用户名: 密码: 验证码:
中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川滇黔交界地区铅锌多金属成矿区位于扬子地台西南缘,是我国重要的铅锌银锗生产基地之一。尽管前人对与该地区做了不少研究工作,但是有关铅锌矿与峨眉山玄武岩关系、矿床成因模型等一些重大问题仍未解决。本文在深入解剖典型矿床的基础上,重点探讨有机质与成矿、成矿流体和成矿时代三个关键科学问题,运用氯仿沥青“A”的提取、有机质族组分、色谱-质谱、岩石地球化学、流体包裹体、扫描电镜、放射性同位素年代学等方法和手段,主要研究了矿床有机质与成矿关系、成矿流体性质和来源、成矿物质来源、成矿年代、成矿模型等内容,取得了如下主要成果:
     1.川滇黔地区铅锌矿床以厚层碳酸盐岩为容矿岩石,具有明显后生特征,受岩性(岩相)和断层双重控制。矿体形态主要有地层控制型、断裂控制型和古喀斯特控制型三种。
     2.岩矿微量元素、稀土元素分析表明,铅锌元素的主要富集层位为前震旦系基底、震旦系、石炭系和二叠系地层,矿石和这些地层岩石具有相似的稀土配分特征,表明这些地层为区域铅锌矿床的形成提供了物质基础;矿石和围岩铅、硫、碳、氢、氧同位素组成表明成矿物质具有壳源特征,硫来自碳酸盐岩中硫酸盐的还原,成矿流体主要来自大气降水。
     3.详细研究赤普铅锌矿床内的有机质成因,认为有机质成熟度较高,矿石和围岩沥青经历了相似的高盐度、强还原过程,有机质主要来自海相页岩和碳酸盐岩,没有陆源有机质的加入;有机质在成矿过程中主要起到还原剂的作用,它可将碳酸盐岩中的硫还原为HS~-或H_2S,为硫化物沉淀提供条件。
     4.流体包裹体分析表明,川滇黔地区的铅锌矿床主要成矿均一温度为170~270℃,主要盐度为8.0~16.99wt%(NaCl)_(eq),属于低温中等盐度矿床。成矿流体组分为NaCl-CaCl_2(MgCl_2) -H_2O体系,金属沉淀机制为含矿热卤水与还原流体(如有机流体)的混合。
     5.通过高精度超低本底单颗粒闪锌矿Rb-Sr测年技术,精确测定大梁子铅锌矿床的成矿年龄为(366.3±7.7 Ma)。扫描电镜分析表明,高岭石的赋存状态是测年结果成功与否的关键。
     6.在成矿时代约束下,基于大地构造背景、控矿因素和成矿流体耦合关系的成矿模型为:1)晋宁运动后大规模的海侵,导致初始矿源层沉积:2)加里东期的构造运动导致区域内局部地势抬升,断裂活动广泛发育,沉积盆地中地层水和大气降水在重力驱动下发生运移,萃取矿源层中的成矿物质,逐步演变为含矿热卤水;3)早印支或早燕山期造山构造运动使得川滇黔地区进入陆内发展阶段,并导致了楚雄-西昌边缘前陆盆地的形成。古特提斯俯冲碰撞作用下地壳发生区域性上隆,在造山带内形成测在重力和温度、压力差的驱动下成矿流体再次活化富集、运移;印支期或燕山期运动造山阶段造成逆冲断层的广泛发育;4)印支或燕山运动晚期的造山后的侧向挤压,局部正断层发育,形成局部减压扩容空间,为流体的运移和硫化物沉淀创造条件,流体沿不整合面和断层面快速运移,在减压扩容空间沉淀形成铅锌矿床。
     7.通过研究区与全球经典MVT矿床的对比,认为川滇黔地区的铅锌矿床是与盆地流体活动有关的MVT矿床。
The boundaries area of Sichuan-Yunnan-Guizhou province is located on the southwestern margin of Yangtze craton,which is the most important Zn-Pb metallogenic belt in China.Although many work and study have been done there,many problems still exist,such as the genesis of deposits and the relationship between Pb-Zn deposits and Emeishan basalt.Based on the Dissecting the representative deposits in detail,this thesis focused on the three key problems of the relationship between Pb-Zn deposits and organic matter,ore-forming fluid and the geochronology of deposit. By employing many methods to study mainly on the organic matters and metallogenesis,inclusion fluid,source of metal,geochronology and deposits model,such as extract the Chloroform bitumen "A",Group component of organic matters,Chromatogram-mass spectrum,Petrogeochemistry, Fluid inclusion,Scanning electron microscope(SEM) and radioactive isotopic geochronology.The main conclusions that we got are as follows:
     1.The Pb-Zn deposits of Chuan-Dian-Qian area have not the direct connection with magmatism, whose host by thick carbonate rocks and are the clear post-sedimentary deposits.They controlled by both lithology(lithofacies) and faults.There are three types of orebodies' shape, namely like bedded controlled by strata,vein controlled by faults and anomaly shape controlled by palaeokarst.
     2.The analysis of the trace and rare element in the ore and country rock suggests that the main strata of Pb and Zn elements are basement rock,Dengying Formation of Sinian, Carboniferous and Permian.Both of them have the same characteristics of rare elements distribution.These strata supply the metals for the formation of Pb-Zn deposits.The analysis of Pb,S,C,H and O isotopes indicate that the metals of deposits were form upper crust, sulfurs came from the reducing of sulfate in carbonate rocks,and ore fluids came form atmospheric water.
     3.Through particular studying on the genesis,the organic matters in the ore and country rock of Chipu Pb-Zn deposit have the high maturity and come through the same process of high salinity and strong reduction.The source of organic matters is the shale and carbonate rock from the sea environment,and not from the continent environment.The organic matters can reduce the sulfate to HS~- or H_2S and play the key role in the precipitation of metal sulfides.
     4.The measures on fluid inclusion obtained the homogenization temperatures of 170~270℃and the salinity of 8.0~16.99 wt%(NaCl)_(eq) from Pb-Zn deposits in Chuan-Dian-Qian area.These data suggested that the Pb-Zn deposits belong to low temperature and middle salinity deposits. The components of fluid inclusion are NaCl-CaCl_2(MgCl_2) -H_2O system.The precipitation of metal sulfides is from the mixing between hot metalliferous brine and reducing fluid.
     5.By employing the high precision ultra-low procedural blank Rb-Sr method,the age of 166.3±.7.7 Ma is obtained by dating on single grains(2~5mg) of sphalerite from Daliangzi deposit.The SEM analysis implies that the occurrence of Kaolinite is the key factor for getting the isochrone age or not.
     6.Based on the constraints of geotectonics setting,geochronology and the coupling of controlling factors and ore-forming fluid,the genetic model is as follows:1) the source beds settled be accompanying by the activities of contemporaneous faults at extensive ingression after the movement of Jinning.2) Locally topography uplift and comprehensive fracture developed during the Caledonian tectonic movement.Formation water and atmospheric water descended along strata and faults at the driving of gravity.The descending fluid extracted the mineral substance and gradually grew into hot metalliferous brine.The early stage Pb-Zn ore precipitated at the open space when the condition of brine changed.3) The orogenesis,which occurred at lndosinian or Yanshanian,brought large-scale quantity of heat and made the ore-forming fluid reactivation and movement again.4) Lateral compression developed the locally normal faults and released the pressure,then formed the dilation spaces for the movement and sulfide deposit.The metalliferous brine flow rapidly along the surface of unconformity or fault surface and settled down at the low pressure and open dilation spaces.
     7.By compared the Pb-Zn deposits in Chuan-Dian-Qian area with the classic MVT deposits,the Pb-Zn deposits in research district are belong to MVT deposits and are associated to the basin fluid.They are the results of post orogenesis process.
引文
1. Adams J J. 2001. Numerical modeling of regional gravity-driven flow systems in the Alberta basin. University of Alberta, p15-23
    2. Anderson G M. 1973. The hydrothermat transport and deposition of galena and sphalerite near 100℃. Economic Geology, 68: 480-492
    
    3. Anderson G M. 1975. Precipitation of Mississippi Valley-type ores. Economic Geology, 70: 937-942
    4. Anderson G M, Macqueen R W. 1982. Ore deposit models-6. Mississippi Valley-type lead-zinc deposits. Geoscience Canada, 9(2): 107-117
    5. Anderson G M. 1983. Some geochemical aspects of sulfide precipitation in carbonate rocks. In: Kisvarsanyi et al., ed., International conference on mississippi valley type lead-zinc deposits; proceedings volume, p61-76
    6. Anderson G M and Macqueen R W. 1988. Mississippi Valley-type lead-zinc deposits. In: Roberts RG and Sheahan P A, eds. Ore Deposit Models. Geoscience Canada, Reprint Series 3, p 79-90
    7. Anderson G M. 1991. Organic maturation and ore precipitation in Southeast Missouri Economic Geology, 86: 909 -926
    8. Barker C E and Pawlewicz M J. 1986. The correlation of vitrinite reflectance with maximum temperature in humic organic matter. Lecture Notes in Earth Science, 5:79-93
    9. Barrett T J and Anderson G M. 1982. The solubility of sphalerite and galena in NaCl brines. Economic Geology, 77: 1923 -1933
    10. Barton P B. 1967. Possible role of organic matter in the precipitation of the Mississippi Valley ores. In: Brown ed., Genesis of stratiform lead-zinc-barite-fluorite deposits (Mississippi Valley type deposits), Economic Geology Monographs, p371-378
    11. Basuki N I and Spooner E T C. 2004. A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits: Identifying thresholds for metal transport. Exploration and Mining Geology, 11(1-4): 1-17
    12. Beales FW, Jackson S A. 1966. Precipitation of lead-zinc ores in carbonate reservoirs as illustrated by Pine Point ore field, Canada. Inst. Min. Metall. Trans. Sect. B, 75: 278-285
    13. Bechtel A, Widera M, Sachsenhofer R F, Gratzer R, Lucke A, Woszczyk M. 2007. Biomarker and stable carbon isotope systematics of fossil wood from the second Lusatian lignite seam of the Lubstow deposit (Poland). Organic Geochemistry, v.38: 1850-1864
    14. Bethke C M. 1985. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. Journal of Geophysical Research, v.90: 6817-6828
    15. Bierlein F P and Cartwright I. 2001. The role of carbonaceous "Indicator" slates in the genesis of lode gold mineralization in the western Laehlan orogen, Vietoria, southeastern Australia Economic Geology, 96(3): 431-451
    16. Brabbon D F, Podosek F A, and McLimans R K. 1992. Alleghenian age of the Upper Mississippi Valley-type zinc-lead deposit determined by Rb-Sr dating of sphalerite. Science, 356: 509-511
    17. Bradley D C, and Leach D L. 2003. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands. Mineralium Deposita, 38: 652-667
    18. Bradley D C, Leach, D L, Symons D, Emsbo P, Premo W, Breit G, and Sangster D F. 2004. Reply to Discussion on "Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands" by Kesler S E, Christensen J T, Hagni R D, Heijlen W, Kyle J R, Misra K C, Muchez P, and Voo R van der. Mineralium Deposita, 39: 515-519
    19. Bradley D C. 1993. Role of lithospheric flexure and plate convergence in the genesis of some Appalachian zinc deposits: U.S. Geological Survey Bulletin, 2039:35-43
    20. Brannon J C, Podosek F A, Cole S C. 1996. Radiometric dating of Mississippi Valley-type ore deposits. In: Sangster D F, ed. Carbonated-hosted lead-Zinc deposits. Society of Economic Geologists, Special Publication, v.4: 536-545
    21. Bruce W. D. Yardley. 2005. Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology, 100:613-632
    22. Carpenter A B. 1978. Origin and chemical evolution of brines in sedimentary basins. Oklahoma Geological Survey Circular 79, p60-77
    23. Cathles L M and Smith A T. 1983. Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits, and their implications for episodic dewatering and deposit genesis: Economic Geology, v.78: 948-956
    24. Chang X Y, Zhu B Q, Yu S J, Xia P. 2003. Application of lead isotopes to geochemical exploration of gold deposits in Baoban, Hainan Province, China. Chinese Journal of Geochemistry, 22(3): 244-252
    25. Charles S Spirakis, Allen V Heyl. 1995. Evaluation of proposed precipitation mechanisms for Mississippi Valley-type deposits. Ore Geology Reviews, 10: 1-17
    26. Christensen J N, Halliday A N, Vearncombs J R, and Kesler S E. 1995. Testing models of Mississippi Valley-type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Economic Geology, 90: 877-884
    27. Christensen J N, Halliday A N. 1995. Direct dating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit. Geochimica et Cosmochimica Acta, 59(24): 5191 -5197
    28. Cisternas M E, Hermosilla J. 2006. The role of bitumen in strata-bound copper deposit formation in the Copiapo area, Northern Chile. Mineralium Deposita, 41: 339-355
    29. Corbella M, Ayora C, and Cardellach E. 2004. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits. Mineralium Deposita, 39: 344-357
    30. Coveney R M, and Pasava J. 2004. Diverse connections between ores and organic matter. Ore Geology Reviews, 24: 1-5
    31. Crocetti C A, Holland Heinrich D, and McKenna L W. 1988. Isotopic composition of lead in galenas from the Viburnum Trend, Missouri. Economic Geology, 83: 355 - 376.
    32. Czochanska Z, Gilbert T D, Philp R P, Sheppard C M, Weton R J, Wood T A, and Woolhouse A D. 1988. Geochemical application of steranes and triterpane biomarkers to a description of oils from the Taranaki basin in New Zealand. Organic Geochemistry, v.12:123-135
    33. Dickin A. 1995. Radiogenic isotope geology. Cambridge, England: Cambridge university press
    34. Disnar Jean Robert and Sureau J F. 1990. Organic matter in ore genesis; progress and perspectives. Organic Geochemistry, 6(1-3): 577-599
    35. Doe B R, Stacey J S. 1974. The application of lead isotopes to problem of ore genesis and prospect evaluation: a review. Economic Geology, 69: 757-776
    36. Doe Bruce R and Marvin Richard F. 1967. Radioactive and radiogenic isotope research in North America. In: IUGG quadrennial report (U.S.A.). American Geophysical Union, 48(2): 672-686
    37. Etiminan H, Hoffman C F. 1989. Boimarkers in fluid inclusions: A new tool in constraining source regimes and its implications for the gensis of MVT deposit. Geology, 17(1): 19-22
    38. Garven G, Freeze RA. 1982. The role of regional groundwater flow in the formation of ore deposits in sedimentary basins: a quantitative analysis. In: Ozoray G, ed. Proc 2~(nd) National Hydrogeological Conf: Int. Assoc. Hydrogeol., p59-68
    39. Garven G and Freeze R A. 1984. Theoretical analysis of the role of groundwater flow in the genesis of strata-bound ore deposits. 1. Mathematical and numerical model; 2. Quantitative results. American Journal of Science, 284: 1085-1174
    40. Garven G. 1995. Continental-scale groundwater flow and geologic processes: Annual Review of Earth and Planetary Science, v.23: 89-117
    41. Girodano T H and Barnes H L. 1981. Lead-zinc transport in Mississippi Valley-type ore solutions. Economic Geology, 76:2200-2211
    42. Giordano T H. 1996. Aspecial issue devoted to organics and ore deposits introduction. Ore Geology Review, (11): vii-ix
    43. Giuliani G, Lanoed C F, Cheilletz A, Coger P, Branquet Y, Laumomnier B. 2000. Sulfate reduction by organic matter in Colombian emerald deposits: Chemical and stable isotope (C, O, H) evidence. Economic Geology, 95(8): 1129-1153
    44. Gize AP, Barnes H L. 1987. The organic geochemistry of two MVT Pb-Zn depoosit. Economic Geology, 82: 457-470
    45. Gize Andrew Paul. 1984. The Organic geochemistry of threeMississippi Valley-type ore deposits. Doctor Thesis, The Pennsylvania State University, Advisor: Barnes H L, p 1-350
    46. Glikson M, Golding S D and Southgate P N. 2006. Thermal evolution of the ore-hosting isa superbasin: Central and northern lawn hill platform. Economic Geology, 101: 1211-1229
    47. Goldhaber Martin B, Church Stanley E, Doe Bruce R, Aleinikoff John N, Brannon Joyce C, Podosek Frank A, Mosier Elwin L, Taylor Cliff D, and Gent Carol A. 1995. Lead and sulfur isotope incestigation of Paleozoic sedimentary rocks from the southern midcontinent of the Unite States: Implications for paleohydrology, and ore genesis of the southeast Missouri Lead Belts. Economic Geology, 90: 1875-1910
    48. Gustkiewicz M S and Kwiecinska B. 2001. Organic matter in the upper Silesian (Mississippi Valley-type) Zn-Pb deposits, Poland. Economic Geology, 94(7): 981-992
    49. Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H_2O solutions. Economic Geology, 83: 197-202
    50. Hannigan Peter K. 2007. Metallogeny of the pine point Mississippi Valley-type zinc-lead district, southern northwest territories. http: //gsc.nrcan.gc.ca/mindep/metallogeny/mvt/pine/index_e.php, p: 1-28
    
    51. Hanor J S. 1996. Controls on the solubilization of lead and zinc in basin brines. Society of Economic Geologists Special Publication, 4: 483-500
    52. Helgeson H C. 1970. A chemical and thermodynamic model of ore deposition in hydrothermal systems. In Morgan B A ed., Mineralogical Society of America Special Paper, 50th Anniversary Symposia, Sulfides, 3:155-186
    53. Heppenheimer H, Steffens I K, Puttmann W and Kalkreuth W. 1992. Comparison of resinite-related aromatic biomarker distributions in Cretaceous-Tertiary coals from Canada and Germany. Organic Geochemistry, 18(3): 273-287
    54. Heyl A V, Landis G P, and Zartrnan R E. 1974. Isotopic evidence for the origin of Mississippi Valley-type mineral deposits: A reviews. Economic Geology, 69: 992-1006
    55. Hoefs J. 1980. Stable isotope geochemistry. Springer-Verlag Berlin Heidelberg
    56. Hunt J M. 1996. Petroleum geochemistry and geology: New York, Freeman, p 743
    57. Hutchinson R W. 1980. Massive base metal sulphide deposits as guides to tectonic evolution. Strangway D W, ed. The continental crust and its mineral deposit. Geological Association of Canada Special Paper, 20:659-684
    58. Jackson S A and Beales F W. 1967. An aspect of sedimentary basin evolution: the concentration of Mississippi Valley-type ores during late stages of diagenesis. Bulletin of Canadian petroleum geology, 15: 383-433
    59. Kaiser Charles J and Ohmoto Hiroshi. 1987. The kinetics of sulfate reduction by organic matter under hydrothermal conditions. In: Geological Society of America, Annual Meeting and Exposition, Dickinson. Geological Society of America, 19(7): 721
    60. Kesler S E, Appold M S, and Cumming G L. 1994. Lead isotope geochemistry of Mississippi Valley-type mineralization in central Appalachians. Economic Geology, 89:1492-1500
    61. Kesler S E, Martini A M, Appold M S, Walter L M, Huston T J and Furman F. 1996. Na-CI-Br systematics of fluid inclusions from Mississippi Valley-type deposits, Appalachian Basin: Constraints on solute origin and migration paths. Geochimica et Cosmochimica Acta, 60: 225-233
    62. Kharaka Y K, Maest A S, Carothers W W, Law L M, Lamothe P J and Fries T L. 1987. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A. Applied Geochemistry, V2: 543-561
    63. Krahn L and Baumann A. 1996. Lead isotope systematics of epigenetic lead-zinc mineralization in the western part of the Rheinisches Schiefergebirge, Germany. Mineralium Deposita, 31(3): 225-237
    64. Leach D L, and Rowan E L. 1986. Genetic link between Quachita foldbelt tectonism and the Mississippi Valley- type deposits of the Ozarks. Geology, 14:931 -934
    65. Leach D L and Sangster D F. 1993. Mississippi Valley-type lead-zinc deposits. In: Kirkham RV, Sinclair WD, Thorpe RI, Duke JM Eds. Mineral deposit modeling. Geological Association of Canada Special Paper, 40: 289-314
    66. Leach D L, Viets J B, Foley-Ayuso N and Klein D P. 1995. Mississippi Valley-Type Pb-Zn deposits (Models 32a, b; Briskey, 1986 a, b). In: Du Bray E A, ed. Preliminary compilation of descriptive geoenvironmental mineral deposit models: U.S. Government Consulting Group, Open File Report, 95-831, p. 234-243
    67. Leach D L, Bradley D C, Lewchuk M, Symons D T A, Brannon J and de Marsily G. 2001. Mississippi Valley-type lead-zinc deposits through geological time: implications from recent age-dating research. Mineralium Deposita, 36: 711-740
    68. Leach D L, Sangster D F, Kelley K D, Large R R, Garven G, Allen C R, Gutzmer J, Walters S. 2005. Sedement-hosted lead-zinc deposits: A global perspective. In: Hedenquist J W, Thompson J F H, Goldfarb R J, Richards J P. Eds. Economic Geology 100~(th) Anniversary Volume, 561-607
    69. Leventhal J S. 1990. Organic matter and thermochemical sulfate reduction in the Viburnum Trend, Southeast Missouri. Economic Geology, v.85: 622-632
    70. Lo ChingHua, Chung SunLin, Lee TungYi, and Wu Genyao. 2002. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth and Planetary Science Letters, 198:449-458
    71. Ludwig K R. 2001. Users manual for isoplot/Ex version 2.49: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, No.1a, 1-55
    72. Macqueen R W, Powell T G. 1983. Organic geochemistry of the Pine Point lead-zinc ore field and region, Northwest Territories, Canada. Economic Geology, 78: 1-25
    73. Macqueen R W, Powell T G. 1983. Organic geochemistry of the Pine Point lead±zinc ore field and region, Northwest Territories, Canada. Economic Geology, 78: 1-25
    74. Massimo Chiaradia, Dmitry Konopelko, Reimar Seltmann, and Robert A Cliff. 2006. Lead isotope variations across terrane boundaries of the Tien Shan and Chinese Altay. Mineraliun Deposita, 41(5): 411-428
    75. Misra K C. 1999. Understanding mineral deposits. Boston, MA: Kluwer Academic Publishers
    76. Moldowan H M, Serfert W K and Gal legos E J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin, v.69: 1255-1268
    77. Morrow D. 1998. Regional subsurface dolomitization, Models and constraints. Geoscience Canada, v.25(2): 57-70
    78. Mucheza P, Sintubinb M and Swennen R. 2000. Origin and migration pattern of palaeofluids during orogeny: discussion on the Variscides of Belgium and northern France. Journal of Geochemical Exploration, 69-70: 47-51
    79. Nakai S, Halliday A N, Kesler S E, Jones H D, Kyle J R, Lanes T E. 1993. Rb-Sr dating of sphalerites from Mississippi Valley-type ore deposits. Geochimica et Cosmochimica Acta, 57:417-427
    80. Nakai S, Halliday A N, Kesler S E, Jones H D. 1990. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley-type ore deposits. Nature, 346: 354-357
    81. Oakes C S, Bodnar R J and Simonson J M. 1990. The system NaCI-CaCl_2-H_2O: I. The ice liquidus at 1 atm total pressure. Geochim. Cosmochim. Acta, 54: 603-610
    82. Ohmoto H and Rye R O. 1979. Isotopes of sulfur and carbon. In Barnes H L, ed. Geochemistry of hydrothermal ore deposits. New York, Wiley-Interscience, p509-567
    83. Oliver J. 1986. Fluid expelled tectonically from Orogenic belts: Their role in hydrocarbon migration and other geologic phenomena. Geology, 14:99-102
    84. O'neil James R and Epstein Samuel. 1966. Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science, 152(3719): 198-201
    85. O'neil James R, Clayton Robert N, and Mayeda Toshiko K. 1969. Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12): 5547-5558
    86. Oversby V M. 1974. A new look at the lead isotope growth curve. Nature, 248: 132-133
    87. Paradis Suzanne, Hannigan Peter and Dewing Keith. 2007. Mississippi Valley-type lead-zinc deposits (MVT). http: //gsc.nrcan.gc.ca/mindep/synthdep/mvt/indexe.php, p: 1-15
    88. Person M A and Garven G. 1994. A sensitivity study of the driving forces on fluid flow during continental rift evolution. Geological Society of America Bulletin, v.106: 461-475
    89. Peters K E, and Moldowan J M., 1993. The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments. Englewood Cliffs, N J, Prentice Hall, Inc
    90. Peters K E, Walters C C and Moldowan J M. 2005. The Biomarker Guide. Cambridge University Press, Cambridge, p 1-1155
    91. Philp R P, Gilbert T D. 1986. Biomarker distributions in Australia oils predominantly derived from terrigenous source material. Organic Geochemistry, v.10: 73-84
    92. Plumlee G S, Leach D L, Hofstra A H, Landis G P, Rowan E L, Viets J G 1994. Chemical reaction path modeling of ore deposition in Mississippi Valley-type deposits of the Ozark region, U. S. Midcontinent Economic Geology, 89: 1361-1383
    93. Popp B N, Anderson T F, Sandberg P A. 1986. Brachiopods as indicators of original isotopic composition in some Paleozoic limestones. GSA Bull, 97:1262-1269
    94. Powell Trevor G and MacQueen Roger W. 1984. Precipitation of sulfide ores and organic matter; sulfate reactions at Pine Point, Canada. Science, 224(4644): 63-66
    95. Richardson Steven M and Hanse Kyle S. 1988. Stable isotopes in the sulfate evaporites from southeastern Iowa; a clue to the history of groundwater? Eos, Transactions, American Geophysical Union, 69(44): 1515
    96. Rimstidt J D. 1997. Gangue mineral transport and deposition. In: Barnes H L, ed. Geochemistry of hydrothermal ore deposits. New York, John Wiley and Sons, p 487-516
    97. Rollinson Hugh R. 1993. Using geochemical data; evaluation, presentation, interpretation. Longman Scientific & Technical, Harlow, United Kingdom, p 1-352
    98. Rowan E L and Goldhaber M B. 1995. Duration of mineralization and fluid-flow history of the Upper Mississippi Valley zinc-lead district. Geology, 23(7): 609-612
    99. Sangster D F. 1983. Mississippi Valley-type deposits: A geologic melange. In: Kisvarsanyi K, Grant S K, Pratt W P and Koenig J W. Eds. Proceedings of the International Conference on Mississippi Valley-type Lead-zinc Deposits. University of Missouri-Rolla, Missouri, p 7-19
    100. Sangster D F. 1990. Mississippi Valley-type and sedex lead-zinc deposits: A comparative examination. Transactions of the Institution of Mining and Metallurgy, Sec. B: v99: B21-B42
    101. Sangster D F. 1995. Mississippi Valley-Type Lead-Zinc. In: Eckstrand O R, Sinclair W D and Thorpe R I, eds. Geology of Canadian Mineral Deposit Types: Geological Survey of Canada, Geology of Canada, no.8, p. 253-261
    102. Sangster, D F. 1996. Mississippi Valley-type lead-zinc. In: Eckstrand O R, Sinclair W D and Thorpe R I, eds., Geology of Canadian Mineral Deposit Types, Geology of Canada, No. 8: Geological Survey of Canada, p 253-261
    103. Savard M M, Chi G, Sami T, Willians-Jones A E and Leigh K. 2000. Fluid inclusion and carbon, oxygen, and strontium isotope study of the Polaris Mississippi Valley-type Zn-Pb Deposit, Canadian Arctic Archipelago: implications for ore genesis. Mineralium Deposita, 35: 495-510
    104. Sawkins F J. 1976. Massive sulftde deposits in relation to geotectonics. Strong D F (eds). Metallogeny and Plate tectonics. Geological Association Canada Special Publication, 14:221-240
    105. Siegel Frederick R. 1974. Applied Geochemistry. A Wiley-Interscience publication, p 1-353
    106. Skinner,B J. 1967. Precipitation of Mississippi Valley-type Precipitation of Missisores: a possible mechanism. I In: Brown ed., Genesis of stratiform lead-zinc-barite-fluorite deposits (Mississippi Valley type deposits), Economic Geology Monographs, p363-70
    107. Southgate P N, Kyser T K, Scott D L, Large R R, Golding S D and Polito P A. 2006. A Basin System and Fluid-Flow Analysis of the Zn-Pb-Ag Mount Isa-Type Deposits of Northern Australia: Identifying Metal Source, Basinal Brine Reservoirs, Times of Fluid Expulsion, and Organic Matter Reactions. Economic Geology, 101(6): 1103-1115
    108. Spangenberg J E, Herlec U. 2006. ydrocarbon Biomarkers in the Topla-Mezica Zinc-Lead Deposits, Northern Karavanke/Drau Range, Slovenia: Paleoenvironment at the Site of Ore Formation. Economic Geology, v. 101: 997-1021
    109. Spirakis C S and Heyl A V. 1995. Evaluation of proposed precipitation mechanisms for Mississippi Valley-type deposits. Ore Geology Reviews, 10: 1-17
    110. Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters, 26:207-221
    111. Sverjendky D A. 1986. Genesis of Mississippi Valley-type lead-zinc deposits. Annual Review of Earth and Planetary Sciences, 14:177-199
    112. Sverjensky D A. 1981. The origin of a Mississippi Valley-type deposit in the Viburnum Trend, southeast Missouri.Economic Geology, 76: 1848-1872
    113. Sverjensky D A. 1984. Oil field brines as ore-forming solution. Economic Geology, 79: 23-37
    114. Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence (Second Edition). Springer-Verlag, Berlin, Heidelberg, New York, Tokyo
    115. Veizer J, Fritz P, Jones B. 1976. The nature of O~(18)/O~(16) and C~(13)/C~(12) secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta, 40: 1387-1395
    116. Veizer J, Fritz P, Jones B. 1986. Geochemistry of branchiopods: oxygen and carbon isotopic records of Paleozoic oceans. Geochim Cosmochim Acta, 40:1679-1696
    117. Viets J G, Hofstra A H and Emsbo P. 1996. Solute compositions of fluid inclusions in sphalerite from North America and European Mississippi valley-type ore deposits: ore fluids derived from evaporated seawater. In: Sangster D F, ed. Carbonate-hosted lead-zinc deposits. Society Geologists Special Publication, 4: 465-482
    118. Wang J Z, Li Z Q and Ni S J. 2003. Origin of Ore-Forming Fluids of Mississippi Valley-Type (MVT) Pb-Zn Deposits in Kangdian Area, China. Chinese Journal of Geochemistry, 22(4): 369-376
    119. Wilson N S F, Zentilli M, Spiro B. 2003. A sulfur, carbon, oxygen, and strontium isotope study of the volcanic-hosted El Soldado manto-type copper deposit, Chile: the essential role of bacteria and petroleum. Economic Geology, 98(1): 163-174
    120. Yang Jianwen, Large R R and Bull S. 2006. Basin-Scale Numerical Modeling to Test the Role of Buoyancy-Driven Fluid Flow and Heat Transfer in the Formation of Stratiform Zn-Pb-Ag Deposits in the Northern Mount Isa Basin. Economic Geology, 101: 1275-1292
    121. Zartman R E and Haines S M. 1988. The plunbotectonic model for Pb isotopic systematics among major terrestrial reservoirs------a case for bidirectional transport. Geochim. Chsmochim. Acta, 52:1327-1339
    122. Zhang Changqing, Mao Jingwen, Yu Jinjie, Liujun, Lili, Li Houmin. 2007. Lead isotope variation of lead-zinc deposits across Sichuan-Yunnan-Guizhou boundaries, China. In: Andrew C.J et al. eds. Digging Deeper, Vol 2: 1287-1290
    123. Zheng Y F. 1993. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicate. Earth and Planetary Science Letters, 120: 247-263
    124. Zhou C X, Wei C S, Guo J Y and Li C Y. 2001. The source of metals in the Qilinchang Zn-Pb deposit, Northeastern Yunnan, China: Pb-Sr isotope constraints. Economic Geology, 96: 583-598
    125. Zhou Meifu, Malpas John, Song Xieyan, Robinson Paul T, Sun Min, Kennedy Allen K, Lesher C Michael, and Keays Reid R. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters., 196: 113-122
    126.Zhu Bingquau,Hu Yaoguo,Zhang Zhengwei,Chang Xiangyang.2003.Discovery of the copper deposits with features of the Keweenawan type in the border area of Yunnan and Guizhou provinces.Science in China(Series D),46(supp):60-72
    127.Zhu Yangming,Hao Fang,Zou Huayao,Cai Xunyu,Luo Yi.2007.Jurassic oils in the central Sichuan basin,southwest China:Unusual biomarker distribution and possible origin.Organic Geochemistry,v.38:1884-1896
    128.自立新,朱日祥.1996.扬子地块古生代人地构造演化及古地磁研究综述.地球物理学进展,1996,11(3):109-115
    129.彼得斯P E,莫尔多万J M.1995.生物标记化合物指南--古代沉积物和石油中分子化石的解释.姜乃煌,张水昌,林永汉,张大江,宋孚庆译.石油工业出版社,p 156-178
    130.陈大,顾尚义,毛健全.2001.水城青山.横塘矿区铅锌矿床与MVT,SEDEX型矿床特征类比.贵州地质,18(4):232-237
    131.陈福坤,李秋立,李潮峰,李向辉,王秀丽,王芳.2005.高精度质谱计在同位素地球化学的应用前景.地球科学,30(6):639-645
    132.陈进.1993.麒麟厂铅锌硫化物矿床成因及成矿模式探讨.有色金属矿床与勘探,2(2):85-89
    133.陈启良.2001.滇东北渔户村组内的富铅锌矿床成矿地质特征及成因.云南地质,20(2):186-194
    134.陈启良.2002.滇东北渔户村富铅锌矿成矿地质特征及找矿标志.地质与勘探,38(1):22-26
    135.陈士杰.1986.黔西滇东北铅锌矿床的沉积成因探讨.贵州地质,8(3):41-48
    136.陈延生,李元.2005.会泽铅锌矿床成因问题探讨.矿业工程,3(6):14-16
    137.陈毓川等著.2006.中国成矿体系与区域成矿评价.北京:地质出版社,p 623-817
    138.陈章任等.1986.四川省会理县小石房铅锌矿床评价地质报告.西南冶金地勘公司603队
    139.地质部宜昌地质矿产研究所同位素地质研究室.1979.铅同位素地质研究的基本问题.北京:地质出版社
    140.地质矿产部成都地质矿产研究所.1987.扬子地台西缘地质构造演化.重庆:重庆出版社,p 121-147
    141.丁福林等.1960.云南鲁甸火德红黄铁矿储量报告.云南省昭通专区地质队
    142.方华,杨继林,吴代成,马建设.2000.麒麟厂铅锌矿床稳定同位素特征及成因探讨.有色金属矿床与勘探,,9(1-2):114-116
    143.丰国秀和陈盛吉.1988.岩石中沥青反射率与镜质组反射率之间的关系.天然气工业,8(3):20-25
    144.付绍洪.2004.扬子地块西南缘铅锌成矿作用与分散元素镉镓锗富集规律.成都理工大学博士论文,34-59
    145.傅家谟,贾蓉芬.刘德汉等著.1989.碳酸岩有机地球化学--在石油、天然气、煤和层控矿床成因及评价中的应用.科学出版社,p 77-90;150-163
    146.高德荣.2000.会泽铅锌矿床成矿地质条件及找矿方向.昆明理工大学学报,25(4):19-24
    147.高子英.1997.云南主要铅锌矿床的铅同位素特征.云南地质,16(4):259-367
    148.顾尚义.2006.黔西北铅锌矿稀土元素组成特征--兼论黔西北地区铅锌矿成矿与峨眉山玄武岩的关系.贵州地质,23(4):274-277
    149.顾尚义.2007.黔西北地区铅锌矿硫同位素特征研究.贵州工业大学学报,36(1):8-11
    150.管士平。李忠雄.1999a.康滇地轴东缘铅锌矿床铅硫同位素地球化学研究.地质地球化学,27(4):45-54
    151.管士平,李忠雄.1999b.康滇地轴东缘岩石与铅锌矿石稀土元素地球化学研究.地质地球化学,27(3):5-16
    152.管士平.1998.康滇地轴东缘铅锌矿床成矿流体地球化学研究.矿床地质,17:1087-1090
    153.贵州省矿产地质局.1987.贵州省区域地质志.北京:地质出版社,p554-635
    154.韩润生,陈进,黄智龙,马德云,薛传东,李元等著.2006.构造成矿动力学及隐伏矿定位预测--以云南会泽超大型铅锌(银、锗)矿床为例.北京:科学出版社,p 1-185
    155.韩润生,刘丛强,黄智龙,陈进,马德云,李元.2001.论云南会泽富铅锌矿床成矿模式.矿物学报,21(4):674-680
    156.韩以贵,李向辉,张世红,张元厚,陈福坤.2007.豫西祁雨沟金矿单颗粒和碎裂状黄铁矿Rb-Sr等时线定年.科学通报,52011:1307-1311
    157.何明勤,冉崇英,宋焕斌,刘卫华,刘德汉.1997.东川-易门铜矿床的有机地球化学.有色金属矿产与勘查,6(5):263-267
    158.何庆荣.1959.云南罗平富乐厂多金属矿储量报告书.云南省地质局罗平队
    159.何兴武等.1991.四川省会东大樑子铅锌矿床1944--2094米中段生产勘探储量报告.冶金西南地勘局昆明地质调查所
    160.贺光兴,孙启武,夏传见,邓斌武.2006.四川省宁南县跑马铅锌矿成因浅析.地质找矿论丛,21(增):81-84
    161.贺胜辉,荣惠锋,尚卫,速建红.2006.云南茂租铅-锌矿床地质特征及成因研究.矿产与地质,20(4-5):397-402
    162.胡彬.2004.云南昭通毛坪铅锌矿床地质地球化学特征及隐伏矿预测.导师:韩润生.昆明理工大学硕士论文,p1-129
    163.胡耀国,李朝阳,温汉捷,黄智龙.2000.川滇黔接壤处铅锌银矿床中银矿物特征.矿物岩石地球化学通报,19(4):318-320
    164.胡耀国.2000.贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制.导师:涂光炽,李朝阳.贵阳:中国科学院地球化学研究所,p 1-94
    165.黄汲清.1984.中国大陆构造特征的新研究.中国地质科学院院报,(9):1-17
    166.黄智龙,陈进,韩润生,等.2001a.云南会泽铅锌矿床脉石矿物方解石REE地球化学.矿物学报,21(4):659-666
    167.黄智龙,陈进,韩润生,李文博,刘丛强,张振亮,马德云,高德荣,杨海林.2004.云南会泽超大型铅锌矿床地球化学及成因--蛾眉山玄武岩与铅锌成矿的关系.北京:地质出版社,p77-87
    168.黄智龙,陈进,刘丛强,韩润生,李文博,赵德顺,高德荣,冯志宏.200lb.峨眉山玄武岩与铅锌矿床成矿关系初探-以云南会泽铅锌矿床为例.矿物学报,21(4):681-688
    169.黄智龙,李文博,韩润生,陈进.2003.云南会泽超大型铅锌矿床成因研究中地几个问题.峨眉山地幔柱与资源环境效应研讨会文集。17-25
    170.金中田,戴塔根,张应文.2005.贵州水城铅锌-矿带成矿条件及控矿因素与成因.矿产与地质,1915)491-494
    171.匡文龙,刘继顺,朱自强,刘石华.2003.塔西南MVT型铅锌矿床成矿作用机制研究--以卡兰古铅锌矿为例.新疆地质,21(1):136-140
    172.李才先.2005.滇东北铅锌(银)成矿规律.云南地质,24(3):275-281
    173.李发源,顾雪祥,付绍洪,章明.2002.有机质在MVT铅锌矿床形成中的作用.矿物岩石地球化学通报,21(4):272-276
    174.李发源.2003.MVT铅锌矿床中分散元素赋存状态和富集机理研究--以四川天宝山、大梁子铅锌矿床为例.导师:顾雪祥,唐菊兴,杨正熙.成都:成都理工大学,P55
    175.李复汉,覃嘉铭,申玉连,等.1988.康滇地区的前震旦系.重庆:重庆出版社,245-278
    176.李厚民,毛景文,徐章宝,陈毓川,张长青,许虹.2004.滇黔交界地区峨眉山玄武岩铜矿化蚀变特征.地球学报,25(5):495-502
    177.李厚民,毛景文,张长青,许虹,陈毓川,王登红.2005a.滇黔交界地区玄武岩中有机质的生物标志物特征及其地质意义.地质论评,51(5):539-549
    178.李厚民,毛景文,张长青,许虹,陈毓川.2005b.滇黔交界地区玄武岩铜矿有机质的组成、结构及成因.地质学报,78(4):519-526
    179.李连举.1999.滇东北铅、锌、银矿床矿源层问题探讨.有色金属矿产与勘查,8(6):333-339
    180.李秋立,陈福坤,王秀丽,李向辉,李潮峰.2006.超低本底化学流程和单颗粒云母Rb-Sr等时线定年.科学通报,51(3):321-325
    181.李荣辰等.1991.四川省汉源县唐家铅锌矿区普查地质报告.四川省地矿局攀西队
    182.李文博,黄智龙,陈进等.2004b.会泽超大型铅锌矿床成矿时代研究.矿物学报,24(2):112-116
    183.李文博,黄智龙,王银喜,陈进,韩润生,许成,管涛,尹牡丹.2004a.会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及其地质意义.地质论评,50(2):189-195
    184.李友川,张爱云.1997.黔西南下三叠统金矿床有机地球化学特征及其成矿意义.地球化学,26(4):36-43
    185.廖文.1984.滇东、滇西Pb-Zn金属区S、Pb同位素组成特征与成矿模式探讨.地质与勘探,(1):1-6
    186.林方成.1994.四川会东大梁子铅锌矿床成因新探.矿床地质,13(2):126-136
    187.林方成.1995.康滇地轴东缘铅锌矿床铅同位素组成特征及其成因意义.特提斯地质,19:131-139
    188.林丽.1996.拉尔玛金矿矿源层--太阳顶群硅质岩的有机地球化学研究.矿物岩石地球化学通报,15(2):101-105
    189.刘斌,段光贤.1987.NaCl-H_2O溶液包裹体的密度式和等容式及其应用.矿物学报,7(4):345-352
    190.刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社,1-290
    191.刘丛强,黄智龙,李和平,苏根利.2001.地幔流体及其成矿作用.地学前缘(中国地质大学,北京),8(4):231-243
    192.刘德汉,史继扬.1994a.高演化碳酸盐烃源岩非常规评价方法探讨.石油勘探与开发,21(3):113-115
    193.刘德汉,史继扬.1994b.高演化碳酸岩的地球化学特征和生气规律.天然气地球科学,(2):40-41
    194.刘德权.1986.碳酸岩中的沥青在研究油气生成演化和金属矿床成因中的应用.见:中国科学院地球化学研究所有机地球化学与沉积地球化学研究室编,有机地球化学论文集,p133-138
    195.刘峰.2005.云南会泽大型铅锌矿床成矿机制及锗的赋存状态.导师:王登红,李厚民.中国地质科学研究院硕士论文,p 1-112
    196.刘家铎.张成江,刘显凡,阳正熙,李佑国,吴德超.2003.川滇黔相邻区域铜铅锌金银矿床与峨眉火成岩省的关系探讨.矿物岩石,23(4):74-79
    197.刘建明,赵善仁,沈洁,姜能,霍卫国.1998.成矿流体活动的同位素定年方法评述.地球物理学进展,13(3):46-55
    198.刘文均.郑荣才、李元林、高玲.1999.花垣铅锌矿床中沥青的初步研究--MVT铅锌矿床有机地化研究(Ⅰ).沉积学报,17(1):19-23
    199.刘文均,郑荣才.1999.花垣铅锌矿床包裹体气相组份研究--MVT矿床有机成矿作用(Ⅱ).沉积学报,17(4):608-614
    200.刘文均,郑荣才.2000a.花垣铅锌矿床成矿流体特征及动态.矿床地质,19(2):173-181
    201.刘文均,郑荣才.2000b.硫酸盐热化学还原反应与花垣铅锌矿床.中国科学,30(5):456-464
    202.刘文周,王奖臻。李泽琴.1998b.康滇地轴东缘铅锌矿床地球化学特征.矿床地质,21(增):173-176
    203.刘文周.徐新煌.1996.论滇川黔铅锌成矿带矿床与构造的关系.成都理工学院学报,23(1):71-77
    204.刘文周.1989.云南金沙厂铅锌矿床地质特征及成因探讨.成都地质学院学报,(2):1-9
    205.刘文周.1998a.茂租铅锌矿床地质特征及其成因探讨.矿床地质,17(增):637-640
    206.刘肇昌,李凡友,钟康惠,等.1996.扬子地台西缘构造演化与成矿.成都:电子科技大学出版社,p1-267,
    207.刘肇昌.钟康惠,李凡友.1999.扬子地块西部大陆边缘演化中的裂解作用.见:马宗晋主编.构造地质学-岩石圈动力学研究进展--庆贺马杏垣从事地质工作六十年暨八十寿辰,p 66-73
    208.柳贺昌.林文达.1999.滇东北铅锌银矿床规律研究.昆明:云南大学出版社,1-419
    209.柳贺昌.1995a.滇、川、黔铅锌成矿区的构造控矿.云南地质,14(3):173-189
    210.柳贺昌.1995b.峨眉山玄武岩与铅锌矿.地质与勘探,31(4):1-6
    211.柳贺昌.1996a.滇川黔铅锌成矿区的成矿模式.云南地质,15(1):41-51
    212.柳贺昌.1996b.滇川黔成矿区的铅锌矿源层(岩).地质与勘探,32(2):12-18
    213.龙训荣.1995.四川赤普铅锌矿床含矿岩系的研究及在找矿评价中的意义.四川地质学报,15(2):123-128
    214.龙训荣.1997.赤普铅锌矿床成矿物理化学条件研究.四川地质学报,17(1):29-35
    215.龙训荣.1997.赤普铅锌矿床成矿物理化学条件研究.四川地质学报,17(1):29-35
    216.卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体.北京:科学出版社,p 200-210
    217.卢家烂.1994.未成熟有机质与铅锌相互作用的实验研究.矿物岩石地球化学通报,(1):6-7
    218.卢家烂.1996.金属矿床中的有机物质:特征、分类方案和研究方法.地球科学进展,11(4):372-377
    219.陆彦.1998.川演南北向构造带的两开两合及成矿作用.矿物岩石,18(增):26-32
    220.罗家贤.2003.东坪铅锌矿构控特征及矿床成因.云南地质,p 304-312
    221.罗志立.刘树银.1994.试论C型俯冲带及对中国西部造山带形成的作用.成都:成都科技大学出版社
    222.骆耀南,傅德明,何虹.2003.峨眉地幔柱活动的成矿作用及其成矿系列.峨眉地幔柱与资源效应研讨会文集,p 99-100
    223.骆耀南等编.1996.扬子地台西南缘陆内造山带地质与矿产论文集.成都:四川科学技术出版社p1-360
    224.毛德明.2001.黔西北铅锌矿床REE特征及其意义.贵州地质,18(1):12-17
    225.毛景文,宋叔和,陈毓川.1988.桂北地区火成岩系列和锡多金属矿床成矿系列.北京科学技术出版社,1988,1-196
    226.毛景文,王志良,李厚民,王成玉,陈毓川.2003.云南鲁甸地区二叠纪玄武岩中同矿床的碳氧同位素对成矿过程的指示.地质论评,49(6):610-615
    227.欧锦秀.1996.贵州水城青山铅锌矿床的成矿地质特征.桂林工学院学报,16(3):277-282
    228.欧锦秀.1996.贵州水城青山铅锌矿床的成矿地质特征.桂林冶金地质学学报,16(3):277-282
    229.潘海祥.贝丰,陆元法.1997.云南腾冲热泉金的有机地球化学研究--Ⅰ生物标志物浅析.矿物岩石,17(2):84-88
    230.潘忠华,范德廉.1996.川东南脉状萤石-重晶石矿床同位素地球化学.岩石学报,12(1):127-136
    231.齐文,侯满堂,王根宝.2006.上扬子地台震旦系铅锌矿床类型及找矿方向.地球科学与黄精学报,28(2):30-36
    232.阙梅英,罗安屏,张立生,等.1993.滇东北上震旦-下寒武统层控铅锌矿.成都:成都科技大学出版社,p 124
    233.芮宗瑶,冶金华,张立生,王龙生,梅燕雄.2004.扬子克拉通周边及其隆起边缘的铅锌矿床.中国地质,31(4):337-346
    234.邵洁连.1988.金矿找矿矿物学.武汉:中国地质大学出版社.38-45
    235.沈苏,金明霞,陆元法,等.1988.西昌-滇中地区主要矿产成矿规律及找矿方向.重庆:重庆出版社,1-276
    236.四川省地质矿产局.1991.四川省区域地质志.北京:地质出版社.p362-400
    237.四川省地质矿产局川西地质大队.1985.四川省荥经县宝贝凼铅锌矿床详查评价地质报告.李志廷等编
    238.四川省地质矿产局攀西地质大队.1993.四川省金阳县底舒铅锌矿区详细普查地质报告.马光兴等编
    239.四川冶金地质勘探公司609队.1976.四川省甘洛县阿尔铅矿区地质勘探报告.朱泗怀等编
    240.宋兴田,钱国平.1985.康滇地轴中段东缘铅锌矿床硫铅同位素地质特征与成矿机理.云南地质,4(2):147-157
    241.苏晶文,胡凯,李贶.2005.粤北凡口超大型铅锌矿有机质成矿地球化学特征.高校地质学报,11(1):58-66
    242.孙省利.1999.西成铅锌矿田有机地球化学特征及成矿作用.甘肃地质学报,8(2):58-64
    243.孙玉麟,顾永达,杨秀瑾,吴奇虎.1988.某些煤中生物标志物的研究.燃料化学学报,16(2):136-142
    244.孙志伟.1998.会泽麒麟厂铅锌矿床隐伏矿体的发现及其预测的基础方法.云南地质,17(2):159-167
    245.谭小凡等.1984.四川省布托县乌依铅矿区详细普查地质报告.四川冶金地质勘探公司609队
    246.汤耀庆,冯益民.1984.中国板块构造研究的某些新进展.中国地质科学院院报,(10):49-58,
    247.涂光炽.2002.我国西南地区两个别具一格的成矿带(域).矿物岩石地球化学通报,21(1):1-2
    248.涂光炽等著.1984.中国层控矿床地球化学.第一卷.北京:科学出版社
    249.王安建,张建华,王高尚等编.2002.全球矿产资源战略研究.北京:地震出版社,p1-100
    250.王宝碌,吕世琨,胡居贵.2004.试论滇川黔菱形地块.云南地质,23(2):140-153
    251.王登红.2001.地幔柱的概念、分类、演化与大规模成矿-对中国西南部的探讨.地学前缘,8(3):67-72
    252.王鸿祯,从活动论观点论中国大地构造分区,地球科学,1981,(1):42-65,
    253.王华云.1993.贵州铅锌矿的地球化学特征.贵州地质,10(4):272-290
    254.王奖臻,李朝阳,李泽琴,李葆华,刘文周.2002.川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比.矿物岩石地球化学通报,21(2):127-132
    255.王奖臻,李朝阳,李泽琴,刘家军.2001.川滇黔地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨.地质地球化学,29(2):41-45
    256.王小春.1990a.论MVT铅锌矿床与沉积作用的关系--以四川天宝山和大梁子矿床为例.地学进展,(2):39-42
    257.王小春.1990b.论四川天宝山铅锌矿床底成矿物理化学条件.四川地质学报,10(1):34-42
    258.王小春.1991.四川大梁子铅锌矿床的成因分析.矿产与地质,5(3):150-156
    259.王小春.1992.天宝山铅锌成因分析.成都地质学院学报,19(3):10-20
    260.文美兰.2004.会泽铅锌矿构造地球化学特征及成矿预测.导师:李元.昆明理工大学硕士论文,p 1-105
    261.夏林.2000.有机质与沉积铅锌矿床成因关系的几个基本问题.云南地质,19(2):179-183
    262.夏文杰,杜森官,徐新煌,等.1994.中国南方震旦纪岩相古地理与成矿作用.北京:地质出版社,p1-120
    263.谢家荣.1963.中国矿床学总论.北京:学术期刊出版社
    264.谢树成,般鸿福,王红梅,周修高.1997.南京栖霞山多金属矿床的有机成矿作用.矿床地质,16(4):289-297
    265.谢树成,殷鸿福.1997a.生物-有机质-流体成矿系统.武汉:中国地质大学出版社,p 1-131
    266.徐新煌,龙训荣,温春齐,刘文周.1995.赤普铅锌矿床成矿物质来源研究.矿物岩石,16(3)54-59
    267.许志琴,候立玮,王宗秀.1992.中国松潘-甘孜造山带的造山过程.北京:地质出版社
    268.薛步高.2006.超大型会泽富锗铅锌矿复合成因.云南地质.25(2)143-159
    269.薛春纪,高永宝,Guoxiang Chi,曾荣,Hairuo Qing.2006.滇西兰坪盆地金顶矿田有机物质.见陈毓川,毛景文,薛春纪主编,第八届全国矿床会议论文集,p 346-348
    270.晏子贵,夏传见,贺光兴,邓斌武.2006.四川省宁南县跑马铅锌矿地质特征与找矿前景分析.地质找矿论丛.21(增):77-80
    271.杨应选,管士平.1994.康滇地轴东缘铅锌矿床成因及成矿规律.成都:四川科技大学出版社,1-175
    272.叶连俊等著.1993.生物成矿作用研究.北京:海洋出版社,p 1-282
    273.叶连俊主编.1996.生物有机质成矿作用.北京:海洋出版社,p 1-283
    274.叶连俊主编.1998.生物有机质成矿作用和成矿背景.海洋出版社
    275.易昌华、庐金彩等.1956.云南乐马厂铅银矿区普查报告书.冶金部地质局云南分局滇中普查队
    276.殷鸿福,谢树成.1994.微生物成矿研究的新进展和新动向.地学前缘,1(4):148-156
    277.于炳松,裘愉卓,李娟.1997.扬子地块西南部晚元古代-二叠纪沉积地球化学演化.沉积学报,15(4):127-134,
    278.余跃新.1988.四川大梁子铅锌矿床地质特征及其成因探讨.成都地质学院研究生毕业论文
    279.喻安光和郭建强.1998.扬子地台西缘构造格局.中国区域地质,17(3):255-261
    280.云南地矿资源股份有限公司.2002.云南司省鲁甸县乐红铅锌矿地质详查报告.p1-14
    281.云南省地质矿产局.1990.云南区域地质志.北京:地质出版社,p572-609
    282.云南省冶金局地质勘探公司317队.1974.奕良县洛泽河铁矿普查评价报告.
    283.翟裕生.2004.地球系统科学与成矿学研究.地学前缘,11(1):1-10
    284.张长青,毛景文,刘峰,李厚民.2005b.云南会泽铅锌矿床粘土矿物K-Ar测年及其地质意义.矿床地质,24(3):336-348
    285.张长青,毛景文,吴锁平,李厚民,刘峰,郭保健,高德荣.2005a.川滇黔地区MVT铅锌矿床分布、特征及成因.矿床地质.24(3):317-324
    286.张长青,毛景文,余金杰,李厚民.2007.四川甘洛赤普铅锌矿床流体包裹体特征及成矿机制初步探讨.岩石学报,23(10):2541-2552
    287.张长青.2005.川滇黔地区MVT铅锌矿床分布、特征及成因研究.导师:毛景文,北京:中国地质大学,p54
    288.张厚福,方朝亮,高先志,张枝焕,蒋有录.1999.石油地质学.北京:石油工业出版社,p 10-34
    289.张景廉.2001.生物礁与油气田、金属矿床的相互关系讨论.海相油气地质,6(1):53-59
    290.张景荣,朱法华.1990.金属矿床生物及衍生物成因标志.桂林冶金地质学院学报,10(3):225-235
    291.张理刚.1992.同位素地质研究现状与展望.地质与勘探,28(4):21-29,
    292.张理刚著.1985.稳定同位素在地质科学中的应用:金属活化热液成矿作用及找矿.西安:陕西科学技术出版社,p 1-266
    293.张立生.1997.滇东北地区层控Pb-Zn-(F-Ba)矿床地热液喀斯特成因.云南地质学报,18(1):41-52
    294.张启厚,顾尚义,毛健全.1999.贵州水城青山铅锌矿床地球化学研究.地质地球化学,27(1):15-20
    295.张启厚,毛健全,顾尚义.1998.水城赫章铅锌矿成矿的金属物源研究.贵州工业大学学报,27(6):26-34
    296.张位及.1984.试论滇东北Pb-Zn矿床的沉积成因和成矿规律.地质与勘探,(7):11-16
    297.张岳桥,杨农,孟晖,等.2004.四川攀西地区晚新生代构造变形历史与隆升过程初步研究.中国地质,3l(1):23-33,
    298.张云湘,骆耀南,杨崇喜,等.1988.攀西裂谷.北京:地质出版社,7-34.
    299.张云湘等.1955.四川汉源团宝山铅锌矿区一九五五年地质勘探及普查年终报告书.西南地质局516队
    300.张招崇,郝艳丽,王福生.2003.大火成岩省中苦橄岩的研究意义.地学前缘(中国地质大学,北京),10(3):105-114
    301.张招崇,王福生,郝艳丽.2005.峨眉山大火成岩省中的苦橄岩:地幔柱活动证据.矿物岩石地球化学通报,24(1):17-22
    302.张招崇.王福生.2003.峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨.地球科学,28(4):431-439
    303.张招崇,王富生,范蔚茗,邓海琳,徐义刚,许继峰,王岳军.2001.峨眉山玄武岩研究中的一些问题的讨论.岩石矿物学杂志,20(3):239-246
    304.张振亮,黄智龙,饶冰,管涛,严再飞.2005.会泽铅锌矿床成矿流体浓缩机制.地球科学--中国地质大学学报,30(4):443-449
    305.张自超.1995.我国某些元古宙及早寒武世碳酸盐岩石的锶同位素组成.地质论评,41(4):349-354
    306.张自洋.2003.乐红铅锌矿矿床地质与成因分析.云南地质,22(1):97-106
    307.赵准.1995.滇东、滇东北地区铅锌矿床的成矿模式.云南地质,14(4):350-354
    308.郑传仑.1992.黔西北铅锌矿区的控矿构造研究.矿产与地质,6(3):193-200
    309.郑明秋.1995.鲁甸乐马厂银矿床矿石物质组分及赋银特征初步研究.云南地质,14(1):28-38
    310.钟大赉等主编.1998.滇川西部古特提斯造山带.北京:科学出版社,p1-231
    311.周朝宪.1998.滇东北麒麟厂铅锌矿床成矿金属来源、成矿流体特征和成矿机理研究.矿物岩石地球化学通报.17(1):34-36
    312.周高明,李本禄.2005.云南毛坪铅锌矿床地质特征及成因初探.西部探矿工程,(3):75-76
    313.朱炳泉,胡耀国,张正伟,常向阳.2003.滇-黔地球化学边界似基伟诺型铜矿床的发现.中国科学(D辑),32(增):49-59
    314.朱炳泉.1998.地球科学中同位素体系理论与应用--兼论中国大陆壳幔演化.北京:科学出版社
    315.朱创业,张寿庭,丁益民,沈军辉.1994.四川团宝山铅锌矿的建造控矿机理.成都理工学院学报,21(4):26-32
    316.朱赖民,胡瑞忠,袁海华,栾世伟.1997.热液改造成矿机制--四川底舒铅锌矿床成矿作用研究.四川地质学报,17(3):182-190
    317.朱赖民,袁海华,栾世伟.1995a.金阳底苏会东大梁子铅锌矿床内闪锌矿微量元素标型特征及其研究意义,四川地质学报,15(1):49-55
    318.朱赖民.1995a.四川底苏、大梁子铅锌矿床同位素地球化学特征及成矿物质来源探讨.矿物岩石,15(1):72-79
    319.庄汉平,卢家烂,傅家谟,刘德汉.2000.黔西南卡林型金矿床中固体有机物质的有机岩石学研究.地质科学,35(1):83-90
    320.庄汉平,卢家烂,傅家谟,刘金钟,施继锡.1997.黔西南金锑矿床成矿流体中轻烃物质的初步研究.科学通报,42(16):1752-1754
    321.庄汉平,卢家烂.1996.与有机质有成因联系的金属矿床.地质地球化学,(4):6-11
    322.宗盛娥等.1959.四川省宁南县松林铅锌矿区及外围(化)探工作报告.四川省地质局物探大队309队

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700