用户名: 密码: 验证码:
SrO·6Fe_2O_3磁性丁腈橡胶的摩擦、磨损机理与热氧老化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁腈橡胶(NBR)是一种非常重要且用量很大的工业材料,其具有优良的耐油、耐热和耐腐蚀性。丁腈橡胶密封件广泛应用于机械、电子、交通、石油化工、冶金、航空等领域。在高速、高低温、强腐蚀等恶劣工况下,性能不断提高的各种机械电子设备对橡胶密封件的性能要求也日益严格。为了提高密封件的工作能力,除了要考虑密封材料必须的力学性能、弹性和耐油性外,还必须最大限度地提高材料的抗磨、减摩性能,掌握橡胶密封制品的贮存寿命和使用寿命,以及了解密封用橡胶材料的评价指标,从而进行不同密封用橡胶材料之间或同一种密封用橡胶材料不同性能之间的发展程度的比较,最终选择出最适合使用条件的橡胶材料。
     本研究课题在总结了前期对填充0%~16%Fe_3O_4的丁腈橡胶的研究,以及调研了国内、外橡胶密封现状和发展的基础上,提出了应用具有尺寸小、比表面积大、表面间形态不同于颗粒内部、表面原子配位不全、表面活性强等特性的纳米磁性粒子对广泛应用的丁腈橡胶进行改性。通过干法混炼制备了纳米SrO·6Fe_2O_3磁性复合丁腈橡胶。
     试验表明,当丁腈橡胶填充少量未经分散和表面改性处理的纳米SrO·6Fe_2O_3磁性粒子后,丁腈橡胶的摩擦系数有一定的降低,且在10%时达到最小值。此后加大磁性粒子填充量,试样的摩擦系数值明显大于纯NBR。而且纳米SrO·6Fe_2O_3磁性粒子在丁腈橡胶材料中的质量分数不同,材料的磨损形式也不同。随着填充质量分数的增加,材料的磨损形式由犁削和粘着磨损逐步转变为粘着、疲劳剥落。当填充质量分数超过15%后,由于大量磁性粒子的团聚,使得抗磨减摩效果并不明显。磨损量出现了与摩擦系数同样的变化过程。而填充经过分散和表面改性处理的纳米SrO·6Fe_2O_3磁性粒子后,不论填充量的大小,均使得丁腈橡胶的摩擦系数和磨损量均有了大幅度的降低,且在10%时摩擦系数达到最小值0.2069。这是因为经过分散和表面改性处理的纳米SrO·6Fe_2O_3磁性粒子不仅能稳定地保持单个颗粒存在而不发生团聚,且与丁腈橡胶基体的亲和性增强,从而均匀地分散在丁腈橡胶基体内,而且每个颗粒仍能保持很高的表面能与表面活性,因而其有利于加强丁腈橡胶在摩擦副表面上形成物理吸附膜,该物理吸附膜在摩擦表面具有自修复功能,从而起到了抗磨减摩作用。
     本研究课题通过对磁性SrO·6Fe_2O_3丁腈橡胶复合材料进行热氧老化试验研究,利用高分子材料性能变化与老化时间关系式及阿累尼乌斯方程进行了理论推导和数学计算,分别得到了磁性橡胶密封材料在贮存温度下的伸长率保持率与贮存时间、温度的变化规律,以及磁性橡胶密封件在贮存温度下的压缩永久变形与贮存时间、温度的变化规律,建立了其在贮存温度下性能与时间变化的预测方程,预测了该密封材料的贮存以及使用寿命。对以伸长率保持率和压缩永久变形预测贮存和使用寿命结果的进行对比后发现,当纳米SrO·6Fe_2O_3磁性复合丁腈橡胶用于制作动密封件时,具有较低的摩擦系数;用于制作静密封件时,具有较高的寿命。通过讨论可知,橡胶材料的老化对静密封件的使用寿命起到了决定性作用,而橡胶与金属接触面之间的摩擦系数对动密封件的使用寿命起到了决定性作用。
     本研究课题基于密封用橡胶材料的使用和评价特点,建立了评价指标体系流程,并明确了评价目的;分析了评价的主要内容为橡胶材料的配方构成、基本性能状况、摩擦磨损情况、老化现象、特殊性能、以及使用经济性等方面;确定了评价指标选取的原则,即科学性、简洁有效性、普遍性、定性指标与定量指标相结合、连续性原则;明确了评价指标体系的功能,即评价功能、监测功能、指导功能、决策功能;建立了评价指标体系。通过实例分析可知此评价指标体系能够对不同密封用橡胶材料之间或同一种密封用橡胶材料不同性能的发展程度的进行比较,从而实现密封用橡胶材料科学、合理发展的评价目的。
     本研究课题设计了采用纳米磁性橡胶的轴封组合机构,其不仅具备较低的摩擦因数和磨损率,而且有良好的自修复能力和自密封性能,有效地提高了轴封的密封能力。通过仿真与试验发现,后唇角对油封的稳定性起着重要作用,当系统压力较大时,后唇角宜取较小的值,系统压力较低时,后唇角可以适当取大点。最后简单讨论了纳米SrO·6Fe_2O_3磁性复合丁腈橡胶在密封中的应用以及使用分类情况。
Nitrile-buladiene rubber (NBR), which has excellent characters of oil, heat and corrosion resistance, is a very important kind of industrial materials and has large dosage. NBR seals are widely used in machinery, electronics, transportation, petrochemical, metallurgical, aviation, and so on. With the improving of the properties of mechatronic equipments, the properties of rubber seals are increasingly stringent required under bad conditions of high speed, high-low temperature, deep-etching, and so on. In order to improve the working abilities of seals, the necessary properties of the rubber seals, such as mechanical properties, spring and oil resistance, should be considered, the wear-resistant and antifriction properties of materials must be improved farthest, the storage life and working life of the rubber seals should be mastered, and the evaluating indicators of the rubber materials for sealing should be understood, which could compare the development level of each property in different materials or different properties in same material, so that the most suitable rubber material for working conditions is finally chosen.
     Based on the summary of early study on Fe_3O_4 magnetic nitrile-buladiene rubber of which the mass percent of Fe_3O_4 particles is controlled at 0%~16%, and the investigation of the actual and new progress about oversea and domestic rubber seals, in this research topics, application of nanometer technique in nitrile-buladiene rubber was put forward, because the nano-particles possess some unique advantages, such as small size, big specific surface area, different shape between the surface and the inside particle, defective coordination of surface atoms, strong surface active. Then nano-SrO·6Fe_2O_3 magnetic nitrile-buladiene rubber (nano-SrO·6Fe_2O_3 MNBR) was prepared through dry process.
     The test results show that the friction coefficient of the NBR added a few unmodified nano-SrO·6Fe_2O_3 particles would have certain reduction, and reached the minimum at 10%. After that, the friction coefficient of the samples would be evidently lager than the NBR by increasing the mass percent of nano-SrO·6Fe_2O_3 particles. And because the mass percent of nano-SrO·6Fe_2O_3 was different, the wearied forms of the rubber materials were different. The wear forms of materials were changed from the ploughing and adhesive wear to the adhesive and fatigue flake. When the mass percent of nano-SrO·6Fe_2O_3 exceeded 15%, the wear-resistant and antifriction effect was unconspicuous because a large number of magnetic particles was in the reunion. The abrasion loss had the same variation. However, the friction coefficient and abrasion loss of the NBR added modified nano-SrO·6Fe_2O_3 particles would be reduced by a large margin, and the friction coefficient reached the minimum 0.2069 at 10%. Why did this phenomena appear? First, the modified nano-SrO·6Fe_2O_3 particles not only existed in individual steadily, but also had a strong affinity with NBR, which uniformly scattered themselves on the NBR; secondly, each particle could still remain strong surface energy and surface active; thirdly, such magnetic particles was propitious to strengthen NBR, and then the compounded rubber could form a physisorption film on the surface of rubbing pair that had self-repairing capability, which played a role in wear-resistant and antifriction effect.
     This research topics did accelerated thermal-oxygen aging test for nano-SrO·6Fe_2O_3 MNBR. Through theoretical derivation and mathematical computation of the Arrhenius equation and the relational expression between performance changes and aging time of polymer materials, two kinds of evolution were obtained. One was the relational expression among the three factors which are elongation retention, period of storage and storage temperature in the storage temperature for magnetic rubber sealing materials; the other was the relational expression among the three factors which are compression set, period of storage and storage temperature in the storage temperature for magnetic rubber seals. Then the predictive equation between performance and time in the storage temperature was established, and the storage life and working life of the sealing materials was forecasted. Compare these two forecast results of life, it can be found that dynamic seals of nano-SrO·6Fe_2O_3 MNBR had lower friction coefficient, and static seals of nano-SrO·6Fe_2O_3 MNBR had longer life. From discussion, it can be known that the aging of rubber materials played a pivotal role in the working life of static seals, and the friction coefficient between rubber materials and metal surfaces played a pivotal role in the working life of dynamic seals.
     In this research topics, according to the characteristics of use and evaluation of rubber materials for sealing, the construction flow of evaluation index system was established, the purposes of evaluation were defined, and the contents of evaluation, such as constitution, basic performance status, friction and wear, aging, special features, and use economy, was analysed. Based on the principles of scientific, simple and effective, universal, qualitative and quantitative, and continuity, and considering the functions of evaluation, monitoring, guidance, and decision-making, the evaluation index system was established. Through the case study, it can be known that the evaluation index system could compare the development level of each property in different materials or different properties in same material, so that the purpose of evaluation making rubber materials for sealing achieve scientific and reasonable development could be realized.
     A kind of shaft seal composite structure adopting nano-SrO·6Fe_2O_3 MNBR was designed in this research topics. This structure had not only lower friction coefficient and abrasion loss, but also better self-repairing and self-sealing capability, which enhanced the sealing capability effectively. The simulation and experimental results showed that the posterior lib angle played an important role for the stability of oil seal. The value of the posterior lib angle should be smaller as the pressure of system was higher. The value of the posterior lib angle should be larger as the pressure of system was lower. At last, the applications and classified information of nano-SrO·6Fe_2O_3 MNBR in sealing structure was simply discussed.
引文
[1]布赖德森J A (英)著,王梦蛟,戴耀松,曾泽新,涂学忠译.橡胶化学[M].北京:化学工业出版社, 1985.
    [2]张嗣伟.橡胶磨损原理[M].北京:石油工业出版社, 1998.
    [3]胡志孟,赖世全,李同生.凹凸土/丁腈橡胶纳米复合材料的制备与性能[J].弹性体, 2004, 14(3): 39-42.
    [4]周扬波,古菊,贾德民,等.改性纳米碳酸钙对丁腈胶的补强作用[J].弹性体, 2004, 14(3): 35-38.
    [5]周扬波,古菊,贾德民.纳米碳酸钙的表面改性及其在橡胶中的应用[J].特种橡胶制品, 2004, 25(3): 54-58.
    [6] Liu T G, Cheng Y S, Yang Z Y. Design optimization of seal structure for sealing liquid by magnetic fluids [J]. Journal of Magnetism and Magnetic Materials, 2005, 289: 411-414.
    [7]黄远红,胡文军,郭静,马艳.橡胶密封材料的渗水性和透气性研究[J].橡胶工业, 2004, 51(3): 176-178.
    [8]马琳,姜蔚,赵崇洲.耐高温滑油丁腈橡胶胶料的研制[J].特种橡胶制品, 2004, 25(6): 27-29.
    [9]李隽,金叶玲.凹凸棒石粘土补强橡胶研究[J].广西轻工业(化工与材料), 2007, (10): 27, 72.
    [10]韩晶杰,何雪莲,李秋影,等. HAF/NR复合材料中填料/基体界面相互作用的控制及其对橡胶补强的影响[J].华东理工大学学报(自然科学版), 2008, 34(5): 680-683.
    [11]黄安民,王丹丹,王小萍,等.补强剂填充HNBR胶料的结构和性能[J].橡胶工业, 2008, 55(2): 69-74.
    [12]魏元生,汪艳,戚欢.纳米粒子在氯丁橡胶中的作用[J].弹性体, 2009, 19(1): 26-28.
    [13]王振华,卢咏来,张立群.纳米氧化锌/EPDM复合材料的性能研究[J].橡胶工业, 2009, 56(10): 581-587.
    [14]孙良栋,宋国君,李培耀,等. NR/BR/OMMT纳米复合材料的研究-复合材料的制备与表征[J].弹性体, 2009, 19(3): 23-26.
    [15]武卫莉,孙佳俊.新型白炭黑改性橡胶研究[J].弹性体, 2009, 19(4): 44-47.
    [16]杨树颜,贾志欣,罗远芳,等.埃洛石纳米管/甲基丙烯酸锌并用补强SBR的研究[J].橡胶工业, 2009, 56(8): 453-458.
    [17]李咏今.硫化橡胶热老化时物理机械性能变质规律研究[J].特种橡胶制品. 1997, 18(1): 42-51.
    [18]张发源. SF-3硅橡胶硫化胶的老化[J].特种橡胶制品, 1998, 19(3): 44-48.
    [19]熊渲.硅橡胶密封材料贮存寿命的预测[J].宇航材料工艺, 1996, 26(2): 83-87.
    [20] Rodionova O Y, Pomerantsev A L. Prediction of rubber stability by accelerated aging test modeling [J]. Journal of Applied Polymer Science, 2005, 95(5): 1275-1284.
    [21] Frost N E, Xu G, McGrath P B, et al. An examination of the environments for aging of polymers [A]. IEEE 1997 Annual Report conference on Electrical Insulation and Dielectric Phenomena [C]. Minneapolis, MN, USA, 1997, Oct. 19-22, 1: 354-357.
    [22] Koo J Y, Kim I T, Kim J T, et al. An experiment investigation on the degradation characteristic of the outdoor silicone rubber due to sulfate and nitrate ions [A]. IEEE 1997 Annual Report Conference on Electrical Insulation and Dielectric Phenomena [C]. Minneapolis, MN, USA, 1997, Oct. 19-22, 2: 370-373.
    [23] Mott P H, Roland C M. Aging of Natural Rubber in Air and Seawater [J]. Rubber Chemistry and Technology, 2001, 74: 79-88.
    [24] Kumar K, Rana S K. Mechanical Properties and Aging Behaviour of Styrene-butadiene-vinyltriethoxysilane Coupled Carbon Black Vulcanizates [J]. Iranian Polymer Journal, 2002, 11(5): 287-293.
    [25] Ngolemasango E F, Bennett M, Clarke J. Kinetics of the effect of ageing on tensile properties of a natural rubber compound [J]. Journal of Applied Polymer Science, 2006, 102(4): 3732-3740.
    [26] Gillen K T, Clough R L, Celina M, et al. DOE-Sponsored cable aging research at sandia national laboratories [R]. Albuquerque: Sandia National Laboratories, 1995.
    [27] Gillen K T, Wise J, Celina M, et al. Evidence that Arrhenius high-temperature aging behavior for an EPDM O-ring does not extroplate to lower temperatures [R]. Albuquerque: Sandia National Laboratories, 1997.
    [28]郭洪达.评价影响丁苯橡胶硫化胶性能的因素[J].合成橡胶工业, 1995, 18(5): 297-301.
    [29]阎家宾.含有改性废胶粉的橡胶性能之评价[J].世界橡胶工业, 2006,33(12): 12-13.
    [30]高亚娟,赵选勃,王文昌. GIS用三元乙丙、丁腈、氯丁橡胶O形密封圈物理性能比较分析[J].高压电器, 2008, 44(2): 118-125.
    [31]刘文光,韩强,杨巧荣,等.建筑橡胶支座拉伸性能的计算模型与评价准则[J].沈阳建筑大学学报(自然科学版), 2005, 21(5): 499-502.
    [32]孙常胜,刘建伟,张晖,等.丁腈橡胶N41的性能评价[J].合成橡胶工业, 2001, 24(4): 201-203.
    [33]石拓,金荣福.论高分子材料的加速老化[J].高分子材料科学与工程, l990, 6(5): 9-l2.
    [34] Hashiguchi T, Otsubo M,Yamashita S, et al. Multi aging test for polymer materials [A]. 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena [C], Ontario, Canada, 2001, Oct. 14-17, 601-604.
    [35]包伟国,薛育龙,杨旭东.聚丙烯土工合成材料的老化与防老化[J].上海纺织科技, 2004, 32(4): 40-41.
    [36]王士财,李宝霞. PVC/ABS共混材料老化及其防老化研究[J].塑料, 2004, 33(4): 54-57.
    [37]周大纲.土工合成材料光氧老化与防老化技术[J].上海塑料, 1999, (3): 3-7.
    [38] Shimono Y, Otsubo M, Honda C. Changs of properties of polymer insulating materials under accelerated aging test [A]. Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials [C]. Seoul, South Korea, 1997, May 25-30, 1: 294-297.
    [39]申屠宝卿,解孝林,蔡启振. ABS的老化及其防老化[J].工程塑料应用, 1997, 25(1): 53-56.
    [40]刘绍基.高分子老化与防老化[J].腐蚀与防护, 1994, 15(1): 46-50.
    [41]王俊,揭敢新.高聚物的老化实验[J].装备环境工程, 2005, 2(3): 47-53.
    [42]高晓敏,何舟,杨雪海.部分高分子材料老化研究进展[J].合成材料老化与应用, 2005, 34(1): 39-43.
    [43]化学工业部合成材料老化研究所.高分子材料老化与防老化[M].北京:化学工业出版社, 1979.
    [44] Frost N E, McGrath P B. Effects of environments on aging of polymer materials [A]. 1998 Annual Report Conference on Electrical Insulation and Dielectric Phenomena [C]. Atlanta, GA , USA, 1998, Oct. 25-28, 2: 690-693.
    [45]方德声.中国纳米功能材料研究的七大成果[J].科学, 1999, 2: 64.
    [46]赵光贤.橡胶的补强[J].橡塑技术与装备, 2007, 33(4): 23-27.
    [47] Liu C, Shao Y, Jia D M. Chemically modified starch reinforced natural rubbercomposites [J]. Polymer, 2008, 49(8): 2176-2181.
    [48] Zhou W Y, Qi S H, Zhao H Z, et al. Thermally conductive silicone rubber reinforced with boron nitride particle [J]. Polymer Composites, 2007, 28 (1): 23-28.
    [49] Ahmad I, Hassan F M. Preparation of Unsaturated Polyester Liquid Natural Rubber Reinforced by Montmorillonite [J]. Journal of Reinforced Plastics and Composites, 2010, 29 (18): 2834-2841.
    [50]徐春燕,吴友平,赵素合,等.白炭黑增强偶联型溶聚丁苯橡胶的性能[J].合成橡胶工业, 2009, 32(3): 201-205.
    [51]杨清芝.现代橡胶工艺学[J].北京:中国石化出版社, 1997.
    [52]张苏,钱家盛,章于川.纳米粉体在橡胶补强作用中的应用[J].现代橡胶技术, 2009, 35(1): 12-15.
    [53]张立群,吴友平,王益庆.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业, 2000, 23(2): 71-77.
    [54] Jin F L, Park S J. Thermo-mechanical behaviors of butadiene rubber reinforced with nano-sized calcium carbonate [J]. Materials Science and Engineering A, 2008, 478 (1-2): 406-408.
    [55] Chen Y, Peng Z, Kong L X, et al. Natural rubber nanocomposite reinforced with nano silica [J]. Polymer Engineering & Science, 2008, 48 (9): 1674-1677.
    [56] Kemaloglu S, Ozkoc G, Aytac A. Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites [J]. Thermochimica Acta, 2010, 499 (1-2): 40-47.
    [57]郑秋红,刘丰,李小红,等.可分散性纳米二氧化硅补强硅橡胶的性能[J].高分子材料科学与工程, 2007, 23(3): 139-142.
    [58]李昂.磁粉与磁性橡胶[J].特种橡胶制品, 2003, 24(3): 24-28.
    [59] Gleiter H. Nanostructured materials: basic concepts and microstructure [J]. Acta Materialia, 2000, 48: 1-29
    [60]许轶,李忠明.磁性橡胶的研究进展[J].广东橡胶, 2006, 3: 14-20.
    [61] Roth F L, Driscoll R L, Holt W L. Frictional properties of rubber [J]. Journal of Research of the National Bureau of Standards, 1942, 28: 439.
    [62] Cooper R P, Ellis B. The effects of run-in on rubber friction [J]. Journal of Applied Polymer Science, 1982, 27 (12): 4735-4744.
    [63] Ellis B. Run-in effects on rubber friction [J]. Wear, 1984, 93 (1): 111-113.
    [64] Moore D F. The Friction and Lubrication of Elastomers [M]. New York : Pergamon Press, 1972.
    [65] Pascoe M W, Tabor D. The friction and deformation of polymers [J]. Procceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 1956, 235 (1201): 210-224.
    [66] Savkoor A R. On the friction of rubber [J]. Wear, 1965, 8 (3): 222-237.
    [67] Hatfield M R, Rathmann G B. Application of the absolute rate theory to adhesion [J]. The Journal of Physical Chemistry, 1956, 60 (7): 957-961.
    [68] Schallamach A. Friction and abrasion of rubber [J]. Wear, 1958, 1 (5): 384-417.
    [69] Schallamach A. On the abrasion of rubber [J]. Proceedings of the Physical Society. Section B, 1954, 67 (12): 883.
    [70]摩尔D F著,黄文治译.摩擦学原理和应用[M].北京:机械工业出版社, 1982.
    [71] Rowe G W. Friction, Wear and Lubrication Terms and Definitions [M]. Organization for Economic Cooperation and Development, Birmingham, Gt. Britain, 1966.
    [72] ASTM G40-82, Standard Terminology Relating to Erosion and Wear [S].
    [73] Peterson M B, Winer W O主编,汪一麟主译.磨损控制手册[M].北京:机械工业出版社, 1994.
    [74] Czichos H. Tribology: A Systems Approach to the Science and Technology of Friction, Lubrication, and Wear [M]. Amsterdam: Elsevier, 1978.
    [75] Burwell J T. Survey of possible wear mechanism [J]. Wear, 1957, 1 (2): 119-141.
    [76] Moore D F. Some observations on the interrelationship of the friction and wear in elastomers [A]. The Wear of Non-metallic Materials [M], Dowson D, Godet M and Taylor C M(eds), London: Mechanical Engineering Publication Ltd., 1978, 141.
    [77] Moore D F. Friction and wear in rubbers and tyres [J]. Wear, 1980, 61 (2): 273-282.
    [78] Kragelskii I V. The wear of type tread rubbers [J]. Soviet Rubber Technology, 1959, 18(11): 22.
    [79]李凤生,崔平,杨毅,等.微纳米粉体后处理技术与应用[M].北京:国防工业出版社, 2005.
    [80]余红雅,刘正义,曾德长,等.各向异性永磁锶铁氧体的晶粒取向与磁性[J].北京科技大学学报, 2008, 30(5): 537-539, 557.
    [81]张凯,黄渝鸿,马艳,等.橡胶材料加速老化试验及其寿命预测方法[J].化学推进剂与高分子材料, 2004, 2(6): 44-48.
    [82] Woo C S, Choi S S. Heat-Aging Effect on the Material Properties and Useful Life Prediction of Rubber Materials [J]. Key Engineering Materials, 2007, 353-358: 2640-2643.
    [83]施纳贝尔W.聚合物降解原理及应用[M].北京:化学工业出版社, 1988: 2-4.
    [84] Schoch M G, Juve A E. The Effect of Temperature on the Air Aging of Rubber Vulcanizates [M]. ASTM STP, 1949, (89): 59-72.
    [85] Youmans R A, Maassen G C. Correlation of Room Temperature Shelf Aging with Accelerated Aging [J]. Industrial & Engineering Chemistry, 1955, 40(7): 1487-1490.
    [86] Paeglis A U. A simple model for prediction heat aging of EPDM rubber [J]. Rubber Chemisty and Technology, 2004, 77(2): 242-256.
    [87] Gillen K T, Celina M. The wear-out approach for predictingthe remaining lifetime of materials [J]. Polymer Degradationand Stability. 2001, 71(1): 15-30.
    [88] Fonseea O A, Witczak M W. A prediction methodology for the dynamic modulus of in-placed aged asphalt mixtures [J]. Journal of the Association of Asphalt Paving Technologists, 1996, 65(2): 234-245.
    [89] Pellinen T K, Witczak M W, Bonaquist R F. Asphalt mix master curve construction using sigmodial fitting function with non-linear least squares optimization technique [A]. 15th ASCE Engineering Mechanics Conference[C]. America: Columbia University, 2002.
    [90]陈玉波,汤建湘,张永敬.火箭发动机橡胶件贮存寿命的蒙特卡罗仿真[J].上海航天, 1999, 16(5): 33-36.
    [91]方庆红,连永祥,赵桂林,等.基于BP人工神经网络的橡胶老化预测模型[J].合成材料老化与应用, 2003, 32(2): 27-30.
    [92]欧阳文,赵耀明.人工神经网络用于高分子材料的性能预测与优化设计的研究进展[J].计算机与应用化学, 2001, 18(2): 131-134.
    [93]李咏今.现行橡胶及其制品贮存期快速测定方法的可靠性研究[J].橡胶工业, 1994, 41(5): 289-296.
    [94]李咏今.橡胶热老化定量和定性评定方法研究的进展[J].特种橡胶制品, 1996, 17(6): 40-46.
    [95]魏莉萍,唐磊,林景雪,等.热重点斜法估算硫化橡胶老化寿命[J].橡胶工业, 2001, 48(3): 174-176.
    [96] LaCount B J, Castro J M, Ignatz-Hoover F. Development of aservice-simulating accelerated aging test method for exterior tire rubber compounds II. Design and development of an accelerated outdoor aging simulator [J]. Polymer Degradation and Stability, 2002, 75(2): 213-227.
    [97] Gillen K T, Celina M, Bernstein R. Validation of improved methods for predicting long-term elastomeric seal lifetimes from compression stress relaxation and oxygen consumption techniques [J]. Polymer Degradation and Stability, 2003, 82(1): 25-35.
    [98] Hu H. The equivalence of moisture and temperature in physical aging of polymeric composite [J]. Rubber Chemistry and Technology, 2003, 76(4): 785.
    [99]范刚.车用橡胶制品老化问题研究[J].汽车科技, 2003, (1): 16-17, 27.
    [100]王思静,熊金平,左禹.橡胶老化机理与研究方法进展[J].合成材料老化与应用, 2009, 38(2): 23-33.
    [101]朱绪飞,文威,贾红兵,等.电容器密封橡胶及其老化机理[J].弹性体, 2002, 12(1): 58-62.
    [102]金冰,胡小锋,魏伯荣,等.天然橡胶的热氧老化研究[J].广州化工, 2006, 34(6): 32-33.
    [103]Dutta N K, Tripathy D K. The influence of curing systems on the properties of bromobutyl rubber: Part2-Effect of concentration of curing resin on the dynamic mechanical properties[J].Polymer Degradation and Stability, 1990, 30(2): 231-256.
    [104]Garbarczyk M, Kuhn W, Klinowski J, et al. Characterization of aged nitrile rubber elastomers by NMR spectroscopy and microimaging [J]. Polymer, 2002, 43(11): 3169-3172.
    [105]刘洪涛,张华,向明,等. ENG、MG塑炼胶的热氧老化性能研究[J].合成材料老化与应用, 2007, 36(1): 5-7.
    [106]张北龙,刘惠伦.环氧化天然橡胶/PVC共混物的热氧降解[J].橡胶工业, 2001, 48(6): 330-333.
    [107]付秋兰,吴向荣,温茂添.缩合型室温硫化硅橡胶耐热性的研究发展[J].有机硅材料, 2003, 17(1): 28-31.
    [108]谢择民,李其山,王金亭.改进硅橡胶耐热性的研究[J].特种橡胶制品, 1981(2): 1.
    [109]Radhakrishnan T S. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies:Thermal degradation of polydimethylsiloxanes[J]. Journal of Applied Polymer Science, 1999, 73(3): 441-450.
    [110]Grassie N, Macfarlane I G. The thermal degradation of polysiloxanes.I. Poly (dimethylsiloxane) [J]. European Polymer Journal, 1978, 14(11): 875-884.
    [111]Grassie N, Macfarlane I G, Francey K F. The thermal degradation of polysiloxanes.II. Poly (methylphenylsiloxane) [J]. European Polymer Journal, 1979, 15(5): 415-422.
    [112]Deshpande G, Rezac M E. The effect of phenyl content on the degradation of poly (dimethyl diphenyl) siloxane copolymers[J]. Polymer Degradation and Stability , 2001, 74(2): 363-370.
    [113]张凯,范敬辉,吴菊英,等.硅橡胶泡沫材料的热氧老化机理研究[J].合成材料老化与应用, 2007, 36(3): 18-21.
    [114]程买增,胡新嵩,莫万奎.室温硫化硅橡胶耐热性的研究进展[J].有机硅材料, 2006, 20(1): 38-41.
    [115]Patel M, Skinner A R. Thermal ageing studies on room-temperature vulcanised polysiloxane rubbers [J]. Polymer Degradation and Stability, 2001, 73(3): 399-402.
    [116]Kader M A, Bhowmick A K. Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates [J]. Polymer Degradation and Stability, 2003, 79(2): 283-295.
    [117]Goga N O, Demco D E, Kolz J, et al. Surface UV ageing of elastomers investigated with microscopic resolution by single-sided NMR [J]. Journal of Magnetic Resonance, 2008, 192(1): 1-7.
    [118]齐藤孝臣.各种橡胶的老化机理[J].橡胶参考资料, 1996, 26(6): 9-20.
    [119]石勤敏,减学望等编著.材料工艺[M].宇航出版社, 1993.
    [120]鲁蕾,范启胜,刘晓石等.多元统计分析在材料贮存寿命预测中的应用[J].四川大学学报(工程科学版), 2004, 36(3): 115-118.
    [121]陈金爱,钟庆明,陈允保.橡胶0形密封圈的老化寿命试验研究[J].合成材料老化与应用, 1998, (1): 6-12.
    [122]李咏今.橡胶密封零件保存期快速测定方法[J].特种橡胶制品, 1994, 15(6): 50-57.
    [123]销鑫,赵云峰,许文,等.橡胶材料加速老化试验及寿命评估模型的研究进展[J].宇航材料工艺, 2007, (1): 6-10.
    [124]陈旭东,刘林,许家瑞,等.舰船用高性能密封橡胶研究(Ⅲ)氟橡胶硫化胶热老化性能研究[J].弹性体, 2004, 14(6): 16-18.
    [125]禹权,黄承亚,叶素娟.高定伸、低压缩永久变形丁腈橡胶的研究[J].橡胶技术论坛, 2006, 187-188.
    [126]Dakin T W. Electrical Insulation Deterioration Treated as a Chemical Rate Phenomenon [J]. AIEE Transactions, 1948, 67: 113.
    [127]苗蓉丽,朱锋,董占鳌等.某型号前盖密封圈及壳体组件密封圈寿命研究[J].航空兵器, 2002, (3): 21-23.
    [128]Inone P C, Piazza F, Tomioka J, et al. Natural and Accelerated Aging of Non-Ceramic Insulators: Leakage Current and surface Characterization [J]. Proceeding of the 7th International Conference on Properties and Applications of Dielectric Materials. Nagoya, 2003, June 1-5, 1: 389-392.
    [129]Ehsani M, Borsi H, Gockenbach E, et al. Study of Electrical, Dynamic Mechanical and Surface Properties of Silicone-EPDM Blends [J]. Proceeding of the 2004 IEEE Intemational Conference on Solid Dielectrics. France, 2004, July 5-9, 1: 431-434.
    [130]肖琰.天然橡胶硫化胶的热氧老化研究[D].西北工业大学, 2006.
    [131]Rao S G, Daniel I M, Gdoutos E E. Mechanical Properties and Failure Behavior of Cord/Rubber Composites [J]. Applied Composite Materials, 2004, 11(6): 353-375.
    [132]郭启雯,才鸿年,王富耻,等.材料适用性评价指标体系构建研究[J].材料工程,2009,(9): 9-12.
    [133]Guo W D. Studies on evaluation index system for independent innovation capability of equipment manufacturing industry in China [J]. 2009 6th International Conference on Service Systems and Service Management. 2009, June 08-10, 461-464.
    [134]Zhang Y Y, Yang S S, Dong P. The construction of index system and comprehensive evaluation model based on improved genetic algorithm and fuzzy neural network [J]. Applied Mechanics and Materials, 2010, 20-23: 1229-1235.
    [135]徐灏.密封[M].北京:冶金工业出版社, 2005.
    [136]阿弗鲁辛科БХ(苏),刘耀组译.橡胶密封[M].北京:机械工业出版社, 1983.
    [137]Mohanty A K, Misra M, Drzal L T. Surface modifications of natural fibers and performance of the resulting biocomposites: an overview [J] . Composite Interfaces, 2001, 8 (5) : 313-343.
    [138]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社, 2003, 10.
    [139]Brigadnov I A, Dorfmann A. Mathematical modeling of magneto- sensitive elastomers [J]. International Journal of Solids and Structures, 2003, 40 (18):4659-4674.
    [140]DeSimone A, James R D. A constrained theory of magnetoelasticity [J]. Journal of the Mechanics and Physics of Solids, 2002, 50: 283-320.
    [141]江晓红, Yarmolenko M A, Rogachev A V,等.聚合物复合薄膜改性橡胶表面结构及其摩擦性能研究[J].摩擦学学报, 2007, 27(2): 106-111.
    [142]黄新武,王廷梅,田农,等.芳纶纤维增强丁腈橡胶的摩擦性能[J].合成橡胶工业, 2006, 29(6): 451-453.
    [143]李颖妮.磁性橡胶胶料的混炼工艺与性能[J].世界橡胶工业, 2005, 32(4): 26-30, 61.
    [144] Nishina H. Characteristics and applications of rubber materials for seal Toraibarojisuto [J]. Journal of Japanese Society of Tribologists, 2004, 49(7): 578-584.
    [145]Schadler L S, Brinson L C, Sawyer W G. Polymer Nanocomposites: A Small Part of the Story [J]. JOM Journal of the Minerals, Metals and Materials Society, 2007, 59(3):53-60.
    [146]Brechet Y, Cavaille J Y, Chabert E, et al. Polymer Based Nanocomposites: Effect of Filler-Filler and Filler-Matrix Interactions [J]. Advanced Engineering Materials, 2001, 3(8): 571-577.
    [147]Wu C L, Zhang M Q, Rong M Z, et al. Tensile performance improvement of low nanoparticles filled-polypropylene composites[J]. Composites Science and Technology, 2002, 62(10-11): 1327-1340。
    [148]Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, propertiesand uses of a new class of materials [J]. Materials Science and Engineering, 2000, 28: 1-63.
    [149]Jordana J, Jacob K I, Tannenbaum R, et al. Experimental trends in polymer nanocomposites—a review [J]. Materials Science and Engineering, 2005, 393: 1–11.
    [150]Zhang M Q, Rong M Z, Yu S L, et al. Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites [J]. Wear, 2002, 253(9-10): 1086-1093.
    [151]Shi G, Zhang M Q, Rong M Z, et al. Friction and wear of low nanometer Si3N4 filled epoxy composites [J]. Wear, 2003, 254(7-8): 784-796.
    [152]Cai H, Yan F Y, Xue Q J. Investigation of tribological properties of polyimide/carbon nanotube nanocomposites [J]. Materials Science and Engineering A, 2004, 364 (1-2): 94-100.
    [153]Rong M Z, Zhang M Q, Liu H, et al. Microstructure and tribological behavior of polymeric nanocomposites [J]. Industrial Lubrication and Tribolog, 2001, 53(2): 72-77.
    [154]何世权.纳米Fe_3O_4磁性复合丁腈橡胶的摩擦、磨损性能研究[D]: [兰州理工大学博士学位论文].兰州:兰州理工大学, 2008.
    [155]吴人洁.复合材料[M].天津:天津大学出版社, 2000.
    [156]沈锡华.密封材料手册[M].北京:中国石化出版社, 1991.
    [157]王保森,何红,杨卫民.油封唇口接触压力大小及分布的有限元分析[J].特种橡胶制品, 2007, 28 (2): 39 -42.
    [158]何世权.纳米Fe_3O_4磁性复合丁腈橡胶用做中、高压轴封的研究[J].兰州理工大学学报, 2008 , 34 (2): 65-69.
    [159]吕和祥,蒋和洋.非线性有限元[M].北京:化学工业出版社, 1992: 10-200.
    [160]Oden J T. Finite Element of Nolinear [M]. Continua McGrwaHill, 1982.
    [161]Mooney M. A theory of large elastic deformation [J]. Journal of Applied Physics, 1940, 11 (9): 582 - 592.
    [162]Rivlin R S. Large Elastic Deformation of Isotropic Material.Ⅳ.Further Developments of the General Theory [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 1948, 241 (835): 379 - 397.
    [163]刘令勋,刘英贵.动态密封设计技术[M].北京:中国标准出版社, 1993.
    [164]吴友平,张立群,王一中,等.粘土/羧基丁腈橡胶纳米复合材料的性能研究[J].材料研究学报, 2000, 14(2): 188-192.
    [165]李海红,王鸿灵,阎逢元.二硫化钼填充高岭土聚合物复合材料的摩擦学性能研究[J].润滑与密封, 2007, 32(1): 155-158.
    [166]雷毅,郭建良,张雁翔.纳米氧化锌填充超高分子量聚乙烯复合材料的摩擦磨损性能研究[J].摩擦学学报, 2006, 26(3): 234-237.
    [167]广州机床研究所.摩擦学与密封件[M].北京:机械工业出版社, 1995.
    [168]橡胶工业手册.第五分册.工业、生活及乳胶制品[M].北京:化学工业出版社, 1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700