用户名: 密码: 验证码:
新型盘辊破碎机的研制及其关键部件特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物料的粉碎作业是许多基础工业部门不可缺少的工序之一,根据料层破碎原理研制新型节能高效破碎机,实现物料的多碎少磨,对于破碎机的发展具有重要意义。
     本文综述了国内外各种破碎设备的发展现状,并对破碎机强度和动态性能的研究作了分析,在充分调研和论证的基础上,借鉴同类采用料层粉碎原理的破磨设备确定了破碎机的破碎方案和破碎产能参数,总结已申报专利并应用到生产现场的碾压式平盘锥辊破碎机在使用中振动大、易出故障的原因,对其结构进行了改革性创新,设计出“一架压三辊”的独特架构,以及耐磨层便于固定的破碎锥辊和方便修整碾压盘面的车削装置,使得破碎机的稳定性能和维修难度大大改善。利用SolidWorks软件设计完成新型盘辊破碎机虚拟样机的总体结构设计,为后续关键件的静力学分析和动态性能研究奠定了基础。采用破碎功耗理论确定该破碎机的驱动功率,并对相应配套的的传动装置进行了设计计算,最大程度的降低功耗比。由于星形架在破碎机运行过程中承载着来自上部加载液压油缸和下方物料对锥辊的冲击载荷,其承载能力和动态性能对破碎机整体性能至关重要。本文应用ANSYS Workbench对星形架进行了有限元静强度分析,得出星形架在满载极限工况下的应力值和变形情况,结果表明星形架的强度和刚度富余很大,因此对星形架结构进行了改进设计并对改进结果作了验证;然后对已改进的星形架结构进行有限元模态分析,获得其前8阶固有频率和模态振型,并与破碎机自身的可能激励振源的固有频率进行对比,模态分析的结果反映了星形架各部分振动的强弱分布及其在相应模态下的弯曲变形、扭曲变形和弯扭复合变形等的振动响应,可为以后星形架结构的进一步改进设计提供参考依据。
     本论文关于该新型盘辊破碎机的研制及其关键部件性能的研究思路,对该破碎机性能的进一步提高具有非常重要的指导作用,同时也为其它同类型设备的研发奠定了一定的理论基础。
The crushing process of materials is an indispensable process of many basic industry department, so it is of great significance for the development of the crushers to develop new types of energy-saving and highly efficient crusher to realize the more crushing and less grinding target of the crushing materials.
     This thesis summarized the current development situation of various crushing equipment at home and abroad, and analyzed the research on the strength and dynamic performance of the crusher. On the basis of fully research and demonstration of the crushers, the crushing project and parameters of the crusher were fixed, referring the material layer crushing principle of similar grinding equipment. Analyzing the reason of vibration and breakdown of roller-type plate-and-cone-roller crusher already applied for patent and being in application, we made a reformational innovation on the structure of crusher and designed the unique structure that a star-shaped frame pressed three crushing rollers. In the meanwhile, the wear-proof layers of cone crushing roller were easily fixed and the turning device made the plate turning conveniently. The above all structures made the stability performance and maintenance difficulty of the crusher get greatly improved. Using Solid Works software to design the overall structure of the virtual prototype of the new kind plate-rolling crusher laid a foundation for the subsequent static analysis and the dynamic performance study of the critical component. It applied the theory of broken power consumption to determine the driving power of the crusher and designed the corresponding transmission device. Because the star-shaped frame bore the upper load from the hydraulic oil cylinder and the impact load during the materials and the cone rollers at the bottom, its bearing capacity and the dynamic performance were essential for the crusher performance. This thesis performed a finite element analysis on the static strength of the star-shaped frame by ANSYS Workbench software to get the stress and deformation distribution. The results indicated that the strength and stiffness of star-shaped frame was more than enough, so we made an optimization for the star-shaped frame structure and verified the results of improvement. Then the finite element modal analysis of the optimized star-shaped frame was made, obtaining the first eight orders natural frequencies and vibration mode shapes which were compared with the natural frequencies of the possible incentive vibration sources in crusher itself The results of modal analysis reflected the vibration distribution in different parts of star-shaped frame and its vibration response such as deformation, distortion and compound deformation under the corresponding mode, which could provide some references for the future structure optimization of star-shaped frame.
     The research thoughts about the development of the new plate-rolling crusher and its critical components'performance played a key role in guiding to improve the performance of this crusher, also provided some theoretical basis for the development of other similar equipment.
引文
[1]高澜庆,王文霞,马飞.破碎机的发展现状与趋势[J].冶金设备,2001,4(8):13-16
    [2]刘树英,闻邦椿.新型振动圆锥破碎机的研究[J].矿山机械,2009,33(1):6-14
    [3]段希祥.碎矿与磨矿[M].北京:冶金工业出版社,2006
    [4]彭光.常用破碎机的发展现状及日常维护[J].中国新技术新产品,2009(20):149-150
    [5]李大磊,马胜钢等.碾压式平盘锥辊破碎机[P].中国发明专利,CN201110094654.1
    [6]刘混举,吕凯波.矿山机械结构件的疲劳分析和寿命预测[J].第四届中国CAE工程分析技术年会论文集,2008:136-140
    [7]银纪普,肖六均.高效细碎机生产应用现状与发展趋势探讨[J].矿业快报,2000(12)
    [8]赵昱东.圆锥破碎机的新发展[J].中国钨业,2004(4):42-45
    [9]郎世平.国内圆锥破碎机的现状与发展创新[J].矿山机械,2011(6):80-84
    [10]李本仁.国外立轴冲击式破碎机发展概况[J].矿山机械,2004(1):13-14
    [11]孙成林.破碎机的新发展[J].硫磷设计与粉体工程,2001(1):34-41
    [12]王世明PEXG-250高效细碎颚式破碎机[J].建材工业信息,1992(2)
    [13]刘丽华PSHX-100×700双腔回转式破碎机[J].机电新产品导报,1998(3)
    [14]华靖MK-1150-65旋回破碎机的特点及运行维护[J].矿业工程,2006(4):44-45
    [15]潘文祥.辊式破碎机的原理及参数计算[J].苏盐科技,1997(4):21-23
    [16]赵经国,万树春,邵爱平.新型高效辊式破碎机的研发[J].矿山机械,2007(10):61-63
    [17]吴志鹏.汽油机结构模态及静强度分析研究[D].合肥:华中科技大学,2007.
    [18]郭年琴.复摆颚式破碎机机架强度的有限元及电测应力分析[J].江西冶金学院学报,1988,9(1):40-45
    [19]肖文志,廖洪刚.锤式破碎机锤头结构改进及强度校验[J].矿山机械,2005,33(10):35-36
    [20]张世军.PEJ1215颖式破碎机后肘板的强度分析计算[J].有色矿冶,2009,25(3):41-43
    [23]辛丕存.1200T自行式破碎站平衡梁强度有限元分析[D].长春:吉林大学,2011
    [24]徐锋.反击式破碎机破碎腔关键部件结构计算及优化分析[D].南京:南京理工大学
    [25]陈龙淼,钱林方.反击式破碎机转子体动态刚强度分析[J].矿山机械,2008,36(17):82-85
    [26]王军锋.PE250×400型颚式破碎机机架的模态分析[J].矿山机械,2012,40(8):64-67
    [27]刘敏芳.立轴冲击式破碎机轴承箱支架模态分析[J].装备制造技术,2007(11):8-9
    [28]傅彩明.新型颚式破碎机动态设计研究[D].北京:北京科技大学
    [29]任德树.粉碎筛分原理与设备[M].北京:冶金工业出版社,1984.9
    [30]郑水林.超细粉碎[M].北京:中国建材工业出版社,1999:61-62.
    [31]王宏勋.为什么要发展轮齿式破碎机[J].矿山机械,2001(10):6-8.
    [32]陈松涛.新型盘辊式破碎机的研制及破碎物料粒度分析[D].郑州:郑州大学,2012.
    [33]GAO Qiang, ZHANG Jian-hua. Current status and prospects on the study of crush theory and crusher[J]. Journal of Machine Design,2009 (10):72-75
    [34]陈灏.机械设计手册(第2版)[M].北京:机械工业出版社,2000.
    [35]成大先.机械设计手册(第四版)[M].北京:化学工业出版社,2005.
    [36]万正喜.斗轮堆取料机行走机构力学性能分析及结构优化[D].长沙:中南大学,2011
    [37]王惠科.液压挖掘机工作装置静、动态特性研究与结构参数优化[D].长沙:中南大学,2010
    [38]李人宪.有限元法基础(第2版)[M].北京:国防工业出版社,2010.8
    [39]Clough R W. Thoughts about the origin of the finite element method [J]. Computers and Structures.2001 (79)2029-2033
    [40]Saeed Moaveni. Finite element analysis-theory and application with ANSYS [M]. Pearson Prentice Hall.1999.3
    [41]Turner MJ, Clough RW, Martin HG, et al. Stiffness and deflection analysis of complex structures [J]. Journal of Aerosol Science.1956(23):805-823
    [42]程丽珠.桥式起重机主粱结构分析和优化设计[D].长春:吉林大学,2006
    [43]许京荆.ANSYS 13.0 Workbench数值模拟技术[M].北京:中国水利水电出版社,2012.3
    [44]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004
    [45]黄国权.有限元法基础及AANSYS应用[M].北京:机械工业出版社,2004
    [46]茅承钧.建筑机械撞击响应分析[J].建筑机械化,1985(9)
    [47]齐玉红.基于ANSYS的桥式起重机主梁结构优化设计研究[D].郑州:郑州大学,2011
    [48]李大磊,陈广飞,罗春虎.WXP-200型盘辊式破碎机减速器箱体强度的有限元分析[J].矿山机械,2011(7):77-80.
    [49]刘鸿文.材料力学[M].北京:高等教育出版社,2004
    [50]M. Javed Hyder, M. Asif. Optimization of location and size of opening in a pressure vessel cylinder using ANSYS[J]. Engineer Failure Analysis.2007(1):1-19
    [51]B.D. Youn, K.K. Choi, R.-J. Yang, L. Gu. Reliability-based design optimization for crashworthiness of vehicle side impact[J]. Structural and Multidisciplinary Optimization, 2004(1):272-283
    [52]李大磊,尹跃峰.XP-100型盘辊式破碎机碾压盘的应力分析与结构优化[J].矿山机械,2011(6):91-94.
    [53]张力.模态分析与实验[M].北京:清华大学出版社,2011.5
    [54]龙树.塔式起重机结构分析与优化[D].沈阳:东北大学,2008
    [55]D.L. Li. Y.F. Yin. et al. Function simulation analysis for conical spring of DANA axis-fixed transmission [J]. Advanced Materials Research,2011(7):57-60
    [56]张晋伟.4125A型柴油机曲轴结构有限元动力分析[D].杨凌:西北农林科技大学,2009
    [57]孙建军.悬臂式掘进机截割部减速器动态特性研究[1D].长春:吉林大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700