用户名: 密码: 验证码:
紫色母岩现代表生作用及环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表生作用是在风化壳、陆地生物圈和水圈发生的岩石和矿物的地表变化,大气圈、水圈的组分在表生圈层中进行物质和能量的交换以及地球化学过程,而风化壳是联系地球岩石圈、水圈、生物圈、土壤圈和大气圈层的重要界面,是表生地貌学的重要研究内容。岩石风化成土是一个极其缓慢的过程,因而对岩石风化成土的表生作用研究存在较大的局限性。但紫色母岩因其风化成土快、母质肥力高、冲刷严重等特点而具有独特的科学魅力,并且其发育土壤表现出在颜色、物理性状、矿物组成等方面继承了母岩的特性,有“土壤学研究的一块宝地”的称誉。但是过去的研究大多集中在紫色母岩风化物理颗粒变化、风化破碎成土、营养肥力等的某一方面,缺乏从岩石→土壤→环境(生态)系统动态的角度研究紫色母岩的现代表生过程。
     长江上游、四川盆地有着广泛的紫色岩石出露和紫色土分布,紫色母岩特殊的风化成土过程、紫色土的特殊性质,严重地影响着紫色岩石分布区环境的安全、经济和社会发展的可持续性。通过对紫色母岩现代表生作用特征及其影响研究,探明紫色母岩现代表生作用机理,预测其表生过程的环境风险,为长江三峡水环境及紫色岩区生态、经济和社会的可持续发展提供科学依据。从农业土壤、生态环境和地质作用的角度,以岩石→土壤→环境(生态)系统整体研究为出发点,以四川盆地侏罗系蓬莱镇组(J_3p)、遂宁组(J_3s)、沙溪庙组(J_2s)和三叠系飞仙关组(T_1f)不同地层的4种紫色泥(页)岩及其发育的土壤为试验材料,采取模拟、动力学等试验方法,深入系统地研究了紫色母岩现代表生过程的五个方面:紫色母岩风化破碎、风化成土及养分释放特性和影响因素,紫色母岩和土壤养分释放对环境影响及预测分析,紫色母岩和土壤物理化学性质特征及变化规律,紫色母岩与有机物复合和紫色土有机质特征,利用方式和
    
    土壤管理对紫色土养分、水分、水保等综合肥力特征的影响。主要结果如下:
    l 紫色母岩风化成土特征
     风化一年,盆钵模拟自然风化细颗粒比例为 2.25%~sl.70%,风化成土比例为 0.30%~6.18%;
    扰动两次紫色母岩风化细颗粒比例为4.72%~70.50%,风化成土比例为0石9%p4.84%;温度变
    幅(ZO℃)风化细颗粒比例为m.65 WW75.Zo%,风化成上比例为2.ic%~39.74%;水分处理(】2%)
    风化细颗粒比例为60.54W80.slO,风化成土比例为32.24%~42.34o;生物(小麦15株-高粱9
    株)风化细颗粒比例为16.23%~78.34%,风化成土比例为7.51%~43.94%。
     不同风化条件对4种紫色母岩风化破碎为细颗粒的影响作用不同,T/母岩表现为温度变
    化>扰动>生物作用,人S母岩表现为生物作用>水分>温度变化>扰动,人S母岩表现为水分>温度
    变化>生物作用>扰动,方p母岩表现为水分>温度变化>扰动>生物作用。不同风化条件对四种紫
    色母岩风化成土影响不一致,Tlf母岩风化成土表现为温度变化>扰动>生物作用,JZS母岩表现
    为水分>温度变化>扰动>生物作用,J仔母岩表现为水分>温度变化>扰动>生物作用,J3p母岩表
    现为水分>温度变化>生物作用>扰动。
     T;f、J。S、J。S、J。p 4种不同紫色母岩风化颗粒粒度分形维值为 0石0-3刀7。并且颗粒粒度分
    维值与<smm 颗粒比例关系为y一0.5763In(i+0.3854(*0.9873”“,n一24)对数函数,颗粒粒度分
    维值与<Zmm 成土比例关系为y一0.4308In00+!.4044(r=0.9741“”,n一24),颗粒粒度分维值与<smm
    细颗粒和<Zmm成土比例均表现为极显著对数关系,因此可以说用非线性表征值分形维可以较
    好地反映紫色母岩风化颗粒粒度的分布。颗粒粒度分维值能较好反映紫色母岩风化破碎程度及
    成土量的指标之一。
    2紫色母岩养分风化释放特征
     不同风化处理飞仙关组母岩N、P、K释放量分另为23.09-92.799/m’、33.00一230.629/m’、
    1031.33、4356.469/m\增幅均表现为生物作用>温度变化>扰动。不同风化处理J/母岩 N、p、
    K养分释放量分别为 96.80-239.59g/m’、508.72~ill4.l!g/m’、13240刀l-28657.05g/m’,增赐分
    别表现为:生物作用>水分>温度变化>扰动,生物作用>温度变化>水分>扰动,生物作用>水分>
    温度变化>扰动。不同风化处理人S母岩 N、P、K养分释放量引.46-357刀og加3、
    115.13。576.92旮m\2928.65叫5867.20g/m\增幅分别表现为:生物作用>水分>温度变化>扰动,
    水分>生物作用>温度变化>扰动,水分>温度变化>生物作用>扰动。不同风化处理J刃母岩N、
    P、K养分释放量108.11-341.369/m‘、253.19-812.6ig/m’、6103.99-19821.38ym‘,增陨均表现
    为生物作用>水分>温度变化>扰动。从N、P、K养分释放分析表明,不同风化条件对四种紫色
    母岩N释放量影响均表现为生物作用>水分>温度变化>扰动,不同风化条件对四种紫色母岩P
    释放量影响均表现不一致,不同风化条件对四种紫色母岩K释放量影响除J扦母岩外,其它均
    表现为生物作用>水分>温度变化>扰动。除生物作用对遂宁组母岩P、K释放量增幅影响较低?
Supergenesis is the earth's surface change of rock and mineral, which take place in weathering crust, earth biosphere and hydrosphere. The component of atmosphere and hydrosphere carries through material and energy exchange and geochemistry process. Weathering crust is the important interface, which connects with earth geosphere, hydrosphere, biosphere, pedosphere and atmosphere, and is also the important contents which supergenic physiognomy studies. Rock weathering and soil-formation is very slow process so supergenic study on rock weathering has great localization. Purple mother rock is provided with particular scientific charming, because it has the quality of the fast weathering soil-forming, the high contents of mother material fertility, severe wash and so on. And its development soil inherits the quality of mother rock for example the color, physical character, mineral compositions, etc. So purple soil is endowed with the praise - a famous soil scientific research sacred place. But the most former st
    udies focused on such a certain aspect as purple mother rock weathering physical particle size change, weathering fragmentation soil-forming, nutrient fertility and so on, and lacked study on the modern supergenic process of purple mother rock from the "rock- soil-environment (ecological)" systemic and dynamic angle.
    There are wide purple rock outcrop and purple soil distributing in the upper reaches region of the Yangtze River and Sichuan Basin. The particular weathering soil-forming process of the purple mother rock and the unique quality of the purple soil had great influence upon environmental safety, economic and social sustainable development in purple rock area. Study on the modern supergenic quality and influence of the purple mother rock proved up the modern supergenesis mechanism, forecasted supergenic process environmental risk and provided with scientific basis for ecological, economic and social sustainable development in water body environment of Three Gorges and purple rock area. From the angle of agricultural soil, ecological environment and geological action, and from a whole "rock→soil→environment(ecological) system study, by the experimental material of the Jjp, J3s, J2s and T]f purple mud rock or shale and its development soil, we used the experimental method of simulation, dynamics, etc. and thorough
    ly studied the five aspects of purple mother rock modern supergenic process. The first aspect was purple mother rock weathering smashes, weathering soil-forming, its nutrient release quality and influencing factors. The second aspect was that purple mother rock and soil nutrient affected environment and forecast analysis. The third aspect
    VI
    
    
    contained the physical chemistry character and change laws of purple mother rock and soil. The fourth aspect involved the quality of purple mother rock-organic material and purple soil organic material. The fifth aspect was that utilization method and soil management exerted influence upon purple soil nutrient, moisture, and soil and water conversation synthetic fertility. The results showed that:
    1. Purple mother rock weathering soil-forming characteristics
    The result of pot simulation weathering showed that 2.25%~51.7% of purple rock developed to small particles and 0.30%~6.18% to soil after one year weathering. 4.72%~70.50% of purple rock developed to small particles by disturbing twice and 0.69%~24.84% to soil in one year. By the 20癈 change 10.65%~75.20% of purple rock developed yearly to small particles and 2.10%~39.74% to soil. 60.54%~80.81% of purple rock developed to small particles and 32.24%~42.34% to soil under 12% of moisture circumstances in one year. 16.23%-78.34% of purple rock developed to small particles and 7.51%~43.94% to soil given biological circumstances (rotation of ISwheat plants and 9 jowar plants ) in one year.
    Different weathering circumstances had different influence upon small particles developed from four kinds of purple rock. The influencing sequences were: temperature change>disturbance >biological action i
引文
A.A.别乌斯等.朱颜明译.环境地球化学[M].北京:科学出版社,1982.
    柴宗新.西南地区生态环境建设的科技工程[J].山地学报,2000,18(5):396~398.
    曹承锦,严长生,张志明等.关于土壤肥力数值化综合评价的探讨[J].土壤通报,1983(4):13~15.
    曹正林,赵锡奎,王英民等.鄂尔多斯盆地北部古风化壳岩石—流体反应动力学模拟研究[J].沉积学报,1997,15(4):91~96.
    陈炳辉,刘琥琥,毋福海.花岗岩风化壳中的微生物及其对稀土元素的浸出作用[J].地质评论,2001,47(1):88~94.
    陈炳辉,毋福海,黄丽玫等.华南酸性岩类风化壳稀土元素的生物地球化学及矿体贫化问题探讨[J].地质评论,1999,45(增刊):805~808.
    陈炳辉,徐文烈,黄丽玫等.微生物及有机酸对风化壳中REE的溶出实验[J].中山大学学报(自然科学版),2000,39(4):110~113.
    陈恩凤,周礼恺,邱凤琼.土壤肥力实质的研究Ⅰ.黑土[J].土壤学报,1984,21(3)229~237.
    陈恩凤,周礼恺,邱凤琼.土壤肥力实质的研究Ⅱ.棕壤[J].土壤学报,1985,22(2):113~119.
    陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力中的应用[J].土壤学报,1994,31(1):18~28.
    陈国阶.长江上游水土流失主要成因与防治对策[J].农村生态环境,2000,1(3):5~8
    陈骏,安芷生,刘连文等.最近2.5Ma黄土高原风化组成变化与亚洲内陆化学风化[J].中国科学(D辑),2001,31(2):136~145.
    陈亚明,印艳华,张咸恭.扫描电镜在黄土湿陷及花岗岩古风化壳成土机理研究中的应用[J].工程地质学报,1997.5(1):86~90.
    陈志澄,陈达慧,愈受鉴等.试论有机质在华南花岗岩风化壳REE溶出迁移和富集中的作用[J].地球化学,1994,b,23(2):168~178.
    陈志澄,庄文明,陈炳辉等.华南花岗岩风化壳中稀土的存在形态及迁移富集模式[J].中山大学学报,1994a,33(2):168~178,
    陈志雄,汪仁真.中国几种主要土壤的持水性质[J].土壤学报,1979,16(3):277~281.
    池三川.现代成矿理论的某些进展[J].地学前缘,1994,1(3-4)83~89.
    Dag O. Hessen et al,氮流失和海洋受体富营养化的重要意义[J].AMBIO—人类环境杂志,1997,26(5):306~313.
    D.L.斯帕克斯.土壤物理化学[M].西安:天测出版社,1990.
    冯庆祖,陈龙,聂德新.岩体风化程度量人分带研究[J].地质灾害与环境保护,2001,12(2):76~79.
    F.J.佩蒂庄,李汉瑜等译,沉积岩[M].北京:石油出版社,1981.
    傅积平,张敬森,熊毅.太湖地区水稻土复合体和特性[J].土壤学报,1983,20(2):112~128.
    
    
    傅积平,张绍德,褚金海.土壤有机无机复合度测定法[J].土壤肥料,1978(4):40~42.
    高子勤.三江平原白浆土农林牧综合管理[M].北京:中国林业出版社,1992。
    《工程地质手册》编写组.工程地质手册[M].北京:中国建筑工业出版社,1982.
    关广岳.中国金矿床表生地球化学[M]沈阳:东北地质大学出版社,1994:15~33.
    郭伯生.稀土在生物领域中应用研究进展[J].稀土,1999,20(1):64~68.
    郭永明.四川盆地主要紫色母岩风化速度的研究[J].土壤农化通报,1986,(4)2:46-52.
    郭永明.紫色泥页岩在自然状态下风化崩解的观察研究[J].土壤农化通报,1988,3(1):10~14.
    郭永明.紫色泥(页)岩母质碎屑风化崩解的观测研究[J].土壤通讯,1985,7(1):35~41.
    侯光炯.农业土壤学[M].成都:四川科学技术出版社,2000。
    胡受奚,周顺元,刘孝善等.矿床学[M]。北京:地质出版社,1983.
    (苏)弗.伊.斯米尔诺夫.矿床地质学[M].北京:地质出版社,1985:297~299.
    胡英,物理化学(上册,第四版)[M].北京:高等教育出版社,1999.
    范昌隆.岩石风化程度综合定量评价[J].勘探科学技术,1992,8:57~59,47.
    黄丽,张远光,丁树文等.侵蚀紫色土土壤颗粒流失的研究[J].土壤侵蚀与水土保持学报,1999,5(1):35~39,85.
    黄成敏,何毓蓉,张丹.金沙江干热河谷(云南省)土壤退化机理研究Ⅱ.土壤水分与土壤退化[J].长江流域与资源环境,2001,10(6):578~584.
    季方,赵虎.阿尔泰山西北山区湿润条件下土壤的风化特征[J].冰川冻土,1999,21(2):164~168.
    姜培坤,俞益武,徐秋芳.商品林地物理性质演变与抗蚀性能的评价[J].水土保持学报,2002,16(1):112~125.
    金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990.
    金相灿.中国湖泊富营养化[J].北京:中国环境科学出版社,1992.
    赖发叶.母岩岩性与土壤侵蚀的关系[J].中国水土保持,1989,7:41~43.
    李保国.分形理论在土壤科学中的应用及其展望[J].土壤学进展,1994(1):1~10.
    李德文,崔之久,刘耕年等.岩溶风化壳形成演化及其循环意义[J].中国岩溶,2001,20(3):183~188.
    李航,薛家骅.离子扩散的一级动力学方程中平衡吸附量的讨论与确定[J].土壤学报,1997,34(4):353~358.
    李航,薛家骅.土壤中离子扩散的动力学研究[J].土壤学报,1996,33(4):327~336.
    李航,薛家骅.土壤中离子扩散的基本方程与实验验证[J].土壤学报,1998,35(3):321~327.
    李家钰.新鲜岩石抗风化能力分级若干意见[J].铁道标准设计,1993(5):31~33.
    李任伟,陈锦石,陈志明.蓟县早寒武—新元古不整合界面处风化壳碳酸盐碳—氧同位素组成特征[J].地质科学,2000,35(1):55~59.
    李世菊.利害攸关,事在人为—对长江能否变成黄河的一点看法[J].水土保持通报,1981(3):58~63.
    
    
    李树德,崔之久,张振栓.天山乌鲁木齐河源胜利达坂岩石风化剥蚀速率初探[J].冰川冻土,1981,3(增刊):56~63.
    李阳兵.关于紫色泥岩风化问题的讨论[J].土壤农化通报,1998,13(1):9~10.
    李越.表生带中金的地球化学和表生金矿床[J].贵州地质科技情报,1990(1):21~23.
    李仲明.四川盆地紫色土发生特征初步研究[J].土壤农化通报,1987,2(1、2):5~12.
    李仲明.论紫色土的发生与分类[J].土壤学报,1989,26(2):165~172.
    李仲明.四川土壤资源特征及其合理利用[J].资源开发与保护,1985,1(1):3~9.
    廖士范,梁同荣,曾明果.黔西碳酸盐地层中菱铁矿质风化铁帽的地球化学特征[J].地球化学,1980(4):323~332.
    廖士范.关于风化壳建造、古风化壳建造及其形成机理[J].岩相古地理,1993,13(5):57~63.
    雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:1~24.
    林鸿益,李映雪.分形论—奇异性探索[M].北京:北京理工大学出版社.1992:43~48.
    刘宝珺等.岩相古地理基础和工作方法[M].北京:地质出版社,1985.
    刘东生,郑绵平,郭正堂.亚洲季风系统起源和发展及其与两极冰盖和区域构造运动的时代耦合发生[J].第四纪研究,1998,(3):194~211.
    刘国平,汪东波,徐勇.中国红土型金矿类型成因和成矿[J].地质与勘探,1999,35(3):14~16.
    刘佳桂,骞泽西,杨艳生.长江三峡区紫色土坡耕地的土壤流失量研究[J].水土保持学报,1991,3:36~44.
    刘彤,徐鸣洁,胡德昭等.风化花岗岩声谱特征分析[J].高校地质学报,2000,6(4):588~594.
    刘文汉.矿床学[M].北京:地质出版社,1984.
    卢龙,王汝成,薛纪越等.黄铁矿风化过程中元素的活性及对环境的影响[J].地质评论,2001,47(2):95~101.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,北京:2000.
    马民涛,戚长谋.金的表生地球化学研究现状[J].世界地质,1995,14(1):1~5.
    马兴旺.草原恢复时土壤有机矿质复合体中结合态腐殖质变化[J].干旱区研究,1999,16(4):49~55.
    马振芳,周树勋,于忠平等.鄂尔多斯盆中东部奥陶系顶部古风化壳特征及其与天然气富集的关系[J].石油勘探与开发,1999,26(5):21~23.
    庞帮域.紫色岩石成土问题新解[J].土壤农化通报,1988,3(2):10~16.
    Patrick V., Brady等.CO_2和温度对硅酸盐风化作用的影响—对气候控制的可能影响[J].地质科学译丛,1995,12(2):16~19.
    全斌,陈建飞,郭成达.福建赤红壤旱地土壤水分特性及调控[J].土壤,2001,5:232~238.
    全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报,2002,22(3):291~298.
    尚彦军,吴宏伟,曲永新.花岗岩风化程度的化学指标及微观特征对比—以香港九龙地区为例[J].
    
    地质科学,2001,36(3):279~294.
    RiChard A. Eggletom著,赵建文译.玄武岩的风化作用:岩石化学的矿物学方面的变化[J].国外建材,1991,9(2):44~50.
    S.T.特鲁吉尔.土壤与植被系统[M].北京:科学出版社,1985.
    石承苍.浅谈四川盆地的土壤分类[J].土壤农化通报,1987,2(4):15~22.
    史德明.如何正确理解有关水土保持术语的讨论[J].土壤侵蚀与水土保持学报,1998,4(4):89~91.
    史德明.如何正确理解有关水土保持术语的讨论[J].土壤侵蚀与水土保持学报,1998,4(2):29~35.
    司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化[J].土壤,2000,(4):188~193.
    斯蒂文森(美).腐殖质化学[M].北京:北京农业大学出版社,1994.
    四川盆地陆相中生代古生物编写组.四川盆地陆相中生代古生物[J].成都:四川人民出版社,1982.
    宋长春,张宝林.黑龙江省北部风化壳的形成及其对砂金成矿的作用[J].矿物岩石地球化学通报,1997,16(3):183~185.
    宋光煜,唐俊臣.有机肥对土壤有机无机复合体性状的影响[J].西南农业大学学报,1986(2):14~19.
    唐时嘉,罗有芳.亚热带紫色沉积岩的成土过程及特点[J].西南农业大学学报,1994,16(6):550~555.
    唐时嘉,孙德江,罗有芳等.四川盆地紫色土肥力与母质特性的关系[J].土壤学报,1984,21(2):123~132.
    田光龙,李仲明.四川不同自然条件下紫色土发生类型的研究[J].土壤农化通报,1987,2(1、2).
    田光龙,李仲明.紫色沉积岩成土类型及其性状[J].山东农业大学学报,1991,22(2):174~180.
    王立伦,刘潮海.我国阿尔泰山西北部现代冰川的基本特征[J].冰川冻土,1983,4(4):39~47.
    王根绪,程国栋,刘光绣等.论冰缘寒区景观生态与景观演变过程的基本特征[J].冰川冻土,2000,22(1):26~32.
    王银喜,李惠民,杨杰东等.华北古风化壳型稀土有机成矿机理研究[J].中国稀土学报,1997,15(3):244~251.
    王智,冯秀民,贾端平.岩石风化程度的模糊综合评判[J].冶金地质动态,1999,(7):9~12.
    王志刚,郭子琪.西秦岭土壤和岩石光谱在风化作用中的演化[J].遥感技术与应用,1998,13(3):19~23.
    韦鹤平.环境系统工程[M].上海:同济大学出版社,1993:183.
    韦启蹯,陈鸿鸣,吴志东等.广西弄岗自然保护区石灰土的地球化学特征[J].土壤学报,1983,20(1):30~41.
    魏朝富,李瑞雪,高明等.二滩水电站移民新区土壤水分特性的研究[J].水土保持学报,
    
    2000,14(1):71~76,96.
    文孝启.土壤有机质研究法[M].北京:农业出版社,1984.
    巫锡勇.侵蚀性环境水的形成与地下水运动特征的研究[J].铁道学报,1998(4):106~112.
    巫锡勇,贺玉龙,魏有仪等.黑色岩层的风化特征研究[J].地质地球化学,2001,29(2):17~23.
    吴宏伟,尚彦军,曲永新等.香港花岗岩风化分级化学指标体系与风化壳分带[J].工程地持学报,1999,7(2):125~134.
    吴华.建基岩体风化厚度检测新方法及应用效果[J].水利水电快报,1997,18(22):1~4.
    吴志峰.华南花岗岩风化土体粒度成分的分形特征[J].中国水土保持,1997,5:17~19.
    肖学军译.土壤中的结晶金与表生块金的形成问题[J].地质地球化学1987,(金矿特辑).
    谢德体.土壤地理学[M].成都:成都科技大学出版社,1995.
    辛厚文.分形论及其应用[M].合肥:中国科技大学出版社,1993.
    新疆综合考察队编.新疆土壤地理[M].北京:科学出版社,1965.
    熊黑钢,刘耕年,宋长青等.南极长城站区寒冻风化特征[J].冰川冻土,2001,23(2):180~184.
    熊顺贵.基础土壤学[M].北京:中国农业大学出版社,2001.
    熊毅.土壤胶体(第一册)—土壤胶体的物质基础[M].北京:科学出版社,1983:326~440.
    熊毅,陈家坊.提高土壤肥力在发展农业生产中的重要意义[J].土壤通报,1963,(4):1~6.
    熊毅,陈家坊.土壤胶体(第二册)—土壤胶体研究法[M].北京:科学出版社,1985.
    徐道一.天文地质学概论[M].北京:地质出版社,1983:10.
    徐建民,袁可能.土壤有机无机复合体研究Ⅴ.胶体复合体组成和生成条件的剖析[J].土壤学报,1993,30(1):43~51.
    徐建民,袁可能.土壤有机矿质复合研究Ⅶ.土壤结合态腐殖质的形成特点及其结合特征[J].土壤学报,1995,32(2):151~158.
    徐建民,袁可能.我国土壤中有机无机矿质复合体地带性分布的研究[J].中国农业科学,1993,26(4):65~70.
    徐明岗,孙本华,张一平.土壤扩散规律及其能量特征的研究Ⅱ.施肥量及水肥温相互作用对磷扩散的影响[J].土壤学报,1998,35(1):55~65.
    徐启刚,黄润华.土壤地理学教程[M].北京:高等教育出版社,1991.
    严昶升.土壤肥力研究方法[M].北京:农业出版社,1998.
    杨定国,温璞茂,成延鏊等.四川盆地土壤微量元素的生态类型研究[J].环境科学学报,1986,6(1):8~14,
    杨定国,温璞茂,成延鏊等.四川盆地土壤中微量元素的含量及其有效性的研究[J].土壤学报,1985,22(2):157~165.
    杨培岭,罗远培,石元春.用粒径重量分布表征土壤的分形特征[J].科学通报,1993,38(20):1896~1899.
    杨艳生,史德明.长江三峡土壤侵蚀研究[M].南京:东南大学出版社,1994.
    
    
    姚贤亮,许绣云,于德芬.不同利用方式下红壤结构的形成[J].土壤学报,1990,17(1):25~33.
    叶玮.阿尔泰山风化作用的初步研究[J].干旱区地理,1991,14(4):32~37.
    袁道先.岩源环境学[M].重庆:重庆出版社,1988,25~29.
    袁国映.阿尔泰山西北部的垂直自然带[J].地理学报,1986,4(1):32~40.
    袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1985:186.
    余皓,李庆逵.四川之土壤[J].土壤专报1945(24).
    于天仁,季国亮,丁昌璞.可变电荷土壤的电化学[m].北京:科学出版社,1996.
    张凤荣,马步洲,李连捷.土壤发生与分类学[M].北京:北京大学出版社,1992.
    张夫道.长期施肥条件下土壤养分的动态和平衡Ⅰ:对土壤腐殖质积累及其品质的影响[J].植物营养与肥料学报,1995,1(3、4):10~21.
    张妙仙,杨劲松.试用土壤水分特征曲线概化法评价土壤结构性[J].土壤,2001,2:77~80.
    糟谷赛司.石材建造对象岩石风化实体调查考察[J].应用地质,1979(2):47~57.
    赵善国,李景山,田春竹等.基岩风化带的划分及风化效应[J].黑龙江水专学报,2002,29(2):34~35.
    赵秀峰.岩石和土的冷生风化机制研究[J].自然科学进展,1996,6(4):470~476.
    中国科学院成都分院土壤研究室.中国紫色土(上)[M].北京:科学出版社,1991.
    中国农业土壤概论编委会.中国农业土壤概论[M].北京:农业出版社,1982.
    钟继洪,郭庆荣,骆伯胜等.坡地赤红壤特理退化及其机理研究[J].热带亚热带土壤科学,1998,7(2):166~171.
    朱波,高美荣,刘刚才等.紫色页岩风化侵蚀与环境效应[J].土壤侵蚀与水土保持学报,1999,5(3):33~37.
    朱波,李同阳,张先婉.耕作制度对紫色土养分循环的影响[J],1996,14(增刊):51~54.
    朱波,罗晓梅,廖晓勇等.紫色母岩养分的风化与释放[J].西南农业学报,1999,(12)土壤肥料专辑:63~68.
    朱波,罗晓梅,徐佩等.紫色土肥力要素的剖面分异与肥力潜力[J].西南农业学报,2000,13(4):50~56.
    朱鹤健.土壤地理学[M].北京:高等教育出版社,1992.
    朱恺军,黄金永,姚国龙.湖南—粤北铁锰多金属矿床的表生风化作用[J].地质找矿论丛,1997,9:68~75.
    左三胜,任光明.运用定量指标研究岩体风化问题的探讨[J].山地学报.2002,20(3):365~369.
    Alexandra Kravchenro, Renduo zhang., Estimeting the soil water retention from particle-size distribution: a fractal approach[J]. Soil soc. Am., 1998, 163 (3): 171~179.
    Amundson R. The carbon budget in soils[J]. Annu. Rev. Earth Planet. Sci., 2001, 29: 535~562.
    
    
    Barker W. W., Welch S. A. and Banfieid J. F. Biogeochemicai weathering of silicate minerals. In: Geomicrobiology: Interactions between microbes and minerals (Reviews in mineralogy) Mineralogical Society of America, 1996:391~428.
    Barral M. T., Arias M., Guerif J. Effects of iron and organic matter on the porosity and structural of soil aggregates[J]. Soil & Tillage Research 1998, 46:162~172.
    Barton D. C., Notes the disintegration of granite in Egypt[J]. Journal Geology, 1916, 24:382~393.
    Berner R. A., Geocarb: a revised model of atmospheric CO_2 over Phanerozoic time[J]. Am. J. Sci. 1994, 294:56~91.
    Berner R. A., Lasaga A. C., Garrels R. M. The carbon-silicale geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 milion years[M]. Am. J. Sci 1983, 283:641~683.
    Black B. F., Cromorphic processes and micro-relief features victoria Land, Antarctica In: Fechey B. D. and Thompson B. D.(Editors), Research on polar alpine geomorphology. Norwich 1973, 11~24.
    Brady P. V., carol S. A. Direct effect of CO_2 and temperature on silicate weathering: possible implication for climate control[J]. Geochim. Cosmochim. Acta, 1994, 58:1853~1856.
    Cheng Binghui, Cheng zhicheng, Liang Qunyou, et al. Compounding patrern of REE, Clay and humic acid in the weathering crust of granites[J]. Journal Rare Earths, 1996, 14(1):47~53.
    Cheng Binghui, wang Zhimei, Huang Limei, et al. The microbial metallogeny of weathering ceust REE deposits in south China[J]. Chinese Science Bulletin, 1999, 44(Supp.):71~73.
    Cheng L., Sencsi N., Schnitzer M., Information provided on humic substances by E_4/E_6 rations[J]. Soil Sci. Soc. Am., 1977, 41:352~358.
    Cheng Zhicheng, Yu Shoujun, Fu Qunce, Cheng Binghui, et al. Organic metallogeny of weathering crust REE deposits[J]. Journal Rare Earth, 1998, 16(1):60~67.
    Cleaves E. T., Fisher D. W. and Bricker O. P., Chemical weathering of Serpentinite in the eastern Piedmont of Maryland[J]. Geol. Soc. Am. Bull, 1974, 81:3015~3032.
    Cooke R. V., Smalley I. J., Nature, 1968, 220:1226~1227.
    Deb D. L., Datta N. P., effect of associating anions on phosphorus retention in soil: Ⅰ. Under variable phosphorus concentration[J]. Plant and Soil, 1967, 26:303~316.
    Ehrlish H. L., Geomicrobiology: its sigrifi for geology[J]. Earth Science Reviews, 1998, 45:45~60.
    Gwiazda R. H., Broecker W. S. The separate and com bined effects of temperature, soils pCO_2, and organic acidity on silicate weathering in the soil environment: Formulation of a model and results[J]. Global Biogeochem Cycles, 1994, 8:141-155.
    Hamdan J., Burnham C. P., The contribution of Nutrients from parent material in three deeply weathered soils of Peninsular Malsysia[J]. 1996, 74:219~233.
    Harter R. D., "Reactions of Minerals with Organic Compounds in the Soil." in Dixon J. B. and Weed S. B., Eds., Minerals in soil Environments, Soil Science Society of America, Madison, Wisc, 1977:
    
    709~739.
    Irfan T. Y. and Dearman W. R. The engineering petorgraphy of a weathered granite in Gorowall, England[J]. Quarterly Journal of Engineering Geology, 1978, 11:233~244.
    Irfan T. Y. Mineralogy and Fabric Characterization and Classification of Weathered Granitic Rock in HongKong[M]. Hong Kong: Special Project Report, SPR 3/94. Geochemical Engineering office, Civil Engineering Department, 1994, 1~120.
    Irfan T. Y. Mineralogy, Fabric properties and classification of weathered granites in HongKong[J]. Quarterly Journal of Engineering in Geology, 1996, 29:5~35.
    Jacobson M. C., Charlson R. J., Rodhe H. et al., Earth System Science[M]. San Diego: Academic press, 2000.
    Jenkins-K. A., Smith B. J., Daytime rock surface temperature variability and its implications for mechanical rock weathering. Tenerife, Canary Islands, Catena, 1990, 17(2):449~459.
    Katz A. J., Thompson A. H., Fractal sandstone pores: implication for conductivity and pore formation[J]. Phys. Rev. Lett., 1985, 54(12):1325~1328.
    Kump L. R., Brantley S. L. and Arthur M. A. Chemical weathering, atmospheric CO_2, and climate[J]. Earth Planet. Sci., 2000, 28:611~617.
    Lal R., Soil erosion and land degradation: the global risks[J]. Adv. Soil Sci., 1990, 11:169~172.
    Lockwood P. V., Mcgarily J. W. and Charley J. L. Measurement of chemical weathering rates using natural chlorides as a tracer[J]. Geoderma, 1995, 26:2971~2978.
    Lucas Y. The role of plants in controlling rates and products of weathering: importance of biological pumping[J]. Annu. Rev. Earth Planet. Sci., 2001, 29;135~163.
    Macauley S. E., Depaolo D. J. the marine (87)~Sr/(86)~Sr and (18)~O records, Himalayan alkalinity fiuxes, and Cenozoic Climate models, In: Tectonic Uplift and climate Change(eds. By Ruddiman. W. F.). Plenum Press, 1997.
    Mandelbrot B. B. Fractai: from, chance and Dimension[M]. san Feancisco: Freeman, New York, 1977.
    Mandelbrot B. B., The Fraction Geometry of Nature[M]. Freeman. San Franssco, 1982.
    Mast M. A., Drever J. I. and Baron J. Chemical weathering in the loch vale watershed, Rocky Mountain National Park, Colarado[J]. Water Resource Res., 1990, 26:2971~2978.
    Mellor M. Phase composition of pore water in cold rocks[R], research Report of CRREL, 1970, 292:61~65.
    Meybeck M. Global chemical weathering of surficial rocks estimated from river sissolved loads. American Journal of Science, 1987, 287:401~428.
    Nagarajah S., Posner A. M. and Quirk J. P., Desorption of phosphate from kaolinite by citrate and bicarbonate[J]. Soil Sci. Soc. Am. Proc., 1968, 32:507~510.
    
    
    Nesbitt H. W. Markories G. Price R. C. Chemical processes effecting alkalis and alkaline earth during continentnl weathering[J]. Geochimica et Coan. Chimica Acta 1980, 44:1659~1666.
    Nesbitt H. W., Young G. M., Early Proterozoin climate and plate motions inferred from major element chemistry of lutites[J]. Nature. 1982, 299:715~717.
    Owens L. B. and Waston J. P., Rates of weathering and soil formation on granite in Rhodesia[J]. Soil Sci. Soc. Am. J., 1979, 43:160~166.
    Peter W. Birkeland Soil and Geomorphology[M]. Oxford University Press 1984.
    Robert C., Chamley H. Cenozoic evolution of continental humidity and paleoe environment, deduced from the kaolinite content of oceanic sediments[J]. Paleogeogr. Paleoclimat. Paleoecol., 1987, 60:171~178.
    Rorira A. D., Mcdougall B. M., Soil Biochemistry[M]. 1967.
    Rozanov B. G., Human impacts on the evolution of soils under various ecological conditions of world. Trans of 14th. ICSS, Kyoto, 1990:53~62.
    Russell M. B., Feng C. L. Characterization of the stability of soil aggregates[J]. Soil Sci., 1947, 63:299~304.
    Ruxton D. P. Measures of the degree of chemical weathering of rocks[J]. Journal of Geology, 1968, 76:518~527.
    Salako F. K., Babalola O., Hauset S., et al. Soil macto aggregate stability under different fallow management systems and cropping intensities in south western Nigeria[J]. Geoderma, 1999, 91:103~123.
    Schulten H. R., Leinweber P., Thermal stability and composition of mineral-bownd organic matter in density fractions[J]. Siol Sci., 1999, 50:237~248.
    Schwartzman D. W., Volk T. Biotic enhancement of weathering and surface temperatures on Earth since the origin of life[J]. Paleogeogr. Paleoclimat. Paleoecol., 1991, 90:357~371.
    Shnitzer M. and Kodama H., "Reactions of Minerals with Soil Humic Substances," in Dixon J. B. and Weed S. B., Eds., Minerals in soil Environments, Soil Science Society of America, Madison, Wisc, 1977:741~770.
    Smith R. A., Alexander. R. B. and Wolman M. G., Water-quality trends in the nation's Rivers[J]. Science(Washington, DC) 1987(235):1607~1615.
    Soler J. M. and Lasaga A. C. The los pijiguaos bauxite deposit (Venezuela): A compilation of field data and implications for the bauxitization process[J]. Journal of South American Earth Science, 2000, 13(1-2):47~65.
    Theng B. K. G, The Chemistry of clay-organic Reactions, Hilger, London, 1974.
    Theng B. K. G, Formation and Properties of clay-polymer Complexes, Hilger, London, 1979.
    Thomas M. L., Lal R., Logan T., et al. Land use and management effects on nonpoint laoding from
    
    Miamian soil[J] Soil Sci. Am. J. 1992, 56:1871~1875.
    Thorp J. Geography of the soils of China[M], The National Geological Surrey of China Nanking, China 1936.
    Trudgill S., Soil and vegetation system[M]. Oxford: oxford University Press, 1977:102~165.
    Trudgill S. T., Limestone Geomorphlogy[M]. New York Longman Inc, 1985.
    Turcotte D. L., J. Geophys Res., 1986, 91:1921~1926.
    Violante A., Colombo C. and Buondonno A., Competitive adsorption of phosphate and oxalate by aluminum oxides[J]. Soil Sci. Soc. Am. J. 1991, 55:65~70.
    Violante A., Gianfreda L., Competition in adsorption between phosphate and oxalate on an aluminum hydroxide montmoriuonite complex[J]. Soil Sci. Soc. Am. J. 1993, 57:1235~1241.
    Vancura V., Hovasik A., Root exudates of plants, Composition of root exudates of sone vegetables[J]. Plant and Soil, 1965, 23:21.
    Velbel M. A. Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge[J]. Am. J. Sci., 1985, 285:904~930.
    Velbel M. A., Influence of temperature and mineral surface characteristics on feldspar weathering rates in natural and artificial system: a first approximation[J] Water Resource Res., 1990, 26:3049~3053.
    Wakatsuki T, Rasyidin A. Rates of weathering and soil formation. Geoderma, 1992, 52(3-4):251~263.
    Wang X. J. and Gong Z. T., Ecological effects of different land use patterns in ked soil hilly region[J]. Pedosphere, 1995, 5(2):163~170.
    Wellman H. W., Wilson A. T. Nature, 1965, 205:1097~1098.
    2000(1):1~13.
    1989(1):17~26.
    1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700