall, L. O., et al. Fast accurate fuzzy clustering through data reduction[J]. Fuzzy Systems, IEEE Transactions on, 2003, 11 (2): 262-270.
    [47] Hung, M. C.,Yang, D. L. An efficient fuzzy c-means clustering algorithm[M]. In 2001; 225-232.
    [48]丁震,胡钟山.一种基于模糊聚类的图象分割方法[J].计算机研究与发展, 1997, 34 (7): 536-541.
    [49]吴林,郭大勇,施克仁, et al.改进的FCM在人脑MR图像分割中的应用[J]. Journal of Tshinhua University (Science and Technology), 2004, 44 (2): 157-159.
    [50] Zhang, D. Q.,Chen, S. C.,Pan, Z. S., et al. Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation[A]. In 2003, 4: 2189-2192
    [51] Qi, J.,Hu, J.,Peng, Y. H., et al. A case retrieval method combined with similarity measurement and multi-criteria decision making for concurrent design[J]. Expert Systems with Applications, 2009, 36 (7): 10357-10366.
    [52] Qi, J.,Hu, J.,Peng, Y. H., et al. AGFSM: An new FSM based on adapted Gaussian membership in case retrieval model for customer-driven design[J]. Expert Systems with Applications, 2011, 38 (1): 894-905.
    [53] Qi, J.,Hu, J.,Peng, Y. H., et al. Integration of similarity measurement and dynamic SVM for electrically evoked potentials prediction in visual prostheses research[J]. Expert Systems with Applications, 2011, 38 (5): 5044-5060.
    [54]马辉.产品设计知识建模与演化关键技术研究[D].浙江.浙江大学机械与能源工程学院, 2006.
    [55] Rinderle, J.,Balasubramaniam, L.,Carnegie-Mellon University. Engineering Design Research, C. Automated modeling to support design[M]. Carnegie Mellon University, Engineering Design Research Center, 1990.
    [56] Deng, Y. M.,Tor, S. B.,Britton, G. A. Abstracting and exploring functional design information for conceptual mechanical product design[J]. Engineering with Computers, 2000, 16 (1): 36-52.
    [57] Prabhakar, S.,Goel, A. K. Functional modeling for enabling adaptive design of devices for new environments[J]. Artificial intelligence in Engineering, 1998, 12 (4): 417-444.
    [58] Christophe, F.,Bernard, A.,Coatanéa,é. RFBS: A model for knowledge representation of conceptual design[J]. CIRP Annals-Manufacturing Technology, 59 (1): 155-158.
    [59] Li, W.,Li, Y.,Wang, J., et al. The process model to aid innovation of products conceptual design[J]. Expert Systems with Applications, 37 (5): 3574-3587.
    [60] Hirtz, J.,Stone, R.,McAdams, D., et al. Evolving a functional basis for engineering design[C]. In ASME Design Engineering Technical Conferences, Pittsburgh,PA, 2001.
    [61] McAdams, D. A.,Stone, R. B.,Wood, K. L. Functional interdependence and product similarity based on customer needs[J]. Research in Engineering Design, 1999, 11 (1): 1-19.
    [62] Buur, J. A theoretical approach to mechatronics design[M]. Institute for Engineering Design, Technical University of Denmark, 1991.
    [63] Hansen, C. T. An approach to simultaneous synthesis and optimization of composite mechanical systems[J]. Journal of Engeering Design, 1995, 6 (3): 249-266.
    [64] Kirschman, C.,Fadel, G.,Jara-Almonte, C. Classifying functions for mechanical design[J]. Journal of Mechanical Design, 1998, 120: 475-482.
    [65] Schmekel, H.,Sohlenius, G. Functional models and design solutions[J]. CIRP Annals-Manufacturing Technology, 1989, 38 (1): 129-132.
    [66]任工昌,刘永红,张优云.机械产品概念设计及功能表达[J].机械, 2002, 29 (4): 1-4.
    [67] Welch, R. V.,Dixon, J. R. Representing function, behavior and structure during conceptual design[A]. In 1992; 11-18.
    [68] Welch, R.,Dixon, J. R. Conceptual design of mechanical systems[J]. Design Theory and Methodology, 1991, 31: 61-68.
    [69] Chakrabarti, A.,Bligh, T. P. An approach to functional synthesis of solutions in mechanical conceptual design. Part I: Introduction and knowledge representation[J]. Research in Engineering Design, 1994, 6 (3): 127-141.
    [70] Chakrabarti, A.,Bligh, T. P.,Holden, T. Towards a decision-support framework for the embodiment phase of mechanical design[J]. Artificial intelligence in engineering, 1992, 7 (1): 21-36.
    [71] Suh, N. P. Axiomatic Design: Advances and Applications (The Oxford Series on Advanced Manufacturing)[M]. 2001.
    [72]王惠颖,张昌海,周亦.液氢截止阀故障分析与改进[J].低温与超导, 2009, (8): 18-20.
    [73] Stone, R.,Wood, K.,Crawford, R. Product architecture development with quantitative functional models[C]. Proceedings of the Design Engineering Technical Conferences, 1999.
    [74] Stone, R. B.,Wood, K. L. Development of a functional basis for design[J]. Journal of Mechanical Design, 2000, 122 (4): 359-371.
    [75] Caldwell, B. W.,Sen, C.,Mocko, G. M., et al. Empirical examination of the functional basis and design repository[J]. Design Computing and Cognition'08, 2008, 261-280.
    [76] Caldwell, B. W.,Sen, C.,Mocko, G. M., et al. An empirical study of the expressiveness of the functional basis[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2010, 1 (1): 1-15.
    [77] van Eck, D. On the conversion of functional models: bridging differences between functional taxonomies in the modeling of user actions[J]. Research in Engineering Design, 2010, 21 (2): 99-111.
    [78] Hartigan, J. A. Clustering algorithms[M]. John Wiley & Sons, Inc., 1975.
    [79] Hartigan, J. A.,Wong, M. A. Algorithm AS 136: A k-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979, 28 (1): 100-108.
    [80] Zadeh, L. A. Knowledge representation in fuzzy logic[J]. IEEE Transactions on Knowledge and Data Engineering, 1989, 1(1): 89-100.
    [81] Bordogna, G.,Pasi, G. A fuzzy linguistic approach generalizing boolean information retrieval: A model and its evaluation[J]. Journal of the American Society for Information Science, 1993, 44 (2): 70-82.
    [82] Schwartz, L.,Aikawa, T.,Pahud, M. Dynamic language learning tools[M]. In 2004.
    [83] Leskovec, J.,Grobelnik, M.,Milic-Frayling, N. Learning Semantic Graph Mapping for Document Summarization[M]. In 2004.
    [84] Caillaud, E.,Gourc, D.,Garcia, L. A., et al. A framework for a knowledge-based system for risk management in concurrent engineering[J]. Concurrent Engineering, 1999, 7 (3): 257-267.
    [85] Herrera, F.,Martínez, L. A 2-tuple fuzzy linguistic representation model for computing with words[J]. Fuzzy Systems, IEEE Transactions on, 2000, 8 (6): 746-752.
    [86] Everitt, B. S. Graphical techniques for multivariate data[M]. North-Holland, 1978.
    [87] Knowles, J. D. Local-search and hybrid evolutionary algorithms for Pareto optimization[D]. Department of Computer Science, University of Reading 2002.
    [88] Triantaphyllou, E.,Mann, S. H. An examination of the effectiveness of multi-dimensional decision-making methods: A decision-making paradox[J]. Decision Support Systems, 1989, 5 (3): 303-312.
    [89] Thomas, B.,Tamblyn, D.,Baetz, B. Expert systems in municipal solid waste management planning[J]. Journal of urban planning and development, 1990, 116 (3): 150-155.
    [90] Hwang, C. L.,Lai, Y. J.,Liu, T. Y. A new approach for multiple objective decision making[J]. Computers & operations research, 1993, 20 (8): 889-899.
    [91] Yoon, K. A reconciliation among discrete compromise solutions[J]. Journal of the Operational Research Society, 1987, 38(3): 277-286.
    [92] Kwong, C. K.,Tam, S. M. Case-based reasoning approach to concurrent design of low power transformers[J]. Journal of materials processing technology, 2002, 128 (1-3): 136-141.
    [93] Mok, S. L.,Kwong, C. K.,Lau, W. S. An intelligent hybrid system for initial process parameter setting of injection moulding[J]. International Journal of Production Research, 2000, 38 (17): 4565-4576.
    [94] Tong, L. I.,Su, C. T. Optimizing multi-response problems in the Taguchi mehod by fuzzy multiple attribute decision making[J]. Quality and Reliability Engineering International, 1997, 13 (1): 25-34.
    [95] Dan-dan, Q. I. N. An evaluation of comprehensive medical quality by a TOPSIS method combined with a RSR method[J]. Journal of Youjiang Medical College For Nationalities, 2005, 5:1-3.
    [96]李天然,田嘉禾.小动物PET及PET-CT及其在分子影像学中的应用[J].国际放射医学核医学杂志, 2008, 32 (1): 1-4.
    [97] Jan, M. L.,Ni, Y. C.,Chen, K. W., et al. A combined micro-PET/CT scanner for small animal imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 569 (2): 314-318.
    [98] Chen, L. C.,Chang, C. H.,Yu, C. Y., et al. Pharmacokinetics, micro-SPECT/CT imaging and therapeutic efficacy of 188Re-DXR-liposome in C26 colon carcinoma ascites mice model[J]. Nuclear medicine and biology, 2008, 35 (8): 883-893.
    [99] Chang, Y. J.,Chang, C. H.,Yu, C. Y., et al. Therapeutic efficacy and microSPECT/CT imaging of 188Re-DXR-liposome in a C26 murine colon carcinoma solid tumor model[J]. Nuclear medicine and biology, 2010, 37 (1): 95-104.
    [100] Ntziachristos, V.,Bremer, C.,Weissleder, R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging[J]. European radiology, 2003, 13 (1): 195-208.
    [101] Ntziachristos, V.,Weissleder, R. Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation[J]. Optics Letters, 2001, 26 (12): 893-895.
    [102] Deliolanis, N.,Lasser, T.,Hyde, D., et al. Free-space fluorescence molecular tomography utilizing 360 geometry projections[J]. Optics Letters, 2007, 32 (4): 382.
    [103] Lasser, T.,Soubret, A.,Ripoll, J., et al. Surface Reconstruction for Free-Space 360 Fluorescence Molecular Tomography and the Effects of Animal Motion[J]. Medical Imaging, IEEE Transactions on, 2008, 27 (2): 188-194.
    [104] Lasser, T.,Ntziachristos, V. Optimization of 360 projection fluorescence molecular tomography[J]. Medical image analysis, 2007, 11 (4): 389-399.
    [105] Koenig, A.,Hervé, L.,Josserand, V., et al. In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography[J]. Journal of biomedical optics, 2008, 13 (1): 011008(1-9).
    [106] Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nature methods, 2010, 7 (8): 603-614.
    [107] Ntziachristos, V. Fluorescence molecular imaging[J]. Annu. Rev. Biomed. Eng., 2006, 8 (1):1-33.
    [108] Razansky, D.,Distel, M.,Vinegoni, C., et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo[J]. Nature Photonics, 2009, 3 (7): 412-417.
    [109] Heindryckx, F.,Mertens, K.,Charette, N., et al. Kinetics of angiogenic changes in a new mouse model for hepatocellular carcinoma[J]. Molecular cancer, 2010, 9 (1): 219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700