用户名: 密码: 验证码:
内质网应激和ARMET蛋白在免疫性关节炎症中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内质网应激(endoplasmic reticulum stress,ER stress)是真核细胞的一种保护性应激反应,通过激活未折叠蛋白反应(unfolded protein response,UPR)通路来减少细胞内蛋白的异常聚集,从而起到细胞保护作用。ER应激与很多因素所致疾病的发生、发展密切相关,越来越多的证据表明,ER应激及其UPR通路可能参与机体的炎症免疫反应。ARMET(arginine-rich, mutated in early stage tumors)基因是我们从30000个基因中筛选出的对ER应激最敏感的基因,它是一种分泌性蛋白,ER应激能诱导其表达上调。故我们推测,ARMET的诱导表达可能是细胞自身的保护性调节,那么在炎症诱导的ER应激中,ARMET可能起到抑制炎症的作用。
     目的:
     在免疫性关节炎动物模型上,观察炎症诱导的ER应激及ARMET的表达情况,分析ARMET表达与炎症程度的相关性,初步探讨ER应激及ARMET表达在免疫性关节炎症中的作用。
     方法:
     用甲基化牛血清白蛋白(methylated bovine serum albumin,mBSA)诱导兔关节炎(antigen-induced arthritis,AIA)模型,核磁共振成像(magnetic resonance imaging,MRI)扫描造模前后滑膜组织增厚情况,苏木素-伊红(hematoxylin-erosin,HE)染色观察滑膜组织病理改变;注射弗氏完全佐剂(Freund's complete adjuvant,FCA)建立大鼠佐剂性关节炎(adjuvant arthritis,AA)模型,足容积法测量继发侧足肿胀度,关节炎指数(arthritis index,AI)评分记录AA的发生及严重程度,HE染色观察关节组织病理学变化;分离培养成纤维样滑膜细胞(fibroblast-like synoviocytes,FLS)和腹腔巨噬细胞(peritoneal macrophage,PMΦ);ARMET真核细胞表达质粒pCIneo-ARMET-FLAG,ARMET小干扰RNA(small interfering RNA,siRNA)分别转染体外培养的FLS;MTT法检测细胞增殖活性;免疫荧光染色观察细胞形态和蛋白定位;逆转录聚合酶链反应(Reverse Transcription Polymerase Chain Reaction,RT-PCR)和免疫印迹(Western Blot,WB)分别检测相关基因在mRNA及蛋白水平的变化;放射免疫测定法(Radioimmunoassay,RIA)检测细胞培养上清中白介素-1β(interlukin-1β,IL-1β)、肿瘤坏死因子-α(tumor necrosis factor-alpha,TNF-α)水平;ELISA检测血清中ARMET、C-反应蛋白(C- reactive protein,CRP)、IL-1β及TNF-α水平。
     结果:
     1.免疫性关节炎动物模型的建立与评价
     1.1 mBSA诱导的兔关节炎模型的建立:关节腔内注射mBSA后,模型组兔出现明显的关节炎表现,膝关节红肿,活动受限;MRI扫描发现膝关节滑膜明显增厚,关节腔变窄;病理改变表现为滑膜组织增生,新生血管形成,炎性细胞浸润等;炎症滑膜组织中巨噬细胞的标志性蛋白白细胞分化抗原68(Cluster of Differentiation 68,CD68)和成肌纤维细胞的标志物平滑肌肌动蛋白α(α-smooth muscle actin,α-SMA)的表达明显增强;
     1.2大鼠AA模型的建立:AA大鼠致炎后d3~d12,表现为原发侧关节肿胀,行走不便,食欲减退,d12后出现继发侧关节肿胀,耳,尾出现炎性结节和红斑并伴有多发性全身关节病变,病理改变表现为膝关节滑膜组织增生,新生血管增多,血管翳形成,关节腔内可见淋巴细胞、浆细胞和单核细胞聚集,软骨和骨组织破坏等关节局部病理变化;外周血血清中TNF-α、IL-1β水平明显升高。以上结果提示mBSA诱导的兔关节炎和大鼠AA模型制备成功。
     2.免疫性关节炎症诱导的ER应激参与了炎症反应过程
     2.1炎症诱导ER应激:炎症滑膜组织中BiP的mRNA和蛋白水平明显增加,且在FLS、MLS中都有表达; AA大鼠PMΦ中BiP表达也明显增加,提示免疫性关节炎症能诱导滑膜细胞和PMΦ的ER应激。核转录因子CHOP在炎症滑膜组织中的表达略有增高,且仅表达于FLS,在MLS中不表达;而AA大鼠PMΦ中CHOP表达却明显增加,提示巨噬细胞的不同功能状态对ER应激的反应性不同。同时我们还发现模型组滑膜组织中滑膜素(Synoviolin/Hrd1)的mRNA和蛋白水平均明显增加,提示免疫性关节炎症能上调Synoviolin的表达。
     2.2 ER应激促进关节炎症进展:与正常FLS相比,模型组FLS的增殖能力明显增强,ER应激诱导剂tunicamycin能显著降低正常FLS的增殖,而对炎症FLS的增殖无明显影响,提示FLS对ER应激性损伤的敏感性下降,这可能是ER应激状态下滑膜细胞异常增殖的原因之一。另外,tunicamycin能促进炎症FLS中IL-1β,TNF-α的表达和分泌,从而进一步促进了滑膜细胞的异常增殖。
     3.免疫性关节炎症诱导ARMET表达及其与炎症程度的相关性3.1炎症诱导ARMET表达:在炎性增厚的滑膜组织中ARMET大量表达,且主
     要定位于α-SMA阳性细胞,在CD68阳性细胞中几乎不表达;而AA大鼠PMΦ中ARMET的表达明显增加,提示关节炎症能诱导ARMET表达,并且不同组织来源的巨噬细胞对ER应激的反应性不同。
     3.2炎症不同时期滑膜组织中ER应激及ARMET的表达情况:致炎后不同时期收集AA大鼠滑膜组织进行RT-PCR和WB检测,结果发现急性炎症期(d2左右)BiP表达明显升高,此后一直维持在较高的水平,到d28稍有下降;致炎d14左右ARMET表达明显升高,随后逐渐下降;而CHOP则一直维持在低水平缓慢上升的状态,提示ARMET参与了AA炎症反应的全过程,且对炎症刺激更为敏感。
     3.3炎症不同时期外周血中ARMET水平与炎症程度的相关性:致炎后d14,ARMET水平显著增高,随后逐渐下降,d28仍高于正常水平;同样,血清中CRP水平在致炎后一周内即明显升高,d14左右达到峰值,随后缓慢下降,与ARMET的变化趋势基本一致。相关性分析表明,AA大鼠血清中ARMET水平与继发性关节炎症状、血清中IL-1β和TNF-α水平呈负相关。提示炎症能诱导ARMET分泌,且血清中ARMET水平与关节炎症进展和程度密切相关。
     4. ARMET对成纤维样滑膜细胞增殖和炎症细胞因子产生的影响
     4.1 ARMET表达对FLS增殖的影响:ARMET过表达能抑制ER应激状态下FLS的增殖;下调内源性ARMET表达后,FLS的增殖能力增强;在体外培养的FLS中加入重组的人ARMET蛋白能剂量依赖性的抑制炎症滑膜细胞的增殖;
     4.2 ARMET表达对FLS表达和分泌IL-1β、TNF-α的影响:下调内源性ARMET表达使FLS表达和分泌IL-1β和TNF-α水平增加;而重组的人ARMET蛋白能剂量依赖性的降低FLS中IL-1β和TNF-α的表达和分泌。
     5.炎症诱导ARMET的核转运
     在AIA兔滑膜组织中,我们观察到ARMET在FLS中的定位与α-SMA表达量有关。α-SMA少量表达时,ARMET分布在胞浆中;而α-SMA大量表达时,细胞核内也有ARMET表达;体外培养的AA大鼠FLS中,未经tunicamycin处理的FLS中ARMET在胞核内表达很少,而在胞浆中含量较多;tunicamycin刺激24 hrs后,ARMET在细胞核内含量明显增多,而在胞浆中表达减少。提示tuncamycin能够诱导滑膜细胞中ARMET的核转运。
     结论:
     1)免疫性关节炎症能诱导ER应激,ER应激通过上调FLS中炎症因子的产生而起到促进炎症的作用;
     2)免疫性关节炎症上调ARMET表达,并且滑膜组织中表达ARMET的细胞类型主要为FLS;
     3) ARMET表达参与了AA大鼠炎症反应的全过程,且对早期炎症刺激敏感;
     4) AA大鼠PMΦ参与了炎症诱导的ER应激和ARMET表达,提示巨噬细胞的不同功能状态对ER应激的反应性不同;
     5) AA大鼠外周血中ARMET水平明显升高,并与继发性关节炎症状、血清中IL-1β、TNF-α和CRP水平具有相关性。提示炎症能诱导ARMET分泌,且血清中ARMET水平与关节炎症进展和程度密切相关。
     6) ARMET能抑制炎症滑膜细胞的增殖、减少炎症因子的产生;并且该作用可能与炎症诱导滑膜细胞中ARMET的核转运,进而参与下游基因转录调控有关。
Rheumatoid arthritis (RA) is an inflammatory, progressive, destructive autoimmune disease with synovial hyperplasia followed by impairment of quality of life. However, its exact mechanism(s) is not fully understood. The unfolded protein response (UPR) of the endoplasmic reticulum (ER) is a fundamental stress response used by eukaryotic cells to match protein synthesis demand to its capability to fold proteins within the ER to maintain cellular homeostasis. A variety of human disorders, including neurodegenerative diseases, autoimmune diseases and diabetes mellitus, are known to involve ER stress. Recent studies have been proposed that ER stress and the related signal pathway maybe involved in the pathogenesis of RA. However, the crucial questions about the role of ER stress in inflammation response of RA have not yet been answered. Armet (Arginine-Rich, Mutated in Early stage Tumors) gene is a commonly upregulated genes under various forms of ER stress in different cell types using microarray analysis. The recent studies show ARMET to be a secreted protein, and ER stress upregulates its expression and secretion. It was also found that ARMET is widely expressed in mammalian tissues and differently regulated by epileptic and ischemic insults in rodent brain and heart. These results suggest that ARMET may have important functions both under normal and pathological conditions. Therefore, we speculate up-regulated ARMET expression may be self-protective regulation, then, ARMET may play a role in inhibiting inflammation under inflammation-induced ER stress status.
     Objective:
     The purposes of this study were to investigate the ER stress activation and ARMET expression in antigen-induced arthritis model, analysis the relationship between ARMET expression and inflammation evolution. Furthermore, the possible effects of ER stress and ARMET on inflammation in antigen-induced arthritis were also explored.
     Methods:
     Methylated bovine serum albumin (mBSA) and Freund’s complete adjuvant (FCA) were employed to establish rabbit AIA model. Joint lesions were assessed by MRI and hematoxylin-erosin (HE) staining. Injection of FCA in rats was employed to establish AA model, hind paw volumes of rats were measured by volume meter, arthritis index (AI) was assayed every two days after immunization, pathological changes were observed by HE staining. Fibroblasts-like synovial cells (FLS) and peritoneal macrophage (PMΦ) were isolated and cultured at 37°C with 5% CO2. Small interference RNA for ARMET was systhesized from Genepharm. Co. LTD. Synoviocytes were then transfected with pCIneo-ARMET-FLAG or siRNA-ARMET respectively. MTT assay was used to determine cell proliferation. Cell morphologies and intracellular protein localization were examed by immunocytochemistry and immunofluorescence. Reverse transcription polymerase chain reaction (RT-PCR) and western blot (WB) were used to detect mRNA and protein level respectively. Radioimmunoassay (RIA) was used to detect the levels of pro-inflammatory cytokines IL-1βand TNF-αsecreted by FLS. ELISA assay was used to determine the levels of ARMET、IL-1β、TNF-αand CRP in peripheral blood serum of AA rats.
     Results:
     1. Establishment of antigen-induced arthritis model
     1.1 mBSA induced rabbit arthritis model: In the arthritis model group, MRI scanning showed marked thickening of joint synoviums. HE staining showed synovium thickening and inflammatory cells infiltration. The expressions of CD68 (activated macrophage marker) and fibroblast markerα-SMA were significantly increased in AIA rabbit synoviums.
     1.2 AA rat model: AA rats were established and hind volumes of rats were measured by volume meter. Inflammatory polyarthritis was induced in all immunization. Synoviocytes were proliferated three to ten layers and articular cartilages were destructed and infiltrated with inflammatory cells. The levels of TNF-αand IL-1βin peripheral blood serum of AA rats significantly increased. Above results suggest that arthritis models were established successfully.
     2. Diverse regulation of synovium inflammation by ER stress inducible proteins in antigen-induced arthritis
     2.1 ER stress-related proteins were upregulated in antigen-induced arthritis: BiP expression was remarkably up-regulated in thickened synoviums, while the total level of CHOP was slightly increased in the AA synovium. Additionally, unlike BiP expressing in bothα-SMA-positive fibroblasts and CD68-positive microphages, CHOP expression only was induced inα-SMA-positive fibroblasts, but not CD68-positive microphages. We also observed expressions of BiP and CHOP in PMΦderived from AA rats.
     2.2 Effects of ER stress on FLS proliferation and cytokine production:ER stress inducer tunicamycin significantly decreased the proliferation of normal FLS, while have little effect on proliferation of inflammatory FLS. Furthermore, Synoviolin was remarkably up-regulated in thickened synovial membrane, suggested inflammatory FLS overexpressing Synoviolin can resistance to ER stress-induced cell death. Additionally, tunicamycin significantly increases the expression and secretion of inflammatory cytokines IL-1β, TNF-αin AIA rabbits-derived FLS. These results suggest that ER stress response may be induced in the inflammatory status, which may contribute to the pathogenesis of AA by increased expression of genes encoding pro-inflammatory cytokines.
     3. Characteristics and implication of ARMET expression in antigen-induced arthritis
     3.1 Inflammation up-regulated ARMET expression : ARMET expression was remarkably up-regulated in inflammatory synovial tissue compared to normal controls. More interestingly, ARMET expression only was induced inα-SMA-positive fibroblasts, but not CD68-positive microphages. We also observed ARMET expression in PMΦderived from AA rats. These results suggest that inflammation up-regulated ARMET expression in FLS and PMΦ.
     3.2 Induction profile of ER stress and ARMET expression in synovial tissue during different phases of inflammation:BiP expression was increased significantly early in primary inflammation response (d2 ~ d7), then remained at a high level, then decreased slightly until d28; expression of ARMET showed a significant increase at d14 and then decreased slightly. CHOP expression increased slowly during inflammation development.
     3.3 The level of ARMET in peripheral blood serum is correlated with the degree of arthritis inflammation. The levels of ARMET in peripheral blood serum of AA rats increased significantly at d14, while serum CRP also exhibited a similar trend of expression. Correlation analysis revealed that arthritis symptoms, serum IL-1β, TNF-αlevels were negatively correlated with the level of ARMET during second inflammation phase.
     4. Effects of ARMET on FLS proliferation and inflammatory cytokine production Over-expression of ARMET inhibited cell proliferation under ER stress status. Inhibition of endogenous ARMET expression increased cell proliferation, promoted IL-1β、TNF-αexpression and secretion in AA rats-derived FLS. Similarly, exogenous ARMET protein can dose-dependently inhibited cell proliferation, and reduced IL-1βand TNF-αexpression and secretion in AA rats-derived FLS.
     5. ER stress induces nuclear translocation of ARMET in FLS Intriguingly,ARMET was found expressed in the nucleus of FLS whileα-SMA activated greatly, and tunicamycin induced nuclear translocation of ARMET in FLS. The data ruled out the possibility that ARMET is activated under ER stress and translocated to nucleus as a transcription factor,regulates downstream gene expression through specific binding with promoter sequences.
     Conclusions:
     1. ER stress may be induced by inflammation, which may contribute to the pathogenesis of arthritis by increased expression and secretion of pro-inflammatory cytokines;
     2. Inflammation up-regulated ARMET expression, and fibroblasts of the myofibroblastic phenotype seem to be the major cell type expressing ARMET in synovial tissues;
     3. ARMET is involved in the development of AA and more sensitive to inflammatory stimulus than BiP and CHOP;
     4. Inflammation induced ER stress and ARMET expression in AA PMΦ, suggesting different tissues-derived macrophages exhibited different responses to ER stress;
     5. The level of ARMET in PB of AA rats is increased and correlated with arthritis symptoms, pro-inflammatory cytokine, and CRP, suggesting ARMET is closely related to the progression of arthritis;
     6. ARMET plays a protective role in controlling inflammation through inhibiting synoviocytes proliferation and inflammatory cytokines production, and these effects may related to ER stress induced nuclear translocation of ARMET.
引文
1. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL: Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 1996, 384(6608):432-438.
    2. Kaufman RJ: Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999, 13(10):1211-1233.
    3. Zhang DD: Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 2006, 38(4):769-789.
    4. Rutkowski DT, Kaufman RJ: A trip to the ER: coping with stress. Trends Cell Biol 2004, 14(1):20-28.
    5. Wu J, Kaufman RJ: From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 2006, 13(3):374-384.
    6. Harding HP, Zhang Y, Ron D: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397(6716):271-274.
    7. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D et al: A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005, 307(5711):935-939.
    8. Jiang HY, Wek RC: Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 2005, 280(14):14189-14202.
    9. Latreille M, Larose L: Nck in a complex containing the catalytic subunit of protein phosphatase 1 regulates eukaryotic initiation factor 2alphasignaling and cell survival to endoplasmic reticulum stress. J Biol Chem 2006, 281(36):26633-26644.
    10. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002, 415(6867):92-96.
    11. Goffin L, Vodala S, Fraser C, Ryan J, Timms M, Meusburger S, Catimel B, Nice EC, Silver PA, Xiao CY et al: The unfolded protein response transducer Ire1p contains a nuclear localization sequence recognized by multiple beta importins. Mol Biol Cell 2006, 17(12):5309-5323.
    12. Nadanaka S, Okada T, Yoshida H, Mori K: Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol Cell Biol 2007, 27(3):1027-1043.
    13. Ito D, Walker JR, Thompson CS, Moroz I, Lin W, Veselits ML, Hakim AM, Fienberg AA, Thinakaran G: Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol 2004, 24(21):9456-9469.
    14. Liu CY, Xu Z, Kaufman RJ: Structure and intermolecular interactions of the luminal dimerization domain of human IRE1alpha. J Biol Chem 2003, 278(20):17680-17687.
    15. Reijonen S, Putkonen N, Norremolle A, Lindholm D, Korhonen L: Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res 2008, 314(5):950-960.
    16. Williams KJ, Tabas I: Atherosclerosis and inflammation. Science 2002, 297(5581):521-522.
    17. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS: Chemical chaperones reduce ER stress and restoreglucose homeostasis in a mouse model of type 2 diabetes. Science 2006, 313(5790):1137-1140.
    18. Ma Y, Hendershot LM: The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004, 4(12):966-977.
    19. Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C: Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 2003, 22(20):5435-5445.
    20. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH: Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 2003, 4(4):321-329.
    21. Zhang K, Wong HN, Song B, Miller CN, Scheuner D, Kaufman RJ: The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis. J Clin Invest 2005, 115(2):268-281.
    22. Iwakoshi NN, Pypaert M, Glimcher LH: The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 2007, 204(10):2267-2275.
    23. Zanin-Zhorov A, Tal G, Shivtiel S, Cohen M, Lapidot T, Nussbaum G, Margalit R, Cohen IR, Lider O: Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation. J Immunol 2005, 175(1):276-285.
    24. Blass S, Union A, Raymackers J, Schumann F, Ungethum U, Muller-Steinbach S, De Keyser F, Engel JM, Burmester GR: The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum 2001, 44(4):761-771.
    25. Corrigall VM, Bodman-Smith MD, Fife MS, Canas B, Myers LK, Wooley P, Soh C, Staines NA, Pappin DJ, Berlo SE et al: The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoidarthritis and prevents the induction of experimental arthritis. J Immunol 2001, 166(3):1492-1498.
    26. Amano T, Yamasaki S, Yagishita N, Tsuchimochi K, Shin H, Kawahara K, Aratani S, Fujita H, Zhang L, Ikeda R et al: Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev 2003, 17(19):2436-2449.
    27. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EE, Higgins DE, Schreiber S, Glimcher LH et al: XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008, 134(5):743-756.
    28. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D: Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 2004, 24(23):10161-10168.
    29. Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell 2000, 103(2):239-252.
    30. Cunnane G, Warnock M, Fye KH, Daikh DI: Accelerated nodulosis and vasculitis following etanercept therapy for rheumatoid arthritis. Arthritis Rheum 2002, 47(4):445-449.
    31. Tak PP, Bresnihan B: The pathogenesis and prevention of joint damage in rheumatoid arthritis: advances from synovial biopsy and tissue analysis. Arthritis Rheum 2000, 43(12):2619-2633.
    32. Newkirk MM: Rheumatoid factors: what do they tell us? J Rheumatol 2002, 29(10):2034-2040.
    33. Haque R, Lei F, Xiong X, Wu Y, Song J: FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development. Arthritis Res Ther 2010, 12(2):R66.
    34. Silverman GJ, Carson DA: Roles of B cells in rheumatoid arthritis. Arthritis Res Ther 2003, 5 Suppl 4:S1-6.
    35. Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR: Macrophages in rheumatoid arthritis. Arthritis Res 2000, 2(3):189-202.
    36. Wright C, Edelmann M, diGleria K, Kollnberger S, Kramer H, McGowan S, McHugh K, Taylor S, Kessler B, Bowness P: Ankylosing spondylitis monocytes show upregulation of proteins involved in inflammation and the ubiquitin proteasome pathway. Ann Rheum Dis 2009, 68(10):1626-1632.
    37. Apostolou A, Shen Y, Liang Y, Luo J, Fang S: Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp Cell Res 2008, 314(13):2454-2467.
    38. Tadimalla A, Belmont PJ, Thuerauf DJ, Glassy MS, Martindale JJ, Gude N, Sussman MA, Glembotski CC: Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart. Circ Res 2008, 103(11):1249-1258.
    39. Mizobuchi N, Hoseki J, Kubota H, Toyokuni S, Nozaki J, Naitoh M, Koizumi A, Nagata K: ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct Funct 2007, 32(1):41-50.
    40. Shridhar R, Shridhar V, Rivard S, Siegfried JM, Pietraszkiewicz H, Ensley J, Pauley R, Grignon D, Sakr W, Miller OJ et al: Mutations in the arginine-rich protein gene, in lung, breast, and prostate cancers, and in squamous cell carcinoma of the head and neck. Cancer Res 1996, 56(24):5576-5578.
    41. Shridhar V, Rivard S, Shridhar R, Mullins C, Bostick L, Sakr W, Grignon D, Miller OJ, Smith DI: A gene from human chromosomal band 3p21.1 encodes a highly conserved arginine-rich protein and is mutated in renal cell carcinomas. Oncogene 1996, 12(9):1931-1939.
    42. Evron E, Cairns P, Halachmi N, Ahrendt SA, Reed AL, Sidransky D: Normal polymorphism in the incomplete trinucleotide repeat of the arginine-rich protein gene. Cancer Res 1997, 57(14):2888-2889.
    43. Tanaka H, Shimada Y, Harada H, Shinoda M, Hatooka S, Imamura M, Ishizaki K: Polymorphic variation of the ARP gene on 3p21 in Japanese esophageal cancer patients. Oncol Rep 2000, 7(3):591-593.
    44. Petrova P, Raibekas A, Pevsner J, Vigo N, Anafi M, Moore MK, Peaire AE, Shridhar V, Smith DI, Kelly J et al: MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 2003, 20(2):173-188.
    45. Zhou C, Xiao C, Commissiong JW, Krnjevic K, Ye JH: Mesencephalic astrocyte-derived neurotrophic factor enhances nigral gamma-aminobutyric acid release. Neuroreport 2006, 17(3):293-297.
    46. Yu YQ, Liu LC, Wang FC, Liang Y, Cha DQ, Zhang JJ, Shen YJ, Wang HP, Fang S, Shen YX: Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. J Cereb Blood Flow Metab 2010, 30(1):79-91.
    47.王法财,王海萍,李琪,方圣云,沈玉先. ARMET的原核表达及其单克隆抗体的制备.安徽医科大学学报; 2009, 44 ( 6 ):665-669.
    48. Dawson J, Gustard S, Beckmann N: High-resolution three-dimensional magnetic resonance imaging for the investigation of knee joint damage during the time course of antigen-induced arthritis in rabbits. Arthritis Rheum 1999, 42(1):119-128.
    49. Gao B, Calhoun K, Fang D: The proinflammatory cytokines IL-1beta and TNF-alpha induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2-ETS1 pathway. Arthritis Res Ther 2006, 8(6):R172.
    50. Yoshida H: ER stress and diseases. FEBS J 2007, 274(3):630-658.
    51. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D: CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998, 12(7):982-995.
    52. Yamasaki S, Yagishita N, Tsuchimochi K, Kato Y, Sasaki T, Amano T, Beppu M, Aoki H, Nakamura H, Nishioka K et al: Resistance to endoplasmic reticulum stress is an acquired cellular characteristic of rheumatoid synovial cells. Int J Mol Med 2006, 18(1):113-117.
    53. Gao B, Lee SM, Chen A, Zhang J, Zhang DD, Kannan K, Ortmann RA, Fang D: Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Rep 2008, 9(5):480-485.
    54. Mori H, Nakanishi T: [Signal transduction of inflammatory synoviocytes in rheumatoid arthritis]. Yakugaku Zasshi 2008, 128(2):263-268.
    55. Szekanecz Z, Koch AE: Update on synovitis. Curr Rheumatol Rep 2001, 3(1):53-63.
    56. Chen V, Croft D, Purkis P, Kramer IM: Co-culture of synovial fibroblasts and differentiated U937 cells is sufficient for high interleukin-6 but not interleukin-1beta or tumour necrosis factor-alpha release. Br J Rheumatol 1998, 37(2):148-156.
    57. Dumonde DC, Glynn LE: The production of arthritis in rabbits by an immunological reaction to fibrin. Br J Exp Pathol 1962, 43:373-383.
    58. Henderson B, Glynn LE: Metabolic alterations in the synoviocytes in chronically inflamed knee joints in immune arthritis in the rabbit: comparison with rheumatoid arthritis. Br J Exp Pathol 1981, 62(1):27-33.
    59. Consden R, Doble A, Glynn LE, Nind AP: Production of a chronic arthritiswith ovalbumin. Its retention in the rabbit knee joint. Ann Rheum Dis 1971, 30(3):307-315.
    60. McPhee S, Hodges LD, Wright PF, Wynne PM, Kalafatis N, Macrides TA: Prophylactic and therapeutic effects of Mytilus edulis fatty acids on adjuvant-induced arthritis in male Wistar rats. Prostaglandins Leukot Essent Fatty Acids 2010, 82(2-3):97-103.
    61. Fearon U, Griosios K, Fraser A, Reece R, Emery P, Jones PF, Veale DJ: Angiopoietins, growth factors, and vascular morphology in early arthritis. J Rheumatol 2003, 30(2):260-268.
    62. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O et al: Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 2003, 38(5):605-614.
    63. Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS: Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci U S A 2006, 103(28):10741-10746.
    64. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA et al: The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003, 5(9):781-792.
    65. Lin W, Bailey SL, Ho H, Harding HP, Ron D, Miller SD, Popko B: The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J Clin Invest 2007, 117(2):448-456.
    66. Nugent AE, Speicher DM, Gradisar I, McBurney DL, Baraga A, Doane KJ, Horton WE, Jr.: Advanced osteoarthritis in humans is associated with altered collagen VI expression and upregulation of ER-stress markers Grp78 andbag-1. J Histochem Cytochem 2009, 57(10):923-931.
    67. Corrigall VM, Bodman-Smith MD, Brunst M, Cornell H, Panayi GS: Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum 2004, 50(4):1164-1171.
    68. Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y, Mori M: Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 2004, 11(4):403-415.
    69. Pino SC, O'Sullivan-Murphy B, Lidstone EA, Yang C, Lipson KL, Jurczyk A, diIorio P, Brehm MA, Mordes JP, Greiner DL et al: CHOP mediates endoplasmic reticulum stress-induced apoptosis in Gimap5-deficient T cells. PLoS One 2009, 4(5):e5468.
    70. Ron D, Habener JF: CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 1992, 6(3):439-453.
    71. Shin YJ, Han SH, Kim DS, Lee GH, Yoo WH, Kang YM, Choi JY, Lee YC, Park SJ, Jeong SK et al: Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res Ther 2010, 12(1):R19.
    72. Rasheva VI, Domingos PM: Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 2009, 14(8):996-1007.
    73. Bordallo J, Plemper RK, Finger A, Wolf DH: Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell 1998, 9(1):209-222.
    74. Bays NW, Wilhovsky SK, Goradia A, Hodgkiss-Harlow K, Hampton RY: HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell 2001, 12(12):4114-4128.
    75. Yamasaki S, Yagishita N, Nishioka K, Nakajima T: The roles of synoviolin in crosstalk between endoplasmic reticulum stress-induced apoptosis and p53 pathway. Cell Cycle 2007, 6(11):1319-1323.
    76. Yamasaki S, Yagishita N, Tsuchimochi K, Nishioka K, Nakajima T: Rheumatoid arthritis as a hyper-endoplasmic-reticulum-associated degradation disease. Arthritis Res Ther 2005, 7(5):181-186.
    77. Shen Y, Ballar P, Apostolou A, Doong H, Fang S: ER stress differentially regulates the stabilities of ERAD ubiquitin ligases and their substrates. Biochem Biophys Res Commun 2007, 352(4):919-924.
    78. Strand V, Kavanaugh AF: The role of interleukin-1 in bone resorption in rheumatoid arthritis. Rheumatology (Oxford) 2004, 43 Suppl 3:iii10-iii16.
    79. Niki Y, Yamada H, Kikuchi T, Toyama Y, Matsumoto H, Fujikawa K, Tada N: Membrane-associated IL-1 contributes to chronic synovitis and cartilage destruction in human IL-1 alpha transgenic mice. J Immunol 2004, 172(1):577-584.
    80. Matsuno H, Yudoh K, Katayama R, Nakazawa F, Uzuki M, Sawai T, Yonezawa T, Saeki Y, Panayi GS, Pitzalis C et al: The role of TNF-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse chimera. Rheumatology (Oxford) 2002, 41(3):329-337.
    81. Saluk-Juszczak J, Wachowicz B: [The proinflammatory activity of lipopolysaccharide]. Postepy Biochem 2005, 51(3):280-287.
    82. Isomaki P, Punnonen J: Pro- and anti-inflammatory cytokines in rheumatoid arthritis. Ann Med 1997, 29(6):499-507.
    83. Kaneko M, Tomita T, Nakase T, Ohsawa Y, Seki H, Takeuchi E, Takano H, Shi K, Takahi K, Kominami E et al: Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint of rheumatoid arthritis. Rheumatology (Oxford) 2001, 40(3):247-255.
    84. Ferenbach D, Hughes J: Macrophages and dendritic cells: what is the difference? Kidney Int 2008, 74(1):5-7.
    85. Rabinowitz SS, Gordon S: Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli. J Exp Med 1991, 174(4):827-836.
    86. da Silva RP, Gordon S: Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein. Biochem J 1999, 338 ( Pt 3):687-694.
    87. Aziz N, Fahey JL, Detels R, Butch AW: Analytical performance of a highly sensitive C-reactive protein-based immunoassay and the effects of laboratory variables on levels of protein in blood. Clin Diagn Lab Immunol 2003, 10(4):652-657.
    88. Kushner I, Rzewnicki DL: The acute phase response: general aspects. Baillieres Clin Rheumatol 1994, 8(3):513-530.
    89. Dessein PH, Joffe BI, Stanwix AE: High sensitivity C-reactive protein as a disease activity marker in rheumatoid arthritis. J Rheumatol 2004, 31(6):1095-1097.
    90. Panayi G, Corrigall V: BiP: a new biologic immunomodulator for the treatment of rheumatoid arthritis. Autoimmun Rev 2004, 3 Suppl 1:S16-17.
    91. Zanin-Zhorov A, Bruck R, Tal G, Oren S, Aeed H, Hershkoviz R, Cohen IR, Lider O: Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines. J Immunol 2005, 174(6):3227-3236.
    92. De AK, Kodys KM, Yeh BS, Miller-Graziano C: Exaggerated human monocyte IL-10 concomitant to minimal TNF-alpha induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus. J Immunol 2000, 165(7):3951-3958.
    93. Sur R, Lyte PA, Southall MD: Hsp27 regulates pro-inflammatory mediator release in keratinocytes by modulating NF-kappaB signaling. J Invest Dermatol 2008, 128(5):1116-1122.
    94. Johnson BJ, Le TT, Dobbin CA, Banovic T, Howard CB, Flores Fde M, Vanags D, Naylor DJ, Hill GR, Suhrbier A: Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem 2005, 280(6):4037-4047.
    95. Panayi GS, Corrigall VM: BiP, an anti-inflammatory ER protein, is a potential new therapy for the treatment of rheumatoid arthritis. Novartis Found Symp 2008, 291:212-216; discussion 216-224.
    96. Aneja R, Odoms K, Dunsmore K, Shanley TP, Wong HR: Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol 2006, 177(10):7184-7192.
    97. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK: HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000, 6(4):435-442.
    98. Quintana FJ, Cohen IR: Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 2005, 175(5):2777-2782.
    99. Stanislawska J, Olszewski WL: RNA interference--significance and applications. Arch Immunol Ther Exp (Warsz) 2005, 53(1):39-46.
    100. Scherr M, Eder M: Gene silencing by small regulatory RNAs in mammalian cells. Cell Cycle 2007, 6(4):444-449.
    101. Bantounas I, Phylactou LA, Uney JB: RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 2004, 33(3):545-557.
    102. Jain AK, Bloom DA, Jaiswal AK: Nuclear import and export signals in control of Nrf2. J Biol Chem 2005, 280(32):29158-29168.
    103. Zhang X, Wang KS, Wang ZQ, Xu LS, Wang QW, Chen F, Wei DZ, Han ZG: Nuclear localization signal of ING4 plays a key role in its binding to p53. Biochem Biophys Res Commun 2005, 331(4):1032-1038.
    104. Kovac CR, Emelyanov A, Singh M, Ashouian N, Birshtein BK: BSAP (Pax5)-importin alpha 1 (Rch1) interaction identifies a nuclear localization sequence. J Biol Chem 2000, 275(22):16752-16757.
    1. Lin W, Kemper A, Dupree JL, Harding HP, Ron D, Popko B. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain 2006; 129:1306-18.
    2. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8:519-29.
    3. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005; 74:739-89.
    4. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287:664-6.
    5. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5:897-904.
    6. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10:3787-99.
    7. Kincaid MM, Cooper AA. ERADicate ER stress or die trying. Antioxid Redox Signal 2007; 9:2373-87.
    8. Pino SC, O'Sullivan-Murphy B, Lidstone EA, Yang C, Lipson KL, Jurczyk A, et al. CHOP mediates endoplasmic reticulum stress-induced apoptosis inGimap5-deficient T cells. PLoS One 2009; 4:e5468.
    9. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 2008; 118:3378-89.
    10. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 2005; 24:1243-55.
    11. Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 2004; 279:45495-502.
    12. Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 2007; 129:1337-49.
    13. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306:457-61.
    14. Reijonen S, Putkonen N, Norremolle A, Lindholm D, Korhonen L. Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res 2008; 314:950-60.
    15. Meyer M, Caselmann WH, Schluter V, Schreck R, Hofschneider PH, Baeuerle PA. Hepatitis B virus transactivator MHBst: activation of NF-kappa B, selective inhibition by antioxidants and integral membrane localization. EMBO J 1992;
    11:2991-3001.NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 2008; 453:807-11.
    20. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 2006; 26:3071-84.
    21. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 2004; 24:10161-8.
    22. Wu S, Tan M, Hu Y, Wang JL, Scheuner D, Kaufman RJ. Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis. J Biol Chem
    16. He B. Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 2006; 13:393-403.
    17. Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 2007; 18:716-31.
    18. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103:239-52.
    19. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. 2004; 279:34898-902.
    23. Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C, et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 2008; 27:285-99.
    26. Tu BP, Weissman JS. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 2004; 164:341-6.
    27. Tu BP, Weissman JS. The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 2002; 10:983-94.
    28. Cuozzo JW, Kaiser CA. Competition between glutathione and protein thiols for disulphide-bond formation. Nat Cell Biol 1999; 1:130-5.
    29. Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 2007; 9:2277-93.
    30. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 2006; 441:513-7.
    31. Xu W, Liu L, Charles IG, Moncada S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 2004; 6:1129-34.
    32. Mathers J, Fraser JA, McMahon M, Saunders RD, Hayes JD, McLellan LI. Antioxidant and cytoprotective responses to redox stress. Biochem Soc Symp 2004:157-76.
    24. Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 2008; 8:663-74.
    25. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000; 25:502-8.
    33. Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 2006; 38:769-89.
    34. Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 2004; 279:20108-17.
    35. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 2006; 124:587-99.
    36. Xue X, Piao JH, Nakajima A, Sakon-Komazawa S, Kojima Y, Mori K, et al. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem 2005; 280:33917-25.
    37. Lin W, Harding HP, Ron D, Popko B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. J Cell Biol 2005; 169:603-12.
    38. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003; 5:781-92.
    39. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002; 110:851-60.
    40. Zhou J, Werstuck GH, Lhotak S, de Koning AB, Sood SK, Hossain GS, et al. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation 2004; 110:207-13.
    41. Yamamuro A, Yoshioka Y, Ogita K, Maeda S. Involvement of endoplasmic reticulum stress on the cell death induced by 6-hydroxydopamine in humanneuroblastoma SH-SY5Y cells. Neurochem Res 2006; 31:657-64.
    42. Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 2004; 145:5087-96.
    43. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 2003; 38:605-14.
    44. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313:1137-40.
    45. Lin W, Bailey SL, Ho H, Harding HP, Ron D, Miller SD, et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J Clin Invest 2007; 117:448-56.
    46. Szekanecz Z, Koch AE. Update on synovitis. Curr Rheumatol Rep 2001; 3:53-63.
    47. Amano T, Yamasaki S, Yagishita N, Tsuchimochi K, Shin H, Kawahara K, et al. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev 2003; 17:2436-49.
    48. Gao B, Lee SM, Chen A, Zhang J, Zhang DD, Kannan K, et al. Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Rep 2008; 9:480-5.
    49. Shin YJ, Han SH, Kim DS, Lee GH, Yoo WH, Kang YM, et al. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res Ther 2010; 12:R19.
    50. Yamasaki S, Yagishita N, Tsuchimochi K, Nishioka K, Nakajima T. Rheumatoidarthritis as a hyper-endoplasmic-reticulum-associated degradation disease. Arthritis Res Ther 2005; 7:181-6.
    51. Yamasaki S, Yagishita N, Nishioka K, Nakajima T. The roles of synoviolin in crosstalk between endoplasmic reticulum stress-induced apoptosis and p53 pathway. Cell Cycle 2007; 6:1319-23.
    52. Blass S, Union A, Raymackers J, Schumann F, Ungethum U, Muller-Steinbach S, et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum 2001; 44:761-71.
    53. Corrigall VM, Bodman-Smith MD, Fife MS, Canas B, Myers LK, Wooley P, et al. The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J Immunol 2001; 166:1492-8.
    54. Corrigall VM, Bodman-Smith MD, Brunst M, Cornell H, Panayi GS. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum 2004; 50:1164-71.
    55. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008; 134:743-56.
    56.Scheuner D, Vander Mierde D, Song B, Flamez D, Creemers JW, Tsukamoto K, et al. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med 2005; 11:757-64.
    57. Ron D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J Clin Invest 2002; 109:443-5.
    58. Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulinresistance. Proc Natl Acad Sci U S A 2006; 103:10741-6.
    59. Williams KJ, Tabas I. Atherosclerosis and inflammation. Science 2002; 297:521-2.
    60. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 2005; 280:21763-72.
    61. Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol 2006; 26:2490-6.
    62. Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death Differ 2006; 13:385-92.
    63. Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 2008; 22:1451-64.
    64. Wang HQ, Takahashi R. Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson's disease. Antioxid Redox Signal 2007; 9:553-61.
    65. Silva RM, Ries V, Oo TF, Yarygina O, Jackson-Lewis V, Ryu EJ, et al. CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J Neurochem 2005; 95:974-86.
    66. Hetz C, Lee AH, Gonzalez-Romero D, Thielen P, Castilla J, Soto C, et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci U S A 2008; 105:757-62.
    67. Frohman EM, Racke MK, Raine CS. Multiple sclerosis--the plaque and its pathogenesis. N Engl J Med 2006; 354:942-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700