用户名: 密码: 验证码:
脂肪干细胞向成牙骨质细胞诱导分化的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     牙骨质是牙根表面一薄层矿化组织,在牙齿发育过程中牙骨质基质由成牙骨质细胞分泌而形成的。牙骨质是牙齿赖以稳定在牙槽窝内的重要组织结构之一,在维持牙齿的结构稳定性和生理功能中发挥重要作用。然而,牙骨质的再生往往比较困难的,主要是因为牙骨质中的成牙骨细胞量很少,体外分离培养更加不易。尽管学者们对该领域进行了大量研究,对于成牙骨质细胞的获得,仍局限于牙源性细胞,如牙囊细胞、牙胚来源的上皮根鞘细胞、牙周膜干细胞和颌突间充质细胞等,而这些种子细胞都存在取材受限的缺点。因此,成牙骨质细胞的来源问题在很大程度上制约了组织工程化牙骨质和牙周组织再生的发展。
     脂肪干细胞(Adipose tissue-derived stem cells: ADSCs)由于储备丰富、取材容易、自我增殖和多向分化潜能强等优点,在再生医学中引起许多学者的关注。研究显示,在不同的体外培养环境中,ADSCs可以向成骨细胞、成软骨细胞、心肌细胞、甚至上皮细胞和神经细胞分化,特别是向成骨细胞分化,体外诱导技术比较成熟。成牙骨质细胞与成骨细胞在形态、表型、矿化能力等方面有着诸多相似之处,包括ALP活性、Runx2、I型胶原(Col-I)、骨涎蛋白(BSP)、骨桥蛋白(OPN)、骨钙素(OCN)等表达。因此,只要能够建立合适的体外诱导微环境,ADSCs向成牙骨质细胞诱导分化为在理论上是可行的。
     要建立这样一个局部微环境,也叫干细胞壁龛(stem cell niche),就不得不再回顾一下牙骨质的发生、发育过程。尽管成牙骨质细胞的来源问题还一直存在着学术争论,但大家都一致认为:在上皮根鞘发生断裂后,牙囊细胞与根部牙本质发生接触是成牙骨细胞出现的前提。由此可见,牙本质或牙本质基质成份和牙囊细胞对成牙骨细胞分化必不可少。牙本质非胶原蛋白(dentin non-collagenous proteins: dNCPs)是牙本质基质的主要成分,其中含有大量的糖蛋白、涎蛋白、磷蛋白、蛋白多糖和多种生长因子,被认为在成牙骨质细胞增殖和分化以及生成牙骨质过程中发挥重要的调控作用。且已有研究证实,dNCPs能够诱导牙囊细胞向成牙骨质细胞分化。所以,我们推测牙囊细胞条件培养基和dNCPs可能含有大量的成牙骨质细胞分化所需要的活性因子。
     因此,本实验通过预实验筛选,联合dNCPs和DFCCM建立体外诱导微环境,诱导ADSCs向成牙骨质细胞分化,为牙周组织工程特别是牙骨质组织工程提供新的种子细胞来源与实验方法,并为提示牙骨质发生、发育机制提供实验参考依据。
     材料与方法
     1.SD大鼠ADSCs的体外培养与鉴定
     取出生后6~7天SD仔鼠,脱颈处死,切取腹股沟处脂肪组织,剪碎组织块,消化,离心,去上清,重悬细胞,接种到含10% FBS的DMEM/F12(100μg/ml链霉素和100 units/ml青霉素)培养基、37℃含5%CO2、饱和湿度的恒温培养箱培养。分别从细胞形态、免疫细胞化学、流式以及多向分化潜能等方面对ADSCs进行鉴定。
     2.SD大鼠ADSCs向成牙骨质细胞分化体外诱导条件的初步筛选
     SD大鼠牙囊细胞和根尖牙乳头细胞培养、鉴定与条件培养液的制备:取出生后5天的SD仔鼠,体视显微镜下分离第一磨牙牙胚,分别剥离牙囊组织和切取根尖牙乳头组织。细胞培养与鉴定同上。取第3代牙囊细胞和根尖牙乳头细胞,收集并制备条件培养液。
     SD大鼠ADSCs向成牙骨质细胞诱导分化体外诱导条件的初步筛选:分别用牙囊细胞条件培养基(DFCCM)、根尖牙乳头条件培养基(APCCM)、10μg/ml dNCPs的DMEM/F12(含5%FBS)、10μg/ml dNCPs +DFCCM、10μg/ml dNCPs +APCCM、含5%FBS的DMEM/F12(对照组)培养ADSCs,共6天,每2天换1次液。诱导后对各组进行RT-PCR和Western blotting检测。
     3.SD大鼠DFCCM联合dNCPs诱导ADSCs向成牙骨质细胞诱分化的体外实验
     在实验2筛选的基础上,采用10μg/ml dNCPs +DFCCM诱导ADSCs向成牙骨质细胞分化,分别从细胞形态学、细胞增殖活性、ALP活性、体外矿化能力以及相关基因在蛋白和mRNA水平上的表达变化,对诱导后ADSCs进行鉴定。
     结果
     1.本实验培养的原代ADSCs原代和传代后生长状态良好,免疫细胞化学法检测,胞浆中Vimentin染色呈强阳性, CK染色呈阴性。流式细胞分析结果为: CD29,CD44,CD90,CD105、STRO-1的阳性检出率分别是93.09%、75.11%、90.20%、95.86%、30.09%。ADSCs体外多向分化鉴定结果,成脂诱导油红O染色可见成红色的脂滴颗粒;成骨诱导茜素红染色可见呈红色钙盐沉积;成神经诱导神经元特异性S100蛋白染色为阳性结果。
     2.牙囊细胞和根尖牙乳头细胞体外培养生长良好,免疫化学和流式细胞检测鉴定均较高表达Vimentin、CD29、CD44、CD105和STRO-1。在诱导ADSCs分化实验中,牙骨质特异性蛋白——牙骨质粘附蛋白(CAP)和矿化相关蛋白BSP、OPN、OCN、Col-I等在dNCPs +DFCCM实验组表达相对较强。
     3.在进一步探讨dNCPs+DFCCM诱导作用的实验中,诱导后的ADSCs由原来的成纤维样细胞形态向矮柱状、多角形的成牙骨质样细胞形态改变,且其增殖活性明显降低,而ALP活性和体外矿化能力明显增强,作为牙骨质特异性蛋白,CAP的表达以及其它矿化相关蛋白BSP、OPN、OCN、Col-I等表达也明显增强。
     结论
     1.体外分离培养了SD大鼠ADSCs,在细胞生物学鉴定中显示了较强的间充质来源特点和干细胞特性,且能向成脂、成骨和成神经分化。
     2.体外分离培养囊细胞和根尖牙乳头细胞,通过通过光学显微镜、细胞免疫化学和流式细胞分析等手段对其生物细胞学特性进行了初步鉴定,结合取材部位能够证实本实验所培养的DFCs和APCs具有间充质来源和干细胞特性。
     3.初步探讨了DFCCM、APCCM和dNCPs在ADSCs向成牙骨质细胞分化中的作用,结果显示DFCCM和dNCPs具有一定的成牙骨质细胞分化诱导作用,而且两者的联合应用更强;而APCCM则显示了更多向成牙本质细胞分化的诱导特性。4.在DFCCM+dNCPs联合诱导下,ADSCs在细胞形态学、增殖活性、ALP表达和体个矿化能力以及基因表达等方面均显示了一些成牙骨质细胞特性。
     综上所述,在DFCCM+dNCPs联合诱导下,ADSCs在体外初步获得了一些成牙骨质细胞特点,表明DFCCM+dNCPs中可能含有多种成牙骨质细胞分化所需要的生物活性因子。ADSCs储备丰富、获取简单,是一个较为理想的种子细胞来源,在牙周组织工程中显示了较好的应用前景。然而,DFCCM+dNCPs的成分较为复杂,其诱导ADSCs向成牙骨质细胞分化的机制尚不清楚,尚需进一步深入探讨。
Background
     Cementum, a thin mineralized tissue produced by cementoblasts, covers the tooth root surface and anchors teeth to surrounding alveolar bone, which plays a crucial role in maintenance of tooth attachment. However, cementum regeneration is generally difficult for the reason that cementoblasts are scarce in root cementum and not easy to isolate. Despite considerable research, sources of cementoblasts for regeneration are largely restricted to dental stem cells, such as dental follicle cells and Hertwig’s epithelial root sheath (HERS) cells from tooth germs, stem cells from periodontal ligament, and ectomesenchymal cells from the first branchial arch, etc, which are not readily available clinically. This shortage of cementoblasts has significantly limited the development of periodontal tissue engineering
     Adipose tissue-derived stem cells (ADSCs) have recently been widely studied in regenerative medicine because of their ease of harvesting and high proliferation. ADSCs are capable of differentiating to osteoblasts in an osteogenic microenvironment. Cementoblasts show many similarities in phenotypes to osteoblast and are considered a subpopulation of osteoblasts by some. Therefore, it may be feasible to induce ADSCs to differentiate along the cementoblast lineage if an optimal cementogenic microenvironment is provided.
     To establish this microenvironment, it is necessary to recapitulate the process of embryogenesis and morphogenesis involved in the developmental formation of cementum. Although the origin of cementoblasts remains a matter of debate, it has been well established that dental follicle cells penetrate disintegrating HERS and contact with unmineralized dentin matrix of the root surface prior to any cementum formation. Thus, dental follicle and dentine matrix may contain some biological mediators which are necessary to differentiation of cementoblasts. Dentin non-collagenous proteins (dNCPs), major component of dentine matrix, include glycoproteins/sialoproteins, phosphoproteins, proteoglycans and growth factors, which are considered to play an important role in differentiation of cementoblasts and cementogenesis.
     Therefore, we collected dental follicle cell conditioned medium and combined it with dNCPs in this study, to create a cementogenic microenvironment and induce ADSCs to differentiate into cementoblasts. This strategy may provide an alternative stem cell resource for periodontal tissue engineering and a better understanding of regulatory mechanisms for cementogenesis in periodontal development.
     Materials and Methods
     1.Culture and identification of ADSCs Adipose tissues were isolated from the inguinal region of 7-day-old Sprague–Dawley(SD) rats and finely minced into small pieces, followed by digestion with type I collagenase solution (0.1 mg/ml, Sigma, USA) for 1 h at 37°C. The cell suspension was centrifuged at 1000 r/min for 5 minutes. The supernatant was discarded and the cell pellet was suspended in Dulbecco Modified Eagles Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 IU/ml penicillin and 100μg/ml streptomycin), then cultured at 37°C in 5% CO2. Cells were used at the third passage for the following experiments.
     Before used in the induction experiments, ADSCs isolated and cultured in this study were identified by morphological analysis, immunohistochemical staining, flow cytometry and multi-lineage differentiation capacity assays.
     2.Primary selection of conditions for cementogenic differentiation of ADSCs
     Cell culture and conditioned media preparation: 5-day-old SD rats were selected and killed. Dental follicle and apical papilla tissue was dissected respectively from the first molars under a dissecting microscope. Culture and identification of these two cells were the same as above. Cells at the third passage were cultured. Once the cells reached confluence, culture medium was changed every day and collected for 3 days. The collected media were filtered through a 0.2μm Millipore strainer and mixed with an equal volume of fresh DMEM supplemented with 10% FBS, then stored at ?80°C before used as dental follicle cell conditioned media (DFCCM) and apical papilla cell conditioned media (APCCM).
     Primary selection of induction conditions: ADSCs at the third passage were cultured in DFCCM, APCCM, 10μg/ml dNCPs+ DMEM/F12 with5%FBS, 10μg/ml dNCPs +DFCCM, 10μg/ml dNCPs +APCCM, DMEM/F12 with 5%FBS(control) respectively for six days. Culture medium was changed every other day. Treated ADSCs were assayed by RT-PCR and Western blotting.
     3.In vitro experiment of cementogenic differentiation of ADSCs treated with dNCPs/DFCCM
     Based on primary selection of induction conditions above, the effects of dNCPs/DFCCM on cementogenic differentiation of ADSCs were further studied in this experiment. The changes on morphology, proliferative capacity, alkaline phosphatase activity, in vitro mineralization behaveiors, protein and gene expression for cementum attachment protein (CAP) and mineralization-related markers were assayed in ADSCs treated with dNCPs/DFCCM.
     Results
     1.ADSCs isolated from 7-day-old SD rats for in vitro primary culture and the 4–6th passages showed high proliferative capacity. Positive expression of vimentin was detected in ADSCs by immunohistochemical staining but no expression of CK was detected. Flow cytometry assay showed that ratios of CD29, CD44, CD90, CD105, STRO-1 positive cells in ADSCs were 93.09%, 75.11%, 90.20%, 95.86%, 30.09% respectively. In adipogenic, osteogenic, neuron-like differentiation experiments, ADSCs isolated in this study showed the ability of multipotential differentiation.
     2.Dental follicle cells and apical papilla cells for in vitro primary culture and the 4-6th passages showed good proliferative capacity and characteristics of mesenchymal stem cells. In immunohistochemical stainingand flow cytometry assay, vimentin, CD29, CD44, CD90, CD105 and STRO-1 were detected to positively express in both cell populations. In the experiment to optimize culture conditions for cementogenic differentiation of ADSCs, relative high expressions of CAP, bone sialoprotein(BSP), osteocalcinOCN, type I collagen (Col I),osteopontin(OPN) and osteonectin(ON) were detected at mRNA or protein levels in dNCPs/DFCCM treatment group.
     3.To further confirm the effects of dNCPs/DFCCM on cementogenic differentiation of ADSCs, more detailed experiments were performed. After treratment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and an in vitro mineralization assay indicated that dNCPs/DFCCM greatly enhanced the mineralization behaviour of differentiated ADSCs, in which mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype.
     Conclusions
     1.ADSCs isolated and cultured in this study show high proliferative capacity and characteristics of mesenchymal stem cells. They could differentiate into multi-lineage cells in corresponding media, such as adipocyte, osteoblast lineage, neuron-like cell lineage.
     2.Dental follicle cells and apical papilla cells were successly isolated and cultured in vitro. They were identified by immunohistochemical stainingand flow cytometry assay. The results and tissue extraction sites confirmed that dental follicle cells and apical papilla cells were originated from mesenchymal progenitors and showed some characteristics of mesenchymal stem cells.
     3.The effects of DFCCM, APCCM and dNCPs on cementogenic differentiation of ADSCs were investingated in a primary study. DFCCM and dNCPs showed promotion effect on cementogenic differentiation of ADSCs, especially combination of them, while APCCM showed promotion effect more of odontogenic differentiation.
     4.After treatment with dNCPs/DFCCM, ADSCs underwent morphological change from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and an in vitro mineralization assay indicated that dNCPs/DFCCM greatly enhanced the mineralization behaviour of differentiated ADSCs, in which mineralization-related markers including CAP, BSP, OCN, OPN and ON were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype.
     In summary, the lines of evidence presented here suggest that ADSCs are capable of differentiating to the cementoblast lineage following treatment with dNCPs/DFCCM, which includes multiple growth factors and other molecules necessary for signaling cementogenic differentiation. ADSCs, easily harvested clinically, could be an optimal source for cementogenic cells and very feasible for periodontal regeneration. However, further studies are necessary to address the underlying mechanisms involved in dNCPs/DFCCM–mediated cementogenesis.
引文
1. Snead ML. Whole-Tooth Regeneration: It Takes a Village of Scientists, Clinicians, and Patients. J Dent Educ. 2008, 72(8): 903–911.
    2. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Shi S, Wang S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE. 2006, 20;1:e79.
    3. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009, 106(32):13475-13480.
    4. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007, 100(9): 1249-1260.
    5. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs, 2003, 174(3): 101-109.
    6. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005, 54(3): 132-141.
    7. Jing W, Wu L, Lin Y, Liu L, Tang W, Tian W. Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: necessity, possibility, and strategy. Med Hypotheses. 2008, 70(3):540-542.
    8. Wu L, Zhu F, Wu Y, Lin Y, Nie X, Jing W, Qiao J, Liu L, Tang W, Zheng X, Tian W. Dentin sialophosphoprotein-promoted mineralization and expression of odontogenic genes in adipose-derived stromal cells. Cells Tissues Organs. 2008, 187(2):103-112.
    9. Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res. 2005, 84(5): 390-406.
    10. Zhao M, Jin Q, Berry JE, Nociti FH Jr, Giannobile WV, Somerman XL. Cementoblast delivery for periodontal tissue engineering. J Perodontol. 2004, 75(1): 154-161.
    11. Hammarstrom L, Alatli I, Fong CD. Origins of cementum. Oral Dis, 1996, 2:63–69.
    12. Sonoyama W, Seo BM, Yamaza T, Shi S. Human Hertwig's epithelial root sheath cellsplay crucial roles in cementum formation. J Dent Res, 2007, 86:594-599.
    13. Kémoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F, Briand-Mesange F, Gadelorge M, Arzate H, Narayanan AS, Brunel G, Salles JP. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res. 2007, 329(2): 283-294.
    14. Wu J, Jin F, Tang L, Yu J, Xu L, Yang Z, Wu G, Duan Y, Jin Y. Dentin non-collagenous proteins (dNCPs) can stimulate dental follicle cells to differentiate into cementoblast lineages. Biol Cell. 2008, 100(5):291-302.
    15. Smith AJ, Leaver AG. Non-collagenous components of the organic matrix of rabbit incisor dentine. Arch Oral Biol, 1979, 24(6): 449-454.
    16. Kim HS, Lee DS, Lee JH, Kang MS, Lee NR, Kim HJ, Ko JS, Cho MI, Park JC. The effect of odontoblast conditioned media and dentin non-collagenous proteins on the differentiation and mineralization of cementoblasts in vitro. Arch Oral Biol 2009, 54(1): 71-79.
    17. Dalla-Bona DA, Tanaka E, Inubushi T, Oka H, Ohta A, Okada H, Miyauchi M, Takata T, Tanne K. Cementoblast response to low- and high-intensity ultrasound. Arch Oral Biol. 2008, 53(4): 318-323.
    18. Paula-Silva FW, Ghosh A, Arzate H, Kapila S, da Silva LA, Kapila YL. Calcium hydroxide promotes cementogenesis and induces cementoblastic differentiation of mesenchymal periodontal ligament cells in a CEMP1- and ERK-dependent manner. Calcif Tissue Int. 2010, 87(2): 144-157.
    1. Baksh D, Song L, Tuan R S, et al. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J CellMolMed, 2004, 8(3):301- 316.
    2. Friedenstein AJ, Chailakhjan RK, Lalykina KS, et al. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet, 1970, 3:393-403.
    3. Friedenstein AJ, Lalykina KS. Thymus cells are inducible to osteogenesis. Eur J Immunol, 1972, 2:602-603.
    4. Caplan AI. Mesenchymal stem cells. J Orthop Res,1991, 9:641-650.
    5. Crossno JT Jr, Majka SM, Graxia T, et al. Rosiglitazone promotes development of a novel adipocyte population from bone marrow derived criculating progenitor cells. J Clin Invest, 2006,116: 3220-3228.
    6. Grove J E, Bruscia E. Plasticity of bone marrow- derived s tem cells. Stem Cells, 2004, 22(4):487- 500.
    7. Ashjian P H, Elbarbary A S, Edmonds B, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plas t Recons tr Surg, 2003, 111(6):1922- 1931.
    8. Dragoo J L, Choi J Y, Lieberman J R, et al. Bone induction by BMP- 2 transduced stem cells derived from human fat. J Orthop Res, 2003, 21(4):622-609.
    9. Huang J I, Zuk P A, Jones N F, et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plas t Recons tr Surg, 2004, 113(2):585- 594.
    10. Mizuno H, Zuk P A, Zhu M, et al. Myogenic differentiation by human processed lipoaspirate cells. Plas t Recons tr Surg, 2002, 109(1):199- 209.
    11. Ogawa R, Mizuno H, Hyakusoku H, et al. Chondrogenic and osteogenic differentiation of adipose-deriveds tem cells isolated from GFP transgenic mice. J Nippon Med Sch, 2004, 71(4):240- 241.
    12. Dragoo J L, Samimi B, Zhu M, et al. Tissue- engineered cartilage and bone using stem cells from human infrapatellar fat pads. J Bone Joint Surg Br, 2003, 85(5):740- 747.
    13. Planat- Benard V, Silves tre J S, Cous in B, et al. Plasticity of human adipose lineagecells toward endothelial cells: physiological and therapeutic perspective. Circulation, 2004, 109(5):656- 663.
    14. Hausman G J, Hausman D B. Search for the preadipocyte progenitor cell. J Clin Invest, 2006, 116(12):3103- 3106.
    15. Zuk P A, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell- based therapies. Tissue Eng, 2001, 7(2):211- 228.
    16. De Ugarte D A, Morizono K, Elbarbary A, et al. Comparison of multilineage cells from human adipose tissue and bone marrow. Cells Tis suesOrgans, 2003, 174(3):101- 109.
    17. Katz A J, Ashok T, Sunil S T, et al. Cell surface and transcriptional characterization of human adipose- derived adherents tromal (hADAS) cells. Stem Cells, 2005, 23:412- 423.
    18. Lin Y, Luo E, Chen X, et al. Molecular and cellular characterization during chondrogenic differentiation of adipose tissue derived stromal cells in vitro and cartilage formation in vivo. J CellMolMed, 2005, 9(4):929- 939.
    19. Traktuev DO, Merfeld-Clauss S, Li J, et al. A population of multipotent CD34-positive adipose atromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res, 2008, 102:77-85.
    20. Mizuno H, Hyakusoku H. Mesengenic potential and future clinical perspective of human processed lipoaspirate cells. J Nippon Med Sch, 2003, 70(4):300- 306.
    21. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13:4279-4295.
    22. Daley GQ, Goodell MA, Snyder EY. Realistic prospects for stem cell therapeutics. Hematology Am Soc Hematol Educ Program, 2003, 398-418.
    23. Schaffler A,Buchler C.Concise review:adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies.Stem Cells, 2007, 25(4):818-827.
    24. Tsagias N, Kouzi-Koliakos K, Koliakos I, Kostidou E, Karagiannis V, Daniilidis A, Koliakos G. Addition of adipose-derived stem cells in cord blood cultures stimulates their pluripotent differentiation. Transplant Proc, 2009, 1(10): 4340-4344。
    25. Bunnell AB, Mette F, Christine G, et al. Adipose-derived stem cells: isolation, expansion and differentiation. Methods, 2008, 45:115-120.
    26. Halvorsen YD, Franklin D, Bond AL,et al. Extracellular matrix mineralization andosteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng, 2001, 7(6):729-741.
    27. Lang SH, Anderson E, Fordham R, Collins AT. Modeling the prostate stem cell niche: an evaluation of stem cell survival and expansion in vitro. Stem Cells Dev. 2010, 19(4): 537-546.
    28. Winter A, Breit S, Pars ch D, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum. 2003, 48(2):418-429
    1. Wu J, Jin F, Tang L, Yu J, Xu L, Yang Z, Wu G, Duan Y, Jin Y. Dentin non-collagenous proteins (dNCPs) can stimulate dental follicle cells to differentiate into cementoblast lineages. Biol Cell. 2008, 100(5):291-302.
    2. Smith AJ, Leaver AG. Non-collagenous components of the organic matrix of rabbit incisor dentine. Arch Oral Biol, 1979, 24(6): 449-454.
    3. Kim HS, Lee DS, Lee JH, Kang MS, Lee NR, Kim HJ, Ko JS, Cho MI, Park JC. The effect of odontoblast conditioned media and dentin non-collagenous proteins on the differentiation and mineralization of cementoblasts in vitro. Arch Oral Biol 2009, 54(1): 71-79.
    4. Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, Sun YJ, Duan YZ, Lin Z, Jin Y. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res. 2009, 44(2):199-210.
    5. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S.Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004, 364:149-155
    6. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Shi S, Wang S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE. 2006, 20;1:e79.
    7. Ma Z, Li S, Song Y, Tang L, Ma D, Liu B, Jin Y. The biological effect of dentin noncollagenous proteins (DNCPs) on the human periodontal ligament stem cells (HPDLSCs) in vitro and in vivo. Tissue Eng Part A. 2008, 14(12): 2059-2068.
    8. Zhao M, Jin Q, Berry JE, Nociti FH Jr, Giannobile WV, Somerman XL. Cementoblast delivery for periodontal tissue engineering. J Perodontol. 2004, 75(1): 154-161.
    9. Kémoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F, Briand-Mesange F, Gadelorge M, Arzate H, Narayanan AS, Brunel G, Salles JP. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res. 2007, 329(2): 283-294.
    10. Song AM, Shu R, Xie YF, Song ZC, Li HY, Liu XF, Zhang XL. A study of enamelmatrix proteins on differentiation of porcine bone marrow stromal cells into cementoblasts. Cell Prolif. 2007, 40(3): 381-396.
    11. Wu L, Zhu F, Wu Y, Lin Y, Nie X, Jing W, Qiao J, Liu L, Tang W, Zheng X, Tian W. Dentin sialophosphoprotein-promoted mineralization and expression of odontogenic genes in adipose-derived stromal cells. Cells Tissues Organs. 2008, 187(2):103-112.
    12. Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res. 2005, 84(5): 390-406.
    13. Diekwisch TG. The developmental biology of cementum. Int J Dev Biol. 2001, 45(5-6): 695-706.
    14. Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P. Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells. Cell Prolif. 2010, 43(3):219-228.
    15. Tsuchiya S, Ohshima S, Yamakoshi Y, Simmer JP, Honda MJ. Osteogenic differentiation capacity of porcine dental follicle progenitor cells. Connect Tissue Res. 2010, 51(3):197-207.
    16. Yao S, Pan F, Prpic V, Wise GE.Differentiation of stem cells in the dental follicle. J Dent Res. 2008, 87(8):767-771.
    17. Wise GE ,Lin F ,Fan W. Culture and characterization of dental follicle cells from rat molars. Cell Tissue Res, 1992, 267:483– 492
    18. Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C. Dental follicle stem cells and tissue engineering. J Oral Sci. 2010, 52(4):541-52.
    19. Saugspier M, Felthaus O, Viale-Bouroncle S, Driemel O, Reichert TE, Schmalz G, Morsczeck C. The differentiation and gene expression profile of human dental follicle cells. Stem Cells Dev. 2010, 19(5):707-717.
    20.武俊杰.利用牙囊细胞和脂肪间充质干细胞构建组织工程牙周样结构的研究.第四军医大学. 2008: 41.
    21. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1.Blood,1991, 78(1):55-62.
    22. Gronthos S, Graves SE, Ohta S, et al. The STRO-1+fraction of adult human bone marrow contains the osteogenic precursors.Blood,1994, 84(12):4164-4173.
    23. Oyajobi BO, Lomri A, Hott M,et al.Isolation and Characterization of Human Clonogenic Osteoblast Progenitors Immunoselected from Fetal Bone Marrow Stroma Using STRO-1 Monoclonal Antibody.Journal of Bone and Mineral Research,1999, 14(3):351-361.
    24. Dennis JE, Carbillet JP, Caplan AI, et al. The STRO-1+marrow cell population is multipotential. Cells Tissues Organs, 2002, 170(2-3):73-82.
    25. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008, 34(2):166-171
    26. Ritchie HH, Ritchie DG, Wang LH. Six decades of dentinogenesis research. Eur J Oral Sci, 1998,106 (Suppl 1):211- 220
    27. Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod. 2010, 36(5):781-789.
    28. Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S. Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol. 2010, 223(2):415-22.
    29. Bosshardt, D.D. and Nanci, A. Hertwig’s epithelial root sheath, enamel matrix proteins, and initiation of cementogenesis in porcine teeth. J. Clin. Periodontol. 2004, 31, 184–192.
    30. Lezot F, Davideau JL, Thomas B, Sharpe P, Forest N, Berdal A. Epithelial Dlx-2 homeogene expression and cementogenesis. J Histochem Cytochem 2000, 48: 277–283.
    31. Zuk P A, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells . Mol Biol Cell, 2002, 13: 4279- 4295
    32. Halvorsen YD, Franklin D, Bond AL, et al. Extracellular matrix mineralization and os teoblas t gene expres s ion by human adipose tis sue-derived s tromal cells . Tis sue Eng 2001; 7( 6) :729-741
    33. Hattori H, Sato M, Masuoka K, et al. Osteogenic potential of human adipose tissue- derived stromal cells as an alternative stem cell source. Cells Tis sues Organs 2004; 178(1):2-12
    34. Kang SK, Putnam L, Dufour J, et al. Expression of telomerase extends the lifespan andenhances osteogenic differentiation of adiposetis sue-derived stromal cells . Stem Cells 2004; 22(7):1356-1372
    35. Elabd C, Chiellini C, Mas soudi A, et al. Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells . Biochem Biophys Res Commun 2007; 361(2):342-348
    36. McAllister B, Narayanan AS, Miki Y, Page RC. Isolation of a fibroblast attachment protein from cementum. J Periodontal Res, 1990, 25:99-105.
    37. Wu D, Ikezawa K, Parker T, Saito M, Narayanan AS. Characterization of a collagenous cementum-derived attachment protein. J Bone Miner Res, 1996, 11:686-692.
    38. Saito M, Iwase M, Maslan S, Nozaki N, Yamauchi M, Handa K, et al. Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone, 2001, 29:242-248.
    39. Bar-Kana I, Savion N, Narayanan AS, Pitaru S .Cementum attachment protein manifestation is restricted to the mineralized tissue forming cells of the periodontium. Eur J Oral Sci. 1998, 6 Suppl 1:357-64.
    40. Bai Y, Bai Y, Matsuzaka K, Hashimoto S, Fukuyama T, Liu X, Wang X, Inoue T. Cementum- and Periodontal Ligament-like Tissue Formation by Dental Follicle Cell Sheets Co-cultured with Hertwig's Epithelial Root Sheath Cells. Bone. 2011 Mar 1. [Epub ahead of print]
    41. Furseth, R, Selvig, KA, Mjor, IA. The periodontium.Human Oral Embryology and Histology. Mjor,IA and Fejerskov,I,eds.Munksgaard,1986:168.
    42. Provenza DV. Attachment Apparatus. Fundamentals of Oral Histology and Embryology(ed.DV Provenza),1988,195-235.
    43. Schroeder HE. The periodontium. Handbook of microscopic anatomy:Springer Verlag Berlin,1986.
    44. Slavkin HC. Towards a cellular and molecular understanding of periodontics. Cementogenesis revisited. J Periodontol, 1976, 47(5):249-255.
    45. Slavkin HC,Bringas Jr P,Bessem C,et al.Hertwig's epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serumless,chemically-defined medium. J Periodontal Res, 1989, 24(1):28-40.
    46. Zeichner-David M. Regeneration of periodontal tissues:cementogenesis revisited. Periodontology, 2006, 41(1):196-217.
    47. Zeichner-David M. Is there more to enamel matrix proteins than biomineralization?. Matrix Biology, 2001, 20(5-6):307-316.
    48. Deng M, Shi J, Smith AJ, et al. Effects of transforming growth factorβ1(TGFβ-1)and dentin non-collagenous proteins(DNCP)on human embryonic ectomesenchymal cells in a three-dimensional culture system. Archives of Oral Biology, 2005, 50(11):937-945.
    49. Liu J, Jin T, Ritchie HH, et al. In vitro differentiation and mineralization of human dental pulp cells induced by dentin extract.In Vitro Cellular&Developmental Biology-Animal,2005, 41(7):232-238.
    50. Nie X, Tian W, Zhang Y, et al. Induction of transforming growth factor-beta 1 on dentine pulp cells indifferent culture patterns. Cell Biology International, 2006, 30(4):295-300.
    1. Bosshardt, DD, Nanci, A. Hertwig’s epithelial root sheath, enamel matrix proteins, and initiation of cementogenesis in porcine teeth. J Clin Periodontol, 2004, 31:184-192.
    2. Wu J, Jin F, Tang L, Yu J, Xu L, Yang Z, Wu G, Duan Y, Jin Y.. Dentin non-collagenous proteins (dNCPs) can stimulate dental follicle cells to differentiate into cementoblast lineages. Biol Cell, 2008, 100:291-302.
    3. Yan Z, Lin Y, Jiao X, Li Z, Wu L, Jing W, Qiao J, Liu L, Tang W, Zheng X, Tian W. Characterization of ectomesenchymal cells isolated from the first branchial arch during multilineage differentiation. Cells Tissues Organs, 2006, 183:123-132.
    4. Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, Sun YJ, Duan YZ, Lin Z, Jin Y. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res, 2009, 44:199-210.
    5. Bassaneze V, Barauna VG, Lavini-Ramos C, Kalil J, Schettert IT, Miyakawa AA, Krieger JE. Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev, 2010, 19:371-378.
    6. Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. Atheroscler Thromb, 2006, 13:77-81.
    7. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs, 2003, 174:101-109.
    8. Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, Lin CS. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev, 2008, 17:1053-1063.
    9. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med, 2005, 54:132-141.
    10. Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL. Paschalis EP,Wilkison WO, Gimble JM. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng, 2001, 7:729-741.
    11. Varma MJ, Breuls RG, Schouten TE, Jurgens WJ, Bontkes HJ, Schuurhuis GJ, van Ham SM, van Milligen FJ. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev, 2007, 16:91-104.
    12. Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res, 2005, 84:390-406.
    13. Nemoto E, Koshikawa Y, Kanaya S, Tsuchiya M, Tamura M, Somerman MJ, Shimauchi H. Wnt signaling inhibits cementoblast differentiation and promotes proliferation. Bone, 2009, 44:805-812.
    14. Vazin T, Schaffer DV. Engineering strategies to emulate the stem cell niche. Trends Biotechnol, 2010, 28:117-124.
    15. Hammarstrom L, Alatli I, Fong CD. Origins of cementum. Oral Dis, 1996, 2:63–69.
    16. Sonoyama W, Seo BM, Yamaza T, Shi S. Human Hertwig's epithelial root sheath cells play crucial roles in cementum formation. J Dent Res, 2007, 86:594-599.
    17. Kim HS, Lee DS, Lee JH, Kang MS, Lee NR, Kim HJ, Ko JS, Cho MI, Park JC. The effect of odontoblast conditioned media and dentin non-collagenous proteins on the differentiation and mineralization of cementoblasts in vitro. Arch Oral Biol, 2009, 54:71-79.
    18. Smith AJ, Leaver AG. Non-collagenous components of the organic matrix of rabbit incisor dentine. Arch Oral Biol, 1979, 24:449-454.
    19. Xu Y, Liu L, Li Y, Zhou C, Xiong F, Liu Z, Gu R, Hou X, Zhang C. Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res, 2008, 239: 49-55.
    20. Wise, GE, Lin, F, Fan, W. Culture and characterization of dental follicle cells from rat molars. Cell Tissue Res, 1992, 267:483-492
    21. Bounous DI, Campagnoli RP, Brown J. Comparison of MTT colorimetric assay and tritiated thymidine uptake for lymphocyte proliferation assays using chicken splenocytes. Avian Dis, 1992, 36:1022-1027.
    22. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K, Zhou C. Comparative analysis ofmesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev, 2008, 17:761-773.
    23. Yu, J.H., Deng, Z.H., Shi, J.N., Zhai, H.H., Nie, X., Zhuang, H. Jin, Y. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng, 2006, 12:3097-3105.
    24. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA, 2003, 100:5807-5812.
    25. Ogawa R, Mizuno H, Hyakusoku H, Watanabe A, Migita M, Shimada T. Chondrogenic and osteogenic differentiation of adipose-derived stem cells isolated from GFP transgenic mice. J Nippon Med Sch, 2004, 71:240-241.
    26. Huo N, Tang L, Yang Z, Qian H, Wang Y, Han C, Gu Z, Duan Y, Jin Y. Differentiation of dermal multipotent cells into odontogenic lineage induced by embryonic and neonatal tooth germ cell-conditioned medium. Stem Cells Dev, 2010, 19:93-104.
    27. Guo RW, Yang LX, Wang H, Liu B, Wang L. Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-kappaB-dependent pathway in vascular smooth muscle cells. Regul Pept, 2008, 147:37-44.
    28. Saito M, Iwase M, Maslan S, Nozaki N, Yamauchi M, Handa K, Takahashi O, Sato S, Kawase T, Teranaka T, Narayanan AS. Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone, 2001, 29:242-248.
    29. Kitagawa M, Tahara H, Kitagawa S, Oka H, Kudo Y, Sato S, Ogawa I, Miyaichi M, Takata T. (2006). Characterization of established cementoblast-like cell lines from human cementum-lining cells in vitro and in vivo. Bone 39:1035-1042.
    30. Liu HW, Yacobi R, Savion N, Narayanan A, Pitaru S. A collagenous cementum-derived attachment protein is a marker for progenitors of the mineralized tissue-forming cell lineage of the periodontal ligament. J Bone Miner Res, 1997, 12:691-699.
    31. Lim JH, Boozer L, Mariani CL, Piedrahita JA, Olby NJ. Generation and characterization of neurospheres from canine adipose tissue-derived stromal cells. Cell Reprogram, 2010, 12:417-425.
    32. Zhu Y, Liu T, Ye H, Song K, Ma X, Cui Z. Enhancement of adipose-derived stem cell differentiation in scaffolds with IGF-I gene impregnation under dynamicmicroenvironment. Stem Cells Dev, 2010, 19:1547-1556.
    33. Lang SH, Anderson E, Fordham R, Collins AT. Modeling the prostate stem cell niche: an evaluation of stem cell survival and expansion in vitro. Stem Cells Dev, 2010, 19:537-546.
    34. Cho MI, Garant PR. Ultrastructural evidence of directed cell migration during initial cementoblast differentiation in root formation. J Periodontal Res, 1998, 23:268-276.
    35. Zhu, L, Skoultchi, AI. Coordinating cell proliferation and differentiation. Curr Opin Genet Dev, 2001, 11:91-97.
    36. D’Errico, JA, MacNeil, RL, Takata, T, Berry, J, Strayhorn, C, Somerman, MJ. Expression of bone associated markers by tooth root lining cells, in situ and in vitro. Bone, 1997, 20:117-126.
    37. Chen J, Sasaguri K, Sodek J, Aufdemorte TB, Jiang H, Thomas HF. Enamel epithelium expresses bone sialoprotein (BSP). Eur J Oral Sci, 1998, 106:331-336.
    38. Hakki SS, Bozkurt SB, Hakki EE, Belli S. Effects of mineral trioxide aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts. J Endod, 2009, 35:513-519.
    39. Kreke MR, Sharp LA, Lee YW, Goldstein AS. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng Part A, 2008, 14:529-537.
    40. Wang YX, Ma ZF, Huo N, Tang L, Han C, Duan YZ, Jin Y. Porcine tooth germ cell conditioned medium can induce odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen Med, 2010, 26:[Epub ahead of print].
    41. Al-Nazhan S. SEM observations of the attachment of human periodontal ligament fibroblasts to non-demineralized dentin surface in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2004, 97:393-397.
    42. Ma Z, Li S, Song Y, Tang L, Ma D, Liu B, Jin Y. The biological effect of dentin noncollagenous proteins (DNCPs) on the human periodontal ligament stem cells (HPDLSCs) in vitro and in vivo. Tissue Eng Part A, 2008, 14:2059-2068.
    43. Jiang HB, Tian WD, Liu LK, Xu Y. In vitro odontoblast-like cell differentiation of cranial neural crest cells induced by fibroblast growth factor 8 and dentin non-collagen proteins. Cell Biol Int, 2008, 32:671-678.
    44. Deng M, Shi J, Smith AJ, Jin Y. Effects of transforming growth factor beta1 (TGFbeta-1) and dentin non-collagenous proteins (DNCP) on human embryonic ectomesenchymal cells in a three-dimensional culture system. Arch Oral Biol, 2005, 50:937-945.
    45. Kémoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F, Briand-Mesange F, Gadelorge M, Arzate H, Narayanan AS, Brunel G, Salles JP. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res, 2007, 329:283-294.
    46. Song AM, Shu R, Xie YF, Song ZC, Li HY, Liu XF, Zhang XL. A study of enamel matrix proteins on differentiation of porcine bone marrow stromal cells into cementoblasts. Cell Prolif, 2007, 40:381-396.
    47. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res, 2007, 100:1249-1260.
    48. Tholpady SS, Katz AJ, Ogle RC. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec, 2003, 272:398-402.
    49. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13:4279-4295.
    1. Snead ML. Whole-Tooth Regeneration: It Takes a Village of Scientists, Clinicians, and Patients. J Dent Educ. 2008, 72(8): 903–911.
    2. Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110) : 920– 926.
    3. Parenteau N. Skin: the first tissue - engineered p roducts. Sci Am , 1999, 280 (4) : 83.
    4. Peters H, Balling R. Teeth: where and how to make them. Trends Genet, 1999, 15: 59– 65.
    5. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Shi S, Wang S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE. 2006, 20;1:e79.
    6. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009, 106(32):13475-13480.
    7. Grottkau BE, Purudappa PP, Lin YF. Multilineage differentiation of dental pulp stem cells from green fluorescent protein transgenic mice. Int J Oral Sci. 2010, 2(1):21-27.
    8. Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res. 2003, 82(12):976-981.
    9. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 2008, 26(7):1787-1795..
    10. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000, 97(25): 13625-13630.
    11. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002, 81(8):531- 5.
    12. Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001, 29(6):532- 539.
    13. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003, 18(4):696- 704
    14. Lindroos B, M?enp?? K, Ylikomi T, Oja H, Suuronen R, Miettinen S. Characterisation of human dental stem cells and buccal mucosa fibroblasts. Biochem Biophys Res Commun. 2008, 368(2):329-335.
    15. Yang X, van der Kraan PM, van den Dolder J, Walboomers XF, Bian Z, Fan M, Jansen JA. STRO-1 selected rat dental pulp stem cells transfected with adenoviral-mediated human bone morphogenetic protein 2 gene show enhanced odontogenic differentiation. Tissue Eng. 2007, 13(11):2803-12.
    16. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S.Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004, 364:149-155
    17. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Shi S, Wang S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE. 2006, 20;1:e79.
    18. Ma Z, Li S, Song Y, Tang L, Ma D, Liu B, Jin Y. The biological effect of dentin noncollagenous proteins (DNCPs) on the human periodontal ligament stem cells (HPDLSCs) in vitro and in vivo. Tissue Eng Part A. 2008, 14(12): 2059-2068.
    19. Diekwisch TG. The developmental biology of cementum. Int J Dev Biol. 2001, 45(5-6): 695-706.
    20. Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P. Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/ cementoblast-related gene expression in dental follicle cells. Cell Prolif. 2010, 43(3):219-228.
    21. Tsuchiya S, Ohshima S, Yamakoshi Y, Simmer JP, Honda MJ. Osteogenic differentiation capacity of porcine dental follicle progenitor cells. Connect Tissue Res. 2010, 51(3):197-207.
    22. Yao S, Pan F, Prpic V, Wise GE.Differentiation of stem cells in the dental follicle. J Dent Res. 2008, 87(8):767-771.
    23. Wise GE , Lin F ,Fan W. Culture and characterization of dental follicle cells from rat molars. Cell Tissue Res, 1992, 267:483– 492
    24. Kémoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F, Briand-Mesange F, Gadelorge M, Arzate H, Narayanan AS, Brunel G, Salles JP. Humandental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res. 2007, 329(2): 283-294.
    25. Wu J, Jin F, Tang L, Yu J, Xu L, Yang Z, Wu G, Duan Y, Jin Y. Dentin non-collagenous proteins (dNCPs) can stimulate dental follicle cells to differentiate into cementoblast lineages. Biol Cell. 2008, 100(5):291-302.
    26. Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C. Dental follicle stem cells and tissue engineering. J Oral Sci. 2010, (4):541-552.
    27. Yagyuu T, Ikeda E, Ohgushi H, Tadokoro M, Hirose M, Maeda M, Inagake K, Kirita T. Hard tissue-forming potential of stem/progenitor cells in human dental follicle and dental papilla. Arch Oral Biol. 2010, 55(1):68-76.
    28. Yalvac ME, Rizvanov AA, Kilic E, Sahin F, Mukhamedyarov MA, Islamov RR, Palotás A. Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Curr Pharm Des. 2009, (33):3908-3916.
    29. Ritchie HH, Ritchie DG, Wang LH. Six decades of dentinogenesis research. Eur J Oral Sci, 1998,106 (Suppl 1):211- 220
    30. Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod. 2010, 36(5):781-789.
    31. Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S. Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol. 2010, 223(2):415-22.
    32. Hao J, Narayanan K, Ramachandran A, et al. Odontoblast cells immortalized by telomerase produce mineralized dentin-like tissue both in vitro and in vivo. J Biol Chem,2002,277(22) : 19976 - 19981.
    33. Shi S, Gronthos S, Chen S, et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol, 2002, 20(6): 587-591.
    34. Young CS, Terada S, Vacanti JP, et al.Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. Dent Res, 2002, 81(10):695—700.
    35. Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, Sun YJ, Duan YZ, Lin Z, Jin Y. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res.2009, 44(2):199-210.
    36. Ikeda E, Hirose M, Kotobuki N, et al. Osteogenic differentiation of human dental papilla mesenchymal cells. Biochem Biophys Res Commun. 2006, 342(4):1257-1262.
    37. Duailibi MT, Duailibi SE, Young CS, et al. J Dent Res. Bioengineered teeth from cultured rat tooth bud cells. 2004, 83(7):523- 528.
    38. Morsczeck C, Schmalz G, Reichert TE, et al. Somatic stem cells for regenerative dentistry. Clin Oral Investig. 2008, 12(2):113-118.
    39. Ohazama A, Modino SA, Miletich I , et al. Stem- cell- based tissue engineering of murine teeth. J Dent Res. 2004, 83(7):518-522.
    40. Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials, 2007, 28(4):680-989.
    41. Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig’s ep ithelial root sheath. Dev Dyn, 2006, 235( 5):1167– 1180.
    42. Zeichner - DavidM, Oishi K, Su Z, et al. Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn.2003, 228 (4):651-663
    43. Ohazama A, Modino SAC, Miletich I, et al. Stem- cell- based tissue engineering of murine teeth. Dent Res, 2004, 83(7):518- 522.
    44. Young CS, Abukawa H, Asrican R, et al. Tissue- engineered hybrid tooth and bone. Tissue Eng, 2005, 11(9- 10):1599- 1610.
    45. Masaki J, et al. Histological and immunohistochemical studies of tissue engineered odontogenesis. Arch Histol Cytol, 2005, 68(2): 89- 101.
    46. Song AM, Shu R, Xie YF, Song ZC, Li HY, Liu XF, Zhang XL. A study of enamel matrix proteins on differentiation of porcine bone marrow stromal cells into cementoblasts. Cell Prolif. 2007, 40(3): 381-396.
    47. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001, 7(2):211-228.
    48. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cell. Mol Biol Cell, 2002, 13(12):4279-4295
    49. Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1(CD54) gene expression. J Leukoc Biol, 1999, 66(6):876-888
    50. Ogawa R, Mizuno H, Watanabe A, et al. Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem Biophys Res Commun, 2004, 313(4):871-877
    51. Jing W, Wu L, Lin Y, Liu L, Tang W, Tian W. Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: necessity, possibility, and strategy. Med Hypotheses. 2008, 70(3):540-542.
    1. Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of biomechanics. J Biomech Eng. 2000, 122:570–575.
    2. Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther. 2003, 3:705–713.
    3. Bray GA. Medical consequences of obesity. J Clin Endocrinol Metab. 2004, 89: 2583–2589.
    4. Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to the tissue engineering of fat. Clin Plast Surg. 1999, 26:587– 603.
    5. Rodbell M. Metabolism of isolated fat cells. II. The similar effects of phospholipase c (clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem. 1966, 241:130–139.
    6. Rodbell M. The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin. J Biol Chem. 1966, 241:3909–3917.
    7. Rodbell M, Jones AB. Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase c (clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem. 1966, 241:140–142.
    8. Van RL, Bayliss CE, Roncari DA. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J Clin Invest. 1976, 58:699–704.
    9. Bjorntorp P, Karlsson M, Pertoft H, Pettersson P, Sjostrom L, Smith U. Isolation and characterization of cells from rat adipose tissue developing into adipocytes. J Lipid Res. 1978, 19:316–324.
    10. Deslex S, Negrel R, Vannier C, Etienne J, Ailhaud G. Differentiation of human adipocyte precursors in a chemically defined serum-free medium. Int J Obes. 1987, 11:19–27.
    11. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest. 1989, 84:1663–1670.
    12. Hauner H, Wabitsch M, Pfeiffer EF. Differentiation of adipocyte precursor cells from obese and nonobese adult women and from different adipose tissue sites. Horm MetabRes Suppl. 1988, 19:35–39.
    13. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunophenotype of human adipose derived cells: temporal changes in stromal- and stem cell-associated markers. Stem Cells. 2006, 24:376–385.
    14. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem. 2006;99, 1286–1297.
    15. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.
    16. Young HE, Steele TA, Bray RA, Detmer K, Blake LW, Lucas PW, Black AC Jr. Human pluripotent and progenitor cells display cell surface cluster differentiation markers cd10, cd13, cd56, and mhc class-i. Proc Soc Exp Biol Med. 1999;221:63–71.
    17. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–4295.
    18. Ryden M, Dicker A, Gotherstrom C, Astrom G, Tammik C, Arner P, Le Blanc K. Functional characterization of human mesenchymal stem cellderived adipocytes. Biochem Biophys Res Commun. 2003;311:391–397.
    19. Dicker A, Le Blanc K, Astrom G, van Harmelen V, Gotherstrom C, Blomqvist L, Arner P, Ryden M. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res. 2005;308:283–290.
    20. McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, Halvorsen YD, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunogenicity of human adipose derived cells: temporal changes in vitro. Stem Cells. 2006;24:1245–1253.
    21. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189:54–63.
    22. Schaffler A,Buchler C.Concise review:adipose tissue-derived stromal cells--basic andclinical implications for novel cell-based therapies.Stem Cells,2007;25(4):818-827.
    23. Bordji K, Grillasca JP, Gouze JN, et a1. Evidence for the presence of proliferator- activated receptor (PPAR) alpha and gamma and retinoid Z receptor in cartilage.PPAR gamma activation modulates the efects of intedeukin-1 beta on rat chondrocytes. J Boil Chem, 2000, 275(16):43-50.
    24. Hanson AD, Marvel SW, Bernacki SH, et al. Osteogenic effects of rest inserted and continuous cyclic tensile strain on hASC lines with disparate osteodifferentiation capabilities. Ann Biomed Eng, 2009,37:955-965.
    25. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999, 181(1):67-73.
    26. Kakudo N, Shimotsuma A, Kusumoto K, et al. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adiposederived stem cell. Biochem Biophys Res Commun,2007,359:239-244.
    27. Pasarica M, Mashtalir N, McAllister EJ, et al. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells. Stem Cells, 2008,26:969-978.
    28. Kaplan FS, Hahn GV, Zasloff MA. Heterotopic ossification: two rare forms and what they can teach us. J Am Acad Orthop Surg. 1994, 2: 288-296.
    29. Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL. Paschalis EP, Wilkison WO, Gimble JM. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng, 2001, 7: 729-741.
    30. Halvorsen YD, Franklin D, Bond AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng, 2001, 7:729-741.
    31. Al-Salleeh F, Beatty MW, Reinhardt RA, et al. Human osteogenic protein-1 induces osteogenic differentiation of adipose-derived stem cells harvested from mice. Arch Oral Biol, 2008,53:928-936.
    32. Grewal NS, Gabbay JS, Ashley RK, et al. BMP-2 does not influence the osteogenic fate of human adipose-derived stem cells. Plast Reconstr Surg, 2009,123:158-165.
    33. Wickham MQ, Erickson GR, Gimble JM, et a1. Mutipotent stromal cells derived fromthe infrapatellar fat of the knee. Clin Orthop, 2003, Ju1:196-212.
    34. Jin X, Sun Y, Zhang K, et al. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials, 2007, 28:2994-3003.
    35. Ashjian P H, Elbarbary A S, Edmonds B, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plas t Recons tr Surg, 2003, 111(6):1922- 1931.
    36. Romanov YA, Darevskaya AN, Merzlikina NV, et al. Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull Exp Biol Med,2005,140:138-143.
    37. Kang SK, Putnam LA, Ylostalo J, et al. Neurogenesis of Rhesus adipose stromal cells. J Cell Sci, 2004,117:4289-4299.
    38. Ashjian P H, Elbarbary A S, Edmonds B, et al. In vitro differentiation of human proces sed lipoaspirate cells into early neural progenitors. Plas t Recons tr Surg, 2003, 111(6):1922- 1931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700