用户名: 密码: 验证码:
纳米稀土氧化物的控制制备及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于稀土元素特殊的电子结构,稀土材料具有独特的性质,在许多催化领域有着广泛的应用,但是在复合固体推进剂燃烧催化方面的研究却很少。稀土材料的催化活性除与其电子结构有关外,还与其组成、尺寸、物相、分散性、比表面积和表面状态等有密切关系,因此,稀土催化材料的控制制备引起全世界范围内科学家的研究兴趣。本论文在纳米稀土氧化物的控制制备新方法及其催化固体推进剂燃烧性能方面的进行了一些有益的探索。
     在第二章中,首次以乙二醇为燃料采用溶液燃烧法一步合成了CeO_2基纳米晶,通过由相关热力学数据计算得到的溶液燃烧的绝热火焰温度研究了乙二醇和硝酸根摩尔比(EG/NO_3~-)对燃烧产物性质的影响。乙二醇无毒、廉价易得、燃烧反应缓和,在溶液燃烧法合成中具有一定的推广应用价值。
     为了解决溶液燃烧合成纳米粒子中普遍存在的团聚问题,提高产物比表面积,提出了一种快速制备高比表面氧化铈基纳米粉体的新方法——盐助溶液燃烧法(SSCS)。研究发现在传统溶液燃烧合成(CSCS)的混合液中加入可溶性惰性盐导致产物比表面积剧增十多倍,得到4~6 nm高分散性的纳米氧化铈粒子。该法应用于Ce_(0.75)Zr_(0.25)O_2固溶体的制备发现Ce_(0.75)Zr_(0.25)O_2比表面积由不加NaCl时的17.34m~2/g剧增至208.17m~2/g,产物为球形粒子之间松软团聚形成的介孔结构。第二章还研究了乙二醇量和盐量对产物性质的影响,初步讨论了盐助燃烧合成高分散性的CeO_2基纳米粒子的可能机理,考察了合成的CeO_2基纳米粉对高氯酸铵(AP)热分解的催化效果。
     基于第二章的工作,第三章首先研究了以乙二醇为燃料采用SSCS法直接制备高分散性的钙钛矿型LaMnO_3纳米粒子。产物粒子的物相、分散性和形貌可以通过调节乙二醇量和NaCl量进行控制。非常有意义的是在适当的条件下,可以得到立方相和斜方相的LaMnO_3纳米晶以及大小均匀的钙钛矿型LaMnO_3立方形纳米粒子。
     以甘氨酸为燃料采用SSCS法得到的含NaCl的前驱体经一定温度煅烧处理制备了高分散性的钙钛矿型NdCoO_3纳米粒子。NaCl的引入抑制了粒子的烧结和团聚,使产物比表面积由CSCS法的1.7m~2/g增至43.2m~2/g,团聚的大颗粒变成了粒径约10nm分散粒子。除提高煅烧温度外,NaCl的加入及其量的增加在煅烧过程促进钙钛矿相的形成和晶粒度的增大。
     TG-DSC结果表明SSCS法合成的纳米LaMnO_3和NdCoO_3对AP的热分解有强烈的催化活性,前者最多使AP的高温分解峰温降低103.9℃,表观分解热增加838 J/g;后者最多使得AP的高温分解峰温降低116.7℃,表观分解热增加947 J/g,其催化性能与合成ABO_3粒子的大小、分散性和物相有关,但是很大程度上决定于其比表面积大小,最后初步探讨了纳米ABO_3催化AP热分解的机理
     在第四章中,首次通过非水相体系的乙二醇凝胶燃烧法制备了纳米Y_2O_3和Nd_2O_3及其掺杂产物。制备的Y_2O_3粒子呈球形,粒径约20 nm;Nd_2O_3粒子呈球形,分散性好,粒径在30~40nm。另外研究了乙二醇与金属离子的摩尔比和煅烧温度对产物性质的影响,该制备方法条件控制简单,成胶时间较短,避免了掺杂时偏析的出现。
     催化性能研究表明2wt.%的纳米Y_2O_3和Nd_2O_3可分别使AP的高温分解峰温降低106.7℃和96.2℃,表观分解热增加645 J/g和625 J/g;在Y_2O_3和Nd_2O_3中分别掺入3.4%的Fe~(3+),Co~(2+),Ni~(2+),Cu~(2+)和Mn~(2+),可使AP的高温分解峰温进一步降低1~10℃,表观分解热增加;随着Co~(2+)掺入量的增加,掺杂后Y_2O_3和Nd_2O_3使AP的表观分解热增加,高温分解峰温度变化不大或有所降低。
     为了便于放大制备,第五章首先研究了以NdCl_3·6H_2O+CoCl_2·6H_2O+6NaOH为原料,机械化学法制备钙钛矿型NdCoO_3纳米粒子。通过利用球磨过程原位生成的和外加的NaCl在煅烧过程的阻聚作用,可以改善产物粒子的分散性和形貌。随着外加NaCl量的增加,产物的分散性提高,比表面积增大,还能促进NdCoO_3成相。当外加的NaCl量和煅烧温度合适时,可以得到高分散性的NdCoO_3立方形纳米粒子和纳米方棒。该法的特点是原料易得,操作方便,工艺简单,产率高和易于工业化制备。
     然后以Nd_2O_3和Co_3O_4为原料,采用湿固相机械化学法通过在球磨过程中添加稀释剂ZnO制备了粒径在10~23 nm的椭球状NdCoO_3。随着ZnO量的增加,产物比表面积由原来7.39 m~2/g增至36.11 m~2/g;随着煅烧温度的提高,产物晶粒度增大,比表面积减小,但是该法制备时间长,能耗较大,稀释剂ZnO完全分离较为困难。
     最后考察了分别以氯化物和氧化物为原料机械化学法制备的纳米NdCoO_3对AP的热分解的催化性能,前者最多使AP的高温分解峰温降低144.3℃,表观分解热增加632 J/g;后者最多使得AP的高温分解峰温降至321.6℃,表观分解热增至1210 J/g。就同一方法制备的纳米NdCoO_3而言,比表面积大,催化活性高。在AP/HTPB复合固体推进剂中添加3%纳米NdCoO_3后,推进剂样品的低温和高温放热峰重叠,放热峰温度降低了33℃。
     燃烧性能试验表明添加3wt.%纳米NdCoO_3后,AP/HTPB复合固体推进剂在4MPa,7PMa和10MPa三个压力左右燃烧速度分别提高约40.0%,40.6%和23.7%;在4~7 MPa,7~10MPa和4~10 MPa压力范围的压力指数分别降低了16.05%,44.4%和32.1%。总之,无定形纳米NdCoO_3能大幅度提高AP/HTPB复合固体推进剂的燃速,明显降低燃烧压力指数,是一种很有希望应用于AP/HTPB复合固体推进剂的性能优良的燃烧调节剂。
Rare earth materials have found wide applications in many catalytic areas due to theirunique properties depending on the peculiar electronic structures of rare earth elements,however, there are few studies on rare earth materials in catalytic combustion of compositesolid propellants. Besides their electronic structures, the catalytic properties of rare earthmaterials are intimately related to their composition, size, phase, dispersibility, specificsurface areas and surface state, et al. Therefore, controlled synthesis of rare earth materialshas drawn continuous and worldwide research attention. In this dissertation, valuableexplorations have been carried out on the new chemical synthetic strategies ofnanostructured rare earth oxides and their catalytic properties for combustion of compositesolid propellants.
     In chapter 2, one-step synthesis of nanocrystalline ceria-based powders via a solutioncombustion route using ethylene glycol as a novel fuel is described. An interpretationbased on an adiabatic flame temperature for different fuel-to-oxidant ratios(EG/NO_3~-) hasbeen proposed for the nature of combustion and its correlation with the powdercharacteristics. Ethylene glycol is nontoxic, cheap, easily available, mild duringcombustion reaction and has broad and potentiao applications in solution combustionsynthesis.
     To solve the problem of particle agglomeration widely existing in solutioncombustion synthesis and enhance specific surface area of the combustion resultants, Wehave come up with a facile and novel salt-assisted solution combustion synthesis (SSCS)route to high surface area ceria-based nanopowders. It is revealed that the introduction ofsoluble and inert salt in the conventional combustion synthesis process was found to resultin the formation of 4~6 nm well-dispersed ceria nanoparticles and a more than ten-foldincrease in the specific surface area of the products from 14.10 to 156.74 m~2/g. In the caseof SSCS of Ce_(0.75)Zr_(0.25)O_2 solid solution, the addition of NaCl enhanced the specific surfacearea of the products from 17.34 to 208.17 m~2/g and led to the mesoporous structure formedby the loose agglomeration of monodisperse nanoparticles. The effects of such influencingfactors as the fuel-to-oxidant ratio, and the nature and amount of added salt on thecharacteristics of the products were investigated. A mechanism scheme was proposed toillustrate the possible formation processes of highly dispersed ceria-based nanoparticles. Finally, the influnce of nanocrystalline ceria-based powders on thermal decomposition ofammonium perchlorate(AP) was studied.
     On the basis of the research of chapter 2, chapter 3 deals firstly with preparation ofthe well-dispersed perovskite LaMnO_3 nanoparticles by a solution salt-assisted combustionprocess, using ethylene glycol as a fuel and nitrates as oxidants. By tuning thefuel-to-oxidant ratio and the amount of added NaCl, the phase, dipersibility andmorphology of the resultants can be controlled. It is very significant that the cubic orrehombic LaMnO_3 nanorystal and perovskite nanocubes with narrow size distribution canbe obtained under the proper conditions.
     In the second part of chapter 3, highly dispersed perovskite NdCoO_3 nanoparticleshave been successfully prepared by calcining the NaCl-containing precursor derived fromsalt-assisted solution combustion process employing glycine as a fuel. The facileintroduction of NaCl in the conventional combustion synthesis process was found toprevent particles from sintering and agglomerating and increase specific surface area of theresultants from 1.70 to 43.22 m~2/g. Besides enhancing calcination temperature, thepresence and increase of salt promotes formation of peroskite phase and growth ofcrystallite size in the process of calcination.
     The TG-DSC results indicate that the combustion-derived nano-sized LaMnO_3 andNdCoO_3 show the intense catalytic activity on thermal decomposition of AP. The formerdecreases the temperature of AP high temperature decomposition peak by 103.9℃andincreases the apparent decomposition heat of AP by 838 J/g at most while the latterdecreases the temperature of AP high temperature decomposition peak by 116.7℃andincreases the apparent decomposition heat of AP by 947 J/g at most. Their catalytic activityis related to their particle size, dispersibility and phase, but is to large degree dependent ontheir specific surface area in the last analysis. Finally, the possible mechanism of catalyticdecomposition of AP by nano-sized ABO_3 was preliminarily discussed.
     In chapter 4, we discuss preparation of nano-sized Y_2O_3 and Nd_2O_3 as well as theirdoped resultants via none-aqueous sol-gel process based on hydrated nitrate and ethyleneglycol, auto-propagating combustion and subsequent calcinations (gel combustionmethod).The as-prepared Y_2O_3 particles are spherical in shape and 20 nm in particle sizewhile the resultant Nd_2O_3 crystallites are spherical, well-dispersedand range from 30 nm to40 nm in size. Further, the effects of the molar ratio of ethylene glycol to yttrium ion,calcination temperature on crystallite size of the products were also studied. In summary,the synthetic method is easy to control, shortens the time to form xerogel and avoids segregation when doping.
     The results in catalysis show that the 2wt.%Y_2O_3 and Nd_2O_3 respectively reduce thetemperature ofAP exothermic peak by 106.7℃and 96.2℃as well as enhance the apparentdecomposition heat by 645 J/g and 625 J/g. When doping 3.4%Fe~(3+), Co~(2+), Ni~(2+), Cu~(2+) andMn~(2+) into Y_2O_3 and Nd_2O_3, respectively, the doped resultants further decrease thetemperature of AP high temperature decomposition peak by 1~10℃and increases theapparent decomposition heat of AP. As the amount of doped Co~(2+) increases, the dopedY_2O_3 and Nd_2O_3 increase the apparent decomposition heat of AP, and have no greatinfluence on or reduce the temperature of AP high temperature decomposition peak.
     In an effort to synthesize nano-sized NdCoO_3 a on a large scale, chapter 5investigates the preparation of nano-sized perovskite NdCoO_3 via a mechanochemicalprocess of NdCl_3·6H_2O+CoCl_2·6H_2O+6NaOH. It is observed that the NaCl derived in-situduring milling and added NaCl can improve the dispersibility and morphology of theas-synthesized particles owing to inhibiting agglomeration and accelerating mass transfer.Moreover, an increasing addition of NaCl not only improves particle dispersibility,increases specific surface area of the product but also promotes the formation of perovskiteNdCoO_3. It is interesting that highly dispersed NdCoO_3 nanocubes or nanorods can beprepared under the proper conditions. The preparative method is characterized byavailability in raw materials, convenient operation, simple process, high yield and potentialindustrialization.
     In another effort, the well dispersed elliptical NdCoO_3 with particle size in the rangeof 10~23nm was prepared via wet-solid -phase milling and subsequent calcination ofNd_2O_3 and Co_3O_4 mixture, wherein the ZnO diluent was added after some milling period.The results reveal that an increasing addition of ZnO increases the specific surface area ofthe as-prepared NdCoO_3 from 7.39 m~2/g in the absence of ZnO to 36.11m~2/g and thatincreasing the calcination temperature results in crystallite growth and reduction in specificsurface area However, the synthetic process has such disadvantage as long preparativeperiod, high energy comsumption and difficulty in complete separation of ZnO diluent.
     In the last part of chapter 5, we investigates catalytic properties of the nano-sizedNdCoO_3 prepared by a mechanochemical route, respectively using oxide and hydratechloride as raw materials, for the thermal decomposition of AP. The catalytic activityinvestigation demonstrates that the former decreases the temperature of AP hightemperature decomposition peak by 144.3℃and increases the apparent decompositionheat of AP by 632 J/g at most while the latter decreases the temperature of AP high temperature decomposition peak by 144.3℃and increases the apparent decompositionheat of AP by 695 J/g at most. As to the nano-sized NdCoO_3 synthesized by the same route,the larger the specific surface area is, the higher the catalytic activity is. The addition of3wt.%amorphous NdCoO_3 nanoparticles into the AP/HTPB composite solid propellantincorporates two exothermic peaks of the composite solid propellant into one exothermicpeak, decreases the temperature of the exothermic peak by 33℃。
     The experiments in combustion characteristics show that the addition of 3wt.%nano-sized NdCoO_3 nanoparticles into the AP/HTPB composite solid propellant,respectively, enhances the burning rate at the pressures of about 4MPa, 7 PMa and 10MPby 40.0%, 40.6%and 23.7%, reduces the pressure exponents in the pressure scopes of4~7 MPa, 7~10MPa and 4~10 MPa by 16.05%, 44.4%and 32.1%. In summary, theamorphous nano-sized NdCoO_3 is expected to be an excellent and promising modifier forcombustion of the AP/HTPB composite solid propellant.
引文
[1] 张立德.超微粉制备与应用研究.北京:中国石化出版社,2001
    [2] 李凤生.超细粉体技术.北京:国防工业出版社,2000
    [3] 倪嘉缵,洪广言.稀土新材料及新流程进展.北京:科学出版社,1998
    [4] 徐如人.无机合成与制备化学.北京:高等教育出版社,2001:532-540
    [5] Fokema M D, Chiu E, Ying J Y. Synthesis and characterization of nanocrystalline yttrium oxide prepared with tetraalkylammonium hydroxides. Langmuir 2000,16(7): 3154-3159
    [6] 翁端,吴小东,徐鲁华,等.锶和铈对LaMnO_(3+λ)稀土纳米钙钛矿材料性能的影响.中国稀土学报.2001,19(4):338-342
    [7] Subramanian R, Shankar P. Synthesis of nanocrystalline yttria by sol-gel method. Mater Lett. 2001,48(6):342-346
    [8] Okuyama K, Lenggoro I W, Tohge N. Preparation of ZnS and CdS fine particles with different particle sizes by a spray-pyrolysis method. J. Mater. Sci. 1997, 32(5): 1229-1237
    [9] Lenggoro I W, Itoh Y, Iida N, Okuyama K, Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Mater. Res. Bull. 2003, 38(14): 1819-1827
    [10] Xia B, Lenggoro I W, Okuyama K. Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition. Adv. Mater. 2001, 13(20): 1579-1582
    [11] Itoh Y, Lenggoro I W, Okuyama K. Size tunable synthesis of highly crystalline BaTiO_3 nanoparticles using salt-assisted spray pyrolysis. J. Nanopart. Res. 2003, 5 (3-4): 191-198
    [12] Xia B, Lenggoro I W, Okuyama K. Nanoparticle separation in salted droplet microreactors. Chem. Mater. 2002,14(6):2623-2627
    [13] 郭景坤,徐跃萍.高压水热法制备ZrO_2超细粒子.硅酸盐学报.1992,20(3):286-291
    [14] Yu S H, Han Z H, Yang J, et al. Synthesis and formation mechanism of La_2O_2S via a novel solvothermal pressure-relief process. Chem. Mater. 1999,11(2): 192-194
    [15] 梅燕,韩业斌,李彦,等.水/油微乳液技术制备单分散纳米CeO_2.硅酸盐学报.2006,34(3):340-344
    [16] 周益明,忻新泉.低热固相合成化学.无机化学学报.1999,15(3):273-292
    [17] 雷立旭,忻新泉.室温固相反应与固体结构.化学通报.1997,(2):1-7
    [18] Boldyrev V V, Tkacova K. Mechanochemistry of solid: past, present, and prospects. J. Mater. Syth. Proc. 2000,8(3/4):121-132
    [19] Liu T, Zhang Y H, Shao H Y. Synthesis and characteristics of Sm_2O_3 and Nd_2O_3 nanopaticles. Langmuir. 2003,19(18):7569-7572
    [20] 唐波,葛介超,王春先,等.金属氧化物纳米材料的制备新进展.化工进展.2002,21(10):707-712
    [21] 李汶霞,殷声.低温燃烧合成陶瓷微粉.硅酸盐学报.1999,27(1):71-78
    [22] Kingsley J J, Patil K C. A novel combustion process for the synthesis of fine particle-aluminum and related oxide materials. Mater Lett. 1988,6(11/12):427-432
    [23] Patil K C, Aruna S T, Ekambaram S. Combustion synthesis. Curr. Opin. Solid St. M. 1997,2(2): 158-165
    [24] Patil K C, Aruna S T, Mimani T. Combustion synthesis: an update. Curr. Opin. Solid St. M. 2002,6(6):507-512
    [25] Quinelito A L, Longo E, Leite E R, Bernardi M I B, et al. Synthesis and sintering of ZrO_2-CeO_2 powder by use of polymeric precursor based on Pechini process. J. Mater. Sci. 2001,36(15):3825-3830
    [26] 冯胜雷,梁辉,王科伟,等Pechini法制备LiCoO_2机理的研究.无机材料学报.2005,(4):975-980
    [27] 李汶霞,殷声.低温燃烧合成中的有机物.材料导报.2000,14(5):45-48
    [28] 宿新泰,燕青芝,葛昌纯.低温燃烧合成超细陶瓷粉体的最新研究.化学进展.2005,17(3):430-436
    [29] Jain S R, Adiga K C, Vemeker V R P. A new approach to thermochemical calculation of condensed fuel-oxidizer mixtures. Combust. Flame, 1981,40(1):71-76
    [30] Chyi-Ching Hwang. Tsung-Yung Wu. Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method. Mater.Sci. Eng. B. 2004,111 (2-3): 197-206
    [31] Purohit R D, Sharma B P, Patil K T. Ultrafine ceria powders via glycine-nitrate combustion. Mater. Res. Bull. 2001,36(15) :2711-2721
    [32] Civera A, Pavese M, Saracco G, Specchia V. Combustion synthesis of perovskite-type catalysts for natural gas combustion Catal. Today. 2003,83(1-4):199-211
    [33] Dong Yong Chung, Eil H L. Microwave-induced combustion synthesis of Ce_(1-x)Sm_xO_(2-x/2) powder and its characterization. J.Alloys Compd. 2004,374(1-2): 69-73
    [34] Peters K. Mechanochemische Peaktionen. Frankfurt. 1962:78-98.
    [35] Gaffet E, Bernard F. Some recent developmets in mechanical activation and mechanosynthesis. J. Mater. Chem. 1999,9:305-314
    [36] 吴其胜,张少明,周勇敏,等.无机材料机械力化学研究进展.材料科学与工程.2001,19(1):137-141
    [37] 杨华明,陈德良,邱冠周.超细粉碎机械化学的研究进展.中国粉体技术.2002,8(2):32-37
    [38] Gopalan S, Singhal S C. Mechanochemical synthesis of nano-sized CeO_2. Scripta. Mater. 2000,42(10):993-996
    [39] Shu J, Kaliaguine S. Well-dispersed perovskite-type oxidation catalysts. Appl.Catal. B. 1998,16(4):L303-L308
    [40] Tsuzuki T, McCormick P G. Synthesis of CdS quantum dots by mechano-chemical reaction. Appl. Phys. A 1997,65(6):607-609
    [41] Ding J, Tsuzuki T, McCormick P G., Street R. Ultrafine Cu particles prepared by mechanochemical process. J. Alloys Compd. 1996,234(2):L l-L3
    [42] Todaka Y, McCormick PG, Tsuchiya K, et al. Synthesis of Fe-Cu ultrafine particles by mechanochemical processing and their characterization. Scripta mater. 2001, 44 (8-9):1797-1801
    [43] Senna M. Recent development of materials design through a mechanochemical route. Int. J. Inorg. Mater. 2001,3:509-514
    [44] Ivanov E, Suryanarayana C. Materials and process design through mechano-chemical routes. J. Mater. Syth. Proc. 2000,8(3/4):235-244
    [45] 汪信,罗元香,陆路德,等.纳米材料在固体推进剂中的应用.含能材料,12(增刊):123-127
    [46] 张丽荣,郭效德,刘所思.纳米催化剂的制备及在推进剂中的应用.含能材料,12(增刊):201-204
    [47] 赵凤起,覃光明,蔡炳源纳米材料在火炸药中的应用研究现状及发展方向.火炸药学报,2001,(4):61-65
    [48] 洪伟良,刘剑洪,田德余,等.纳米催化剂的特性及其在固体推进剂中的应用.飞航导弹,2000,(4):43-45
    [49] 胥会祥,樊学忠,刘关利.纳米材料在推进剂应用中的研究进展.含能材料.2003,11(2):94-982
    [50] Armstrong R W, Baschung B, Booth D W, et al. Enhanced propellant combustion with nanoparticles. Nano Lett. 2003,3(2):253-255
    [51] 郭万东.固体推进剂超级燃速催化剂.飞航导弹.1996,(6):21-25
    [52] Hagihara Y, Ichikawa T, Suzuk M, et al. Kogyo Kayaku. 1991, 52(6): 316-319
    [53] Pekel F, Pinardag E, Turkan A, et al. Int. nnu. Conf. ICT1995, (Pyrotechnics) 61/—61/10
    [54] Engen T K, Tohannessen T C. Int. 21st Annu. Conf. ICT1990, (Technol. Polym. Compd.Energ.Mater.)81/1—19/12
    [55] Kishore K, Sunitha M R. Mechanism of catalytic activity of transition metal oxides on solid propellant burning rate. Combust. Flame, 1978,33(3):311
    [56] 邓鹏图.纳米过渡金属氧化物的制备及其在固体火箭推进剂燃烧中的应用[D].长沙:国防科技大学,1997
    [57] 罗元香,陆路德,汪信,等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究.含能材料.2002,10(4):148-151
    [58] 马振叶,李凤生,崔平,等.纳米Fe_2O_3的制备及其对高氯酸铵热分解的催化性能.催化学报.2003,24(10):795-798
    [59] 马振叶,李风生,陈爱四,等纳米Fe_2O_3/高氯酸铵复合粒子的制备及其热分解性能研究.化学学报.2004,62(13):1252-1255
    [60] 马振叶,李凤生,叶明泉,邓国栋.Fe_2O_3/油酸纳米复合粒子的结构及性能表征.南京理工大学学报.2004,28(4):436-444
    [61] 马振叶,李风生,陈爱四,刘宏英.Fe_2O_3纳米粒子的醋酸改性对其催化高氯酸铵热分解的影响.材料科学与工程学报.2005,23(3):345-348
    [62] 杨毅,李凤生,谈玲华.纳米α-Fe_2O_3的制备及其催化高氯酸铵热分解.兵工学报.2004,25(1):82-85
    [63] 徐宏,刘剑洪,陈沛,等.纳米氧化铁的制备及其对吸收药催化作用的研究.火炸药学报.2002,25(3):51-53
    [64] 张汝冰,刘宏英,李风生.复合纳米材料制备研究[Ⅱ].火炸药学报.2000,23(1):59-62
    [65] 洪伟良,刘剑洪,陈沛,等.纳米CuO的制备及其对RDX热分解特性的影响.推进技术.2001,22(3):254-256
    [66] 刘静峰,田德余,贾跃全.超微细Cu_2O对改善RDX/AP/HTPB推进剂燃烧性能的作用.含能材料.1996,4(2):80-84
    [67] 朱俊武,陈海群,谢波,等.纳米Cu_2O的制备及其对高氯酸铵热分解的催化性能.催化学报.2004,25(8):637-640
    [68] 朱俊武,陈海群,郝艳霞,等.针状纳米CuO的制备及其催化性能研究.材料科学与工程学报.2004,22(3):333-336
    [69] 朱俊武,张维光,王恒志,等.纳米CuO的形貌控制合成及其性能研究.无机 化学学报.2004,20(7):863-867
    [70] 罗元香,刘孝恒,陆路德,等.纳米CuO的制备及其对NH_4ClO_4热分解的催化性能.无机化学学报.2002,(12):1212-1214
    [71] 陈爱四,李凤生,马振叶,等.纳米CuO/AP复合粒子的制备及催化性能研究.固体火箭技术.2004,27(2):123-140
    [72] 洪伟良,赵凤起,刘剑洪,等.纳米PbO和Bi_2O_3粉的制备及其对燃烧性能的影响.火炸药学报.2001,24(3):7-9
    [73] 马凤国,季树田,吴文辉,等.纳米氧化铅为燃烧催化剂的应用研究.火炸药学报.2000,23(2):13-15
    [74] 张晓宏.纳米氧化剂在双基推进剂中的应用研究.[D].北京:北京理工大学,2000
    [75] Zhao B C, Li X R, Lu L D, et al. The Application ofnano-oxide in nitramide propellant [A].Proc.int.Pyrotech.Semin. [C], 1999, (26):622-626
    [76] Wang Y P, Zhu J W, Yang X J, et al. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim. Acta. 2005,437(1-2): 106-109
    [77] Taylor R H. Solid propellant formation with controlled bum rate and reduced smoke [P]. USP 5334270
    [78] 徐宏,刘剑洪,陈沛,等.纳米氧化镧对黑索今热分解的催化作用.推进技术,2002,23(4):329-331
    [79] 徐宏,蔡弘华,罗仲宽,等.纳米氧化钕的制备及其催化性能的研究.无机化学学报.2003,19(6):627-630
    [80] 徐宏,刘剑洪,蔡弘华,等.纳米氧化铈的制备及其催化性能研究.深圳大学学报.2002,19(2):13-16
    [81] Survase D V, Gupta M, Asthana S N. The effect of Nd_2O_3 on thermal and ballistic properties of ammonium perchlorate based compostite propellants. Prog. Cryst. Growth Ch. 2002,45:161-165
    [82] 张秀艳,刘宏英,李凤生,等.纳米Nd_2O_3/AP高氯酸铵复合粒子的制备及催化性能的研究.材料科学与工程学报.2005,23(5):542-544
    [83] 单文刚,赵凤起,李上文.二元稀土组合物对双基推进剂燃烧催化作用的研究.推进技术.1997,18(2):69-74
    [84] 张汝冰.新型无机纳米催化剂的研究.[D].南京:南京理工大学,2000
    [85] 张付清,李春俊,刘宏英,等.亚铬酸铜/高氯酸铵超细复合粒子的制备与性能研究.含能材料.1999,7(4):156-158
    [86] 洪伟良,刘剑洪,田德余,等.纳米铜铬复合氧化物对RDX热分解的催化作用. 推进技术.2003,24(1):83-86
    [87] 洪伟良,刘剑洪,田德余,等.纳米铁酸铜的制备及对RDX热分解的催化作用.推进技术.2003,24(6):560-562
    [88] 洪伟良,赵凤起,刘剑洪,等.纳米Bi_2O_3·SnO_2的制备及对RDX热分解特性的影响.火炸药学报.2003,26(1):37-40
    [89] 洪伟良,刘剑洪,赵凤起.纳米CuO-PbO的制备及对RDX热分解的催化作用.含能材料.2003,(2):76-80
    [90] 洪伟良,刘剑洪,罗仲宽,等.纳米MgO/SnO_2复合粉体的制备及性能研究.无机材料学报.2004,11(5):1158-1162
    [91] 洪伟良,刘剑洪,田德余,等.纳米PbSnO_3的制备及其燃烧催化性能的研究.无机化学学报.2004,20(3):278-283
    [92] 洪伟良,刁立惠,刘剑洪,等.纳米SnO_2-CuO粉体的制备、表征及对环三次甲基三硝胺热分解的催化性能.应用化学.2004,21(8):775-778
    [93] 罗元香,陆路德,汪信,等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究.含能材料.2002,10(4):148-151
    [94] 邓鹏图,田德余,赵恂,等.超细CaCO_3与金属氧化物M_2O_3对A1/AP/HTPB推进剂燃烧的催化协同效应研究.火炸药.1997,(4):1-3
    [95] Zhao F Q, Chen P, Li S W. Effect of ballistic modifiers on thermal decomposition characteristics of RDX/AP/HTPB propellant. Thermochim. Acta,2004,416(1-2): 75-78
    [96] Said A A, Qasmi R AI. The role of copper cobaltite spinal, Cu_xCo_(3-x)O_4 during the thermal decomposition of ammonium perchlorate. Thermochim. Acta. 1996,275 (1): 83-91
    [97] 徐光宪.稀土(上册).第二版.北京:冶金工业出版社,1995
    [98] Inaba H, Tagawa H. Ceria-based solid electrolytes. Solid State Ionics, 1996, 83 (1-2): 1-16
    [99] Abdul H, Iskandar Y. Synthesis of PdO/CeO_2 mixed oxides catalyst for automotive exhaust emissions control. Catal.Today, 2004,96 (3): 165-170
    [100] Fathi M, Bjorgum E, Rokstad O A. Conversion of ethane to ethylene and synthesis gas with cerium oxide. Promoting effect of Pt, Rh and Ru. Catal. Lett. 2001,72 (1-2):25-31
    [101] Jasinski P, Suzuki T, Anderson H. Nanocrystalline undoped ceria oxygen. Sensor Actuat. B. 2003, 95(1-3):73-77
    [102] Lira G, Lee J H, Kim J S. Development of functional materials: mechano-chemical synthesis of nano-sized CeO_2 and its application for CMP slurry. Mater. Sci. Forum. 2004, 449:1105
    [103] Li R X, Yabe S, Yamashita M. Synthesis and UV-shielding properties of ZnO-and CaO-doped CeO_2 via soft solution chemical process. Solid State Ionics, 2002,151 (1):235-241
    [104] Zhou Y C, Rahman M N. Hydrothermal synthesis and sintering of ultrafine CeO_2 powders. J. Mater. Res. 1993,8(7):1680-1686
    [105] Li Y X, Chen W F, Zhou X Z. Synthesis of CeO_2 nanoparticles by mechanochemical processing and the inhibiting action of NaCl on particle agglomeration. Mater. Lett. 2005, 59(1):48-52
    [106] Yin L X, Wang Y Q, Pang G S. Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect. J. Colloid. Interf. Sci. 2002,246 (1):78-84
    [107] Kenji H, Kazutoshi S, Hiroshi O. Synthesis and sintering of rare-earth-doped ceria powder by the oxalate coprecipitation method. J. Mater. Res. 1999,14(3): 957-967
    [108] Alifanti M, Baps B, Blangenois N, et al. Characterization of CeO_2-ZrO_2 mixed oxides. Comparison of the citrate and sol-gel preparation methods. Chem. mater. 2003,15(2):395-403
    [109] Xia B, Lenggoro I W, Okuyama K. Synthesis of CeO_2 nanoparticles by salt-assisted ultrasonic aerosol decomposition. J. Mater. Chem.2001,(12):2925
    [110] Bumajdad A, Zaki M I, Eastoe J, Pasupulety L. Microemulsion-based synthesis of CeO_2 powders with high surface area and high-temperature stabilities. Langmuir, 2004,20 (25): 11223-11233
    [111] Mokkelbost T, Kau I, Grande T, et al. Combustion synthesis and characterization of nanocrystalline CeO_2-based powders. Chem. Mater. 2004, 16(25):5489-5494
    [112] Liu Leili, Li Fengsheng, Tan Linghua, et al. Effects of Ni、Cu、Al and NiCu nanopowders on the thermal decomposition of ammonium perchlorate. Propell. Explos. Pyrot. 2004, 29(1):34-38
    [113] 张炜,张仁.过渡金属氧化物催化作用的表征.推进技术.1991,(2):60-65
    [114] Mahata T, Das G, Mishrac R K, et al. Combustion synthesis of gadolinia doped ceria powder. J. Alloy. Compd. 2005,391(1-2):129-135
    [115] Fu Y P, Lin C H, Hsu C S. Preparation of ultrafine CeO_2 powders by microwave-induced combustion and precipitation. J. Alloy. Compd. 2005, 397(1-2): 110-114
    [116] Aruna S T, Patil K C. Combustion synthesis and properties nanostructured of ceria-zirconia solid solutions. Nanostruct Mater. 1998,10(6):955-964
    [117] Bonet F, Delmas V, Grugeon S, et al. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. NanoStruct. Mater. 1999,11(8): 1277-1284
    [118] Zhang G, Liu M. Preparation of nanostructure tin oxide using sol-gel process based on tin tetrachloride and ethylene glycol. J. Mater. Sci. 1999, 34(13): 3213-3219
    [119] Perry R H, Chilton C H. Chemical Engineering Handbook. 7th ed. New York: McGraw-Hill, 1997
    [120] Dean J A. Lange's Handbook of Chemistry. 15th ed. New York: McGraw-Hill,1998
    [121] Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds. 2nd ed. New York: Wiley, 1997
    [122] Bolis V, Magnacca G, Cerrato G, Morterra C. Microcalorimetric and IR-spectroscopic study of the room temperature adsorption of CO_2 on pure and sulphated t-ZrO_2. Thermochim. Acta. 2001,379(1-2): 147-161
    [123] Fu Y P, Lin C H. Preparation of Y_2O_3-doped CeO_2 nanopowders by microwave-induced combustion process. J. Alloy. Compd. 2005,(1-2): 165-168
    [124] 李永绣,陈伟凡,周雪珍,等.氯化钠在球形纳米氧化铈形成过程中的作用.中国稀土学报.2004,24(5):636-640
    [125] Feng J, Zeng H C. Size-controlled growth of Co_3O_4 nanocubes. Chem. Mater. 2003, 15(14):2829-2835
    [126] Yan C H, Xu Z G, Cheng F X, et al. Nanophased CoFe_2O_4 prepared by combustion method. Solid State Commun. 1999,111(5):287-291
    [127] Lascalea G E, Lamas D G, Perez L, et al. Synthesis of ZrO_2-15mol% CeO_2 nanopowders by a pH-controlled nitrate-glycine process. Mater. Lett. 2004,58(20): 2456-2460
    [128] Masui T, Peng Y, Machida K I, et al. Reduction behavior of CeO_2-ZrO_2 solid solution prepared from cerium zirconyl oxalate. Chem. Mater. 1998,10(12):4005-4009
    [129] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997,97(6):2373-2420
    [130] Martinez-Arias A, Fernandez-Garcia M, Ballesteros V, et al. Characterization of high surface area Zr-Ce (1:1) mixed oxide prepared by a microemulsion method. Langmuir, 1999,15(14):4796-4802
    [131] Terribile D, Trovarelli A, Llorca J. et al. The preparation of high surface area CeO_2-ZrO_2 mixed oxides by a surfactant-assisted approach Catal.Today. 1998, 43 (1-2):79-88
    [132] Yu J C, Zhang L, Lin J. Direct sonochemical preparation of high-surface-area nanoporous ceria and ceria-zirconia solid solutions J. Colloid Interf. Sci. 2003, 260 (1):240-243
    [133] Sun Y, Sermon P A. Surface reactivity and bulk properties of ZrO_2. Part 2.-Importance of homogeneity in the stabilisation of high surface area CeO_2-ZrO_2 aerogels. J. Mater. Chem. 1996,6(6): 1025-1030
    [134] Chen M, Zhang P, Zheng X. A new preparation method for nano-sized Ce-Zr-Ba mixed oxide with high surface area. Catal. Today. 2004, 93-95: 671-674
    [135] Cabanas A, Darr J A, Lester E, et al. Continuous hydrothermal synthesis of inorganic materials in a near-critical water flow reactor; the one-step synthesis of nano-particulate Ce_(1-x)Zr_xO_2(x = 0-1) solid solutions. J. Mater. Chem. 2001,11(2): 561-568.
    [136] Trovarell I A, Zamar F, Llorca J. Nanophase fluorite-structured CeO_2-ZrO_2 catalysts prepared by high-energy mechanical milling. J. Catal. 1997,169(2):490- 502
    [137] Hori C E, Permana H. Thermal stability of oxygen storage properties in a mixed CeO_2-ZrO_2 system. Appl.Catal.B.1998,16 (1): 105-108
    [138] Fu Y P, Lin C H. Preparation of Ce_xZr_(1-x)O_2 powder by microwave-induced combustion process. J. Alloy. Compd. 2003,354(1-2):232-235
    [139] Potdar H S, Deshpande S B, Khollam Y B, et al. Synthesis of nanosized Ce_(0.75)Zr_(0.25)O_2 porous powders via an autoignition: glycine nitrate process. Mater. Lett. 2003,57(5-6): 1066-1071
    [140] Yashima M, Arashi H, Kakihana M, et al. Raman scattering study of cubic -tetragonal phase transition in Zr_(1-x)Ce_xO_2 solid solution. J Am Ceram Soc, 1994, 77 (4): 1067-1071.
    [141] Yashimal M, Morimoto K, Ishizaw N, et al. aZirconia-ceria solid solution synthesis and the temperature time transformation diagram for the 1:1 composition. J Am Ceram Soc, 1993, 76(7): 1745-1750
    [142] Bagshaw S A, Pruzet E, Pinnavaia T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science. 1995, 269:1242-1244
    
    [143] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity, Academic: London, 1997, p111
    [144] 宋世谟,庄公惠,王正烈.物理化学.北京:高等教育出版社,1992
    [145] Gopalan S, Virkar A V. Thermodynamic stabilities of SrCeO_3 and BaCeO_3 using molten salt method and galvanic cells. J. Electrochem. Soc. 1993, 140(4): 1060-1065.
    [146] Cherginets V L, Rebrova T P. Studies of some acid-base equilibria in the molten eutectic mixture KCl-LiCl at 700℃. Electrochim. Acta. 1999, 45(3):469-476
    [147] 王克秀.固体火箭推进剂及燃烧.北京:国防工业出版社,1983
    [148] 张仁.固体推进剂的燃烧与催化长沙:国防科技大学,1992.168
    [149] 胡赓祥,蔡殉.材料科学基础.上海:上海交通大学出版,2000
    [150] Pena M A, Fierro J L G. Chemical structures and performance ofperovskite oxides. Chem. Rev., 2001,101 (7): 1981-2081
    [151] Meadowcroft D B. Low-cost oxygen electrode material. Nature, 1970, 226: 847-848
    [152] Libby W F. Promising catalyst for auto exhaust. Science.1971,171:499-00
    [153] Voorhoeve R J H, Remeika J P, Johnson D W Jr. Rare-earth manganites: catalysts with low ammonia yield in the reduction of nitrogen oxides. Science. 1973,180:62-64
    [154] Belessi V C, Trikalitis P N, Ladavos A K, et al. Structure and catalytic activity of La_(1-x)FeO_3 system (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35) for the NO+CO reaction. Appl. Catal. A 1999, 177 (1): 53-68
    [155] Simonot L; Garin F, Maire G. A comparative study of LaCoO_3, Co_3O_4 and a mix of LaCoO_3-Co_3O_4 Ⅱ. Catalytic properties for the CO + NO reaction. Appl. Catal. B 1997,11(2):181-191
    [156] Agarwal D D, Goswami H S. Toluene oxidation on LaCoO_3, LaFeO_3 and LaCrO_3 perovskite catalysts a comparative study. React. Kinet. Catal. Lett. 1994, 53 (2):441-449.
    [157] Saracco G, Scibilia G, Iannibello A, et al. Methane combustion on Mg doped LaCrO_3 perovskite catalysts. Appl Catal B. 1996,8(2):229-244
    [158] Marchetti L, Forni L. Catalytic combustion of methane over perovskites. Appl Catal B. 1998,15(3-4): 179-187.
    [159] 王海,朱永法,谭瑞琴,等.非晶态配合物法制备钙钛矿型纳米粉体催化剂及其CO催化氧化性能.化学学报.2003,61(1):13-16
    [160] 贾立山,秦永宁,马智,等.含氧气氛下预硫化钙钛矿LaCoO_3上的CO还原SO_2反应.催化学报.2003,24(10):751-754
    [161] Kirchnerova J, Klvana D, Vaillancourt J. Methane combustion on some perovskite -like mixed oxides. Appl.Catal. B. 1998, 16(2): 119-126
    [162] Liu Y. New methods to prepare ultrafine particles of some perovskite-type oxides. Chem. Eng. J. 2000,78:205-209
    [163] Popa M, Hong L V, Kakihana M. Nanopowders of LaMeO_3 perovskites obtained by a solution-based ceramic processing technique. Physica B. 2003, 327:233-236
    [164] Zhu Y F, Tan R Q, Yi T, Ji S S, et al. Preparation of nanosized LaCoO_3 perovskite oxide using amorphous heteronuclear complex as a precursor at low temperature. J. Mater. Sci. 2000,35(21):5415-5420
    [165] Gonzalez A, Tamago E M,A.Beltran, et al. Synthesis of high surface area peroskite catalysts by none-conventional routes. Catal. Today. 1997, 33 (1-3):361-369
    [166] Ito T., Zhang Q W, Saito F. Synthesis of Perovskite-type lanthanum cobalt oxide nanoparticles by means of mechanochemical treatment. Powder Technol. 2004, 143-144:170-173
    [167] 秦永宁,田辉平,张鎏.钙钛矿型化合物催化氧化性能与d电子构型关系的研究.化学学报.1993,51:319-324.
    [168] Chick L A, Perderson L R, Maupin G D, Bates J L, et al. Glycine-nitrate combustion synthesis of ceramic powders. Mater. Lett. 1990,10 (1-2):6-12.
    [169] Xie P B, Zhang W P, Yan K, et al. Size-controllable gly-nitrate low temperature combustion synthesis (LCS) of nanocrystalline La_xSr_(1-x)MnO_3. J. Alloy. Compd. 2000,311(1):90-92
    [170] Manoharan S S, Patil K C. Combustion route to fine particle perovskite, J. Solid Chem. 1993,102:267-276
    [171] Arun S T, Muthuraman M, Patil K C. Studies on combustion synthesized LaMnO_3-LaCoO_3 solid solutions. Mater. Res. Bull. 2000,35(2):289-296
    [172] Aruna S T, Muthuraman M, Patil K C. Combustion synthesis and properties of strontium substituted lanthanum manganites La_(1-x)Sr_xMnO_3 (0≤x≤0.3). J.Mater. Chem. 1997,7(12):2499-2503
    [173] Civera A, Pavese M, Saracco G, Specchia V. Combustion synthesis of perovskite-type catalysts for natural gas combustion. C atal. Today. 2003,83 (1-4): 199-211
    [174] Fu Y P, C H Lin, Pan K Y. Strontium hexaferrite powders prepared by a microwave-induced combustion process and some of their properties. J. Alloy. Compd. 2003,349(1-2):228-231
    [175] Wang Y P, Zhu J W, Zhang L L, et al. Preparation and characterization of perovskite LaFeO_3 nanocrystals. Mater. Lett. 2006,60(13-14): 1767-1770
    [176] 高文元,孙俊才.稀土复合掺杂锰酸镧材料的制备.中国陶瓷工业.2003,10(6):9-12
    [177] 陈敏,王幼文,郑小明.超细钙钛矿复合氧化物的制备和性能研究.无机化学学报.2003,19(10):1145-1149
    [178] 翁端,丁红梅,吴晓东,等.LaMnO_3稀土纳米材料及催化性能.物理化学学报.2001,17(3):248-251
    [179] Park H B, Kweon H J, Hong Y S, et al. Preparation of La_(1-x)Sr_xMnO_3 powders by combustion of poly(ethylene glycol)-metal nitrategel precursors. J. Mater. Sci. 1997, 32(1):57-65
    [180] Gonzalez A, Tamago E M, Porter AB, Corbran V C. Synthesis of high surface area peroskite catalysts by none-conventional routes. Catal. Today.1997,33(1-3):361-369
    [181] 李谨卫,鲁国林.航天用固体推进剂的发展趋势.化学推进剂与高分子材料.1998,(3):21-27
    [182] 谢剑宏,赵文胜,邹霄泓,等.未固化AP/Al/HTPB推进剂燃速预示法-DSC法.固体火箭技术.2002,(3):7-9
    [183] 郭K K,萨默菲尔德M主编,宋兆武译.固体推进剂燃烧基础(上册).北京:宇航出版社,1988,7:23
    [184] 云主惠,周政懋.热分解动力学数据分析.火炸药,1982,(2):34,
    [185] Kissinger H E. Anal. Chem., 1957,29:1702
    [186] Bircumshaw L L, Newman B H. The thermal decomposition of ammonium perchlorate. Introduction experimental analysis of gaseous products and thermal decomposition experiments.Proc.Roy.Soc., 1954, A227:115.
    [187] Jacobs P W M, et al. The thermal decomposition of ammonium perchlorate at low temperature. Proc. Roy. Soc, 1960,254:455
    [188] Jacobs P W M., et al. The thermal decomposition of ammonium perchlorate. J. Phys. Chem, 1968,72:202
    [189] Jacobs P W M, Russell-Jones A. Sublimation of ammonium perchlorate. J. Phys. Chem., 1968,72: 202-207.
    [190] Jacobs P W M. Mechanism of the .decomposition of.ammonium perchlorate Combust. Flame, 1969,13(4) 419-430.
    [191] Brill T B, Brush P J, Patil D G. Thermal decomposition of energetic materials.60 Major reaction stages of a simulated burning surface of ammonium perchlorate Combust. Flame, 1993,94:70-76.
    [192] Vyazovkin S, Wight C A. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem. Mater. 1999,11:386-3393
    [193] 刘子如,阴翠梅,孔扬辉,等.高氯酸铵的热分解.含能材料.2000,8(2):75~79
    [194] 刘磊力 纳米金属及复合金属粉的制备及其催化性能的研究[D]南京:南京理工大学,2004
    [195] 杨毅,刘宏英,李凤生,等.过渡金属/稀土金属氧化物纳米粒子催化AP热分解研究 推进技术.2006,27(1):93-96
    [196] 尹邦跃,王零森,樊毅,张金生 乙二醇在络合物溶胶-凝胶法中的应用研究硅酸盐学报,1999,2(3):337-341
    [197] 熊纲,于山江,杨绪杰,陆路德,汪信.Y_2O_3纳米晶的制备和表征.功能材料,1998,29(1):92-95
    [198] Durafi P, Tartaj J, Moure C Sintering behaviour of Y_2O_3 powders prepared by the polymer complex solution method. Ceramics International, 2002, 28 (7): 791-803
    [199] Hench L L, West J K. The sol-gel process.Chem. Rev., 1990, 90 (1) : 33-72
    [200] Tanabe K, Misono M, Ono Y, et al. New solid acids and bases [M]. New York: Elsevier, 1989, 41.
    [201] Fokema M D, Ying J Y. The selective catalytic reduction of nitric oxide with methane over scandium oxide, yttrium oxide and lanthanum oxide. Appl. Catal., B 1998,18 (1-2): 71-77
    [202] Fokema M D, Ying J Y. Mechanistic study of the selective catalytic reduction of nitric oxide with methane over yttrium oxide. J. Catal., 2000,192 (1): 54-63
    [203] Mizuno N, Misono M. Heterogeneous Catalysis. Chem. Rev. 1998, 98(1): 199-218.
    [204] Filkova D, Wolf D, Gayko G, et al. Experimental study on the influence of alkaline earth promoters on neodymium oxide performance in the oxidative coupling of methane. Appl.Catal.A. 1997,159(1-2):33-34
    [205] Yang W , Qi y L, Ma Y J, et al. Synthesis of Nd_2O_3 nanopowders by sol-gel auto-combustion and their catalytic esterification activity. Mater. Chem. Phys. 2004, (84):52-57
    [206] Zhang Q W, Saito F. Mechanochemical synthesis of LaMnO_3 from La_2O_3 and Mn_2O_3 powders. J. Alloy. Compd. 2000,297(1-2):99-103
    [207] Zhang Q W, Nakagawa T, Saito F Mechanochemical synthesis of La_(0.7)Sr_(0.3)MnO_3 by grinding constituent oxides. J. Alloy. Compd. 2000,30(1-2): 121-125
    [208] Kaliaguine S, Neste A V, Szabo V, et al. Perovskite-type oxides synthesized by reactive grinding Part Ⅰ. Preparation and characterization. Appl. Catal. A. 2001, 209 (1-2):345-358
    [209] Tang Q, Zhou W J, Zhang W, et al. Size-controllable gowth of single crystal In(OH)_3 and In_2O_3 nanocubes. Cryst. Growth. Des. 2005, 5(1):147-150
    [210] Urban J J, Ouyang L, Jo M H, et al. La_(1-x)Ba_xMnO_3 nanocubes with adjustable doping levels. Nano Lett 2004, 4(8):1547-1550
    [211] Xu R, Zeng H C. Mechanistic investigation on salt-mediated formation of free-standing Co_3O_4 nanocubes at 95℃. J. Phys. Chem. B. 2003,107(4):926-930
    [212] Lide D R, CRC Handbook of Chemistry and Physics, 76th ed., CRC Press, Boca Raton, FL, 1995.
    [213] Bbokhonov B, Konstanchuk I G, Boldyrev V V. Structural and morphological changes during the mechanical and chemical factors. Mater. Res. Bull.1995,30(10): 1277-1284
    [214] Chen Y, Hwang T, Marsh M, et al. Study on mechanism of mechanical activation. Mater. Sci. & Eng. A, 1997, 226-228:95-98.
    [215] 李葆萱,等.固体推进剂性能 西安:西北工业大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700