用户名: 密码: 验证码:
金黄色葡萄球菌耐热核酸酶的功能鉴定及表达调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金黄色葡萄球菌(Staphylococcus aureus)是引起人类多种感染性疾病及食物中毒的重要病原菌之一,它导致的食物中毒和医院感染已经成为世界范围内影响公共卫生与健康的重要问题。耐热核酸酶是金黄色葡萄球菌重要的毒力因子之一,同时也是分离鉴定金黄色葡萄球菌的重要判定指标。课题组前期研究发现,一个新的编码耐热核酸酶的基因nuc2和已知功能的耐热核酸酶基因nuc1同时存在于基因组中,并能表达耐热核酸酶的活性。本论文从nuc2耐热核酸酶结构和特性的比较入手,围绕新的耐热核酸酶nuc2基因的功能鉴定展开研究,进而以基因表达、功能鉴定、调控规律为重点比对分析金黄色葡萄球菌两种耐热核酸酶的差异,主要研究内容和结果如下:
     1.采用生物信息学分析方法对金黄色葡萄球菌基因组中的nuc1、nuc2基因编码的蛋白质序列及结构进行比对,构建了不同种属间Nuc蛋白的进化树,揭示了金黄色葡萄球菌两个核酸酶在进化上的差异性。结果表明,Nuc2是一个在葡萄球菌属内进化较为保守的蛋白,而Nuc1则可能起源于其它菌属的水平转移。此外,在大肠杆菌中成功表达了两种核酸酶,对比研究了它们在体外表达时的酶活性特征,揭示了金黄色葡萄球菌Nuc2的酶学特征:最适反应温度为50℃,最适pH值为10,是一种非特异核糖核酸酶,适当浓度的Ca~(2+)、Mg~(2+)、DTT、β-mecaptoethanol、TritonX-100、Tween-20和Urea都能够提高Nuc2的酶活性,而Zn~(2+)、Mn~(2+)、EDTA和SDS则是Nuc2酶活性抑制剂。和Nuc1相比,体外表达的Nuc2酶活性较低,且对高温和重金属离子的耐受力明显低于Nuc1,这和Nuc2蛋白结构上不稳定的推测结果相符。本实验从序列、结构到酶活性特征上很好地区分了金黄色葡萄球菌两个重要的耐热核酸酶,对新近发现的耐热核酸酶Nuc2的特征作了较为详尽的研究,为其功能应用奠定了基础。
     2.采用Taqman荧光定量PCR方法比较了两个耐热核酸酶基因在转录水平上的差异。通过对金黄色葡萄球菌不同生长阶段nuc1和nuc2基因mRNA表达水平的比较分析,发现nuc1和nuc2基因在生长过程中的表达模式并不相同:nuc1基因的表达在对数后期达到最大值,和耐热核酸酶活性测定结果一致;nuc2基因则在生长初期达到最大值,到对数后期反而降低。另外,通过测定金黄色葡萄球菌双组分调节子sae的缺失突变对nuc1和nuc2基因表达的影响,结果发现,sae基因缺失显著下调nuc1基因的表达;而nuc2基因在sae缺失突变株中表达几乎不受影响。金黄色葡萄球菌临床分离株中的nuc1基因表达变化差异明显,nuc2基因的表达则相对稳定。通过研究nuc1和nuc2基因在表达上的相关性,发现nuc1和nuc2基因受到不同的调控机制调控,且nuc1基因的表达是决定耐热核酸酶活性表型的主要因素。
     3.利用微生物的同源重组双交换的遗传原理,成功构建了耐热核酸酶nuc2基因单缺失突变株和nuc1、nuc2基因双缺失突变株,并在分子水平进行了验证。突变株耐热核酸酶活性的测定结果表明,nuc2基因缺失后,酶活性比野生型降低,双突变株则检测不到耐热核酸酶活性。构建互补载体转化双突变株,互补菌株的酶活性测定结果发现,nuc1基因互补双缺失突变株能使其完全恢复到野生型的酶活水平,nuc2基因的互补只能恢复菌株nuc1基因突变后Nuc2的酶活表型。基因突变和互补实验确定了nuc2基因在金黄色葡萄球菌中具备耐热核酸酶活性表达功能,也进一步证实了nuc1基因在耐热核酸酶活性表型中占有主导地位的结论。
     4.利用基因表达谱芯片技术研究了两种核酸酶基因突变后对金黄色葡萄球菌RN4220转录组的影响,采用连锁转录及基因代谢途径定位的新分析方法,对两种核酸酶基因突变所影响的差异基因进行分析,结果表明,nuc1基因缺失显著影响了393个基因转录水平的变化,而nuc2的缺失显著影响了89个基因转录水平的变化。虽然两组基因都涉及到菌株的氨基酸代谢、糖代谢、复制修复、核酸代谢及调控因子,但在相同位置发生差异变化的基因只有20个,且调控水平都不相同。挑选21个差异基因,采用荧光定量PCR验证了芯片结果的可靠性。值得注意的是,△nuc2缺失突变株和精氨酸脱亚胺酶途径相关的基因座均下调,和ABC转运子相关的基因座上调,连锁调控的代谢途径还涉及到嘌呤代谢、甘氨酸、苏氨酸、异亮氨酸等氨基酸代谢途径。△nuc1基因缺失主要下调了和磷酸转移酶系统、脂代谢及毒力调控因子的连锁基因的表达,上调了尿素酶基因及蛋白酶基因。△nuc1和△nuc2缺失突变株在转录水平分别调控了不同的基因表达,且各有分工。
     5.为了更全面了解两种核酸酶基因的突变对于细胞代谢功能的影响,利用高通量的表型分析新技术--表型芯片(PM)研究了金黄色葡萄球菌两种耐热核酸酶突变株和亲本菌株RN4220的1100多种不同的表型,包括各种碳源、氮源、磷源、硫源的利用,对氨基酸及其他营养物质的代谢、渗透特征、pH及抗生素敏感性测试。和金葡亲本株相比,Δnuc2突变株的PM结果有13种表型减弱了1.5倍以上,包括对3种碳、硫源的利用,对7种氮源的利用,涉及氨基酸短肽及氨的代谢。突变株全部下调的表型说明了nuc2基因对金黄色葡萄球菌细胞的生理代谢的正常进行起着重要的作用; Δnuc1突变株的差异表型有9个,涉及氮源和磷源的代谢以及6个在酸性pH下的表型变化,和nuc2突变株表型不同的是,Δnuc1突变株中7种表型变化都是增强的,尤其是在酸性pH时突变株的生长和对氨基酸的利用上。25种抗生素敏感性测定结果发现,Δnuc2突变株和Δnuc1突变株对2-4种头孢类抗生素的抗性有所增加,这可能与膜蛋白的表达差异相关。生长曲线的测定结果表明,在酸性pH5条件下Δnuc1突变株的生长的明显高于Δnuc2菌株和野生型,且菌膜形成量明显增多,这与Δnuc1突变株在酸性条件下代谢表型的增强有重要的联系。
     总之,本论文揭示了耐热核酸酶基因nuc2的特征及功能,对两个耐热核酸酶在金黄色葡萄球菌中表达调控机制进行了探索,为更好地了解金黄色葡萄球菌耐热核酸酶的作用机制具有重要意义。
Staphylococcus aureus is one of the most important pathogens thatcan cause food-borne disease, as well as nosocomial infections.Staphylococcal food poisoning and nosocomial infections are of majorconcerns in public health worldwide. S. aureus produces thermonucleasewhich is known as one of the most important virulence factors.Thermonuclease is widely used as a unique marker for detection andidentification of S. aureus. Our previous studies have revealed theexistence of two functional thermostable nucleases encoded by twodifferent genes (nuc1and nuc2) in the S. aureus genome. To characterizethe function of Nuc2enzyme, our research started from comparisonanalysis of Nuc2and Nuc1on the structure and feature. Furthermore, thefunctional and regulatory differences of the two thermonucleases in S.aureus were also charaterized. The main findings and results are listed asfollows:
     1. Sequence alignments and phylogenetic analysis were carried outto study the evolution of Nuc1and Nuc2using bioinformatics tools. Theresults revealed that Nuc2protein was more conserved in thestaphylococci group compared with Nuc1protein, while the nuc1genemight have been acquired by lateral transfer from another pathogenicspecies. Two recombinant thermonucleases were successfully expressedin Escherichia coli, and their nuclease activities were further characterized and compared. The results showed that the optimal reactiontemperature and pH for recombinant Nuc2were50℃and pH10,respectively, and it was a sugar non-specific nucleases. The enzymaticactivity of Nuc2was stimulated in the presence of Ca~(2+), Mg~(2+),dithiothreitol, β-mecaptoethanol, TritonX-100, Tween-20, and urea;however, the activity decreased dramatically when exposed to heavymetals such as Zn~(2+)and Mn~(2+), and in the presence of EDTA or SDS.Nuc2showed a weaker activity, lower thermostability and differentsensitivity to the compounds compared with Nuc1, which showed acorrelation with the lack of a consensus pattern and changes of thehydrophobic core residues in the structure of Nuc2as predicted. Thisstudy determined important characteristics of the novel thermonuclease(Nuc2) in S. aureus and provided a discriminatory picture in therelationship on evolutionary and enzymatic differences of Nuc1and Nuc2by comparative analysis. This information helped us to better understandthe gene function and the potential application of this newthermonuclease gene.
     2. To study the expression of these two genes, comparative mRNAanalysis of nuc1and nuc2was carried out by Taqman quantitative real-time PCR. Distinct expression patterns were observed at different growthstages. The maximum level of nuc1transcripts appeared at the post-exponential growth phase, and the transcription level correlated well withthermonuclease activity results. In contrast, nuc2transcripts were mostlyexpressed at the early exponential phase and declined at the post-exponential growth phase. Effects of sae mutation on the expression ofthermostable nuclease genes were also determined. The nuc1geneexpression was notably down-regulated in a sae mutant and the nuc2genewas barely changed in the sae mutant. Furthermore, unlike the expressionof nuc1that varied in three different S. aureus clinical strains, the transcription of nuc2remained relatively constant. Comparativeexpression analysis of two thermostable nuclease genes showed that nuc1and nuc2gene were not co-regulated in Staphylococcus aureus, and nuc1expression plays a more pronounced role in thermonuclease activitiesthan that of nuc2.
     3. The nuc2knock out mutant and the nuc1and nuc2double deletionmutant of S. aureus were successfully constructed by homologousrecombination, and the mutants were confirmed on the molecular level.Thermonuclease assays revealed functional activity differences of nuc1and nuc2in S. aureus. Compared to the parental strain, RNΔnuc1andRNΔnuc2exhibited reduced activity zones on the plate. Thethermonuclease activity of the RNΔnuc2was higher than that of theRNΔnuc1on the toluidine blue-DNA agar. No activity was observed inthe nuc1and nuc2double deletion mutant. Complementation plasmidswere constructed and the complementation of the nuc1gene restored theentire nuclease activity in the double deletion mutant, while thecomplementation of nuc2could only restore the original nuc2activity asthat of RNΔnuc1on toluidine blue-DNA agar. The deletion mutants andrespective complementation experiments illuminated the nuc2genefunction in expression thermonuclease in S. aureus and furtherdemonstrated the major role for nuc1in terms of thermonuclease activityin S. aureus.
     4. A microarray method was used to analyze the transcriptionprofiles of S. aureus RN4220and its isogeneic△nuc1mutant and△nuc2mutant. The effected genes and pathways were compared and analyzed bythe contiguous genes and applied metabolites to the pathway. Microarrayanalysis revealed393genes expressed were significantly changed in thenuc1mutant in comparison to the parent strain. Meanwhile, only89geneswere significantly changed in the nuc2mutant, these genes were from similar pathway categories, such as amino acid metabolism, carbohydratemetabolism, replication and repair and nucleic acid metabolism andregulatory factors, however, only20of the changed genes were at thesame location. To validate of the microarray results,21differentiallyexpressed genes were selected and verified using quantitative real-timePCR. Particularly, the contiguous genes which were identified downregulated in the△nuc2mutant involved in the arginine-deiminase (ADI)pathway, while the ABC transporter related gene locus was up regulatedtogether. The purine, glycine, threonine, isoleucine metabolic pathwayswere also evolved when analyzed the contiguously regulated genes. In the△nuc1mutant, the altered genes evolved in the phosphotransferasesystem, lipid metabolism, and virulence regulatory factors were downregulated, and some of the urease genes and protease genes weresignificantly up-regulated. Generally, the△nuc1and△nuc2mutantsmade an impact in metabolic pathways, but the specific regulated geneswere different. The results implied that nuc1and nuc2may playrespectively roles to regulate various genes.
     5. To provide a more complete analysis on the influence of twothermonuclease genes to the metabolism phenotype, Δnuc1and Δnuc2mutants were comprehensively tested using the phenotype microarray(PM) analysis of over1100phenotypes (including utilization of differentcarbon, nitrogen, phosphate, and sulfur sources; growth stimulation orinhibition by amino acids and other nutrients, osmolytes, pH andsusceptibility to antibiotics). Compared to the parental strain, the Δnuc2mutant weakened13phenotypes of1.5times or more, includingutilization of3kinds of carbon, sulfur sources,7kinds of nitrogensources,(dipeptides and ammonia metabolism). All altered phenotypes inthe Δnuc2mutant were defective, suggesting an important role of nuc2gene played in the metabolism procedure of Staphylococcus aureus. In contrast to the Δnuc2mutant,7out of9changed phenotypes werestimulated in the Δnuc1mutant, including utilization of nitrogen andphosphorus source, particularly enhanced growth in the acidic pH andamino acids supplies. The results of25antibiotic susceptibility testsshowed that the resistance to2-4cephalosporin antibiotics of Δnuc2mutant and Δnuc1mutant had increased, suggesting a relationship withthe expression differences of membrane proteins. Furthermore, thegrowth of Δnuc1mutant in pH5were obviously greater than that of theparental strain and the Δnuc2mutant in the growth curve, which may berelated with the increased biofilm formation of the Δnuc1mutant. Theenhanced metabolic phenotypes of the Δnuc1mutant suggest a bettersurvival in the biofilm formation than the wild type.
     Taken together, the results of this study contribute to a new sight ofcharacterization, molecular function and metabolic networks of the twothermonuclease genes in S. aureus. It is helpful for a better understandingof regulation and the pathogenic mechanism of the thermonuclease genesin S. aureus.
引文
[1] Lowy, F.D. Staphylococcus aureus infections[J]. N Engl J Med,1998,339(8):520-32.
    [2] Drummelsmith, J.,Winstall, E.,Bergeron, M. G., et al., Comparative proteomics analyses reveal apotential biomarker for the detection of vancomycin-intermediate Staphylococcus aureus strains[J]. JProteome Res,2007,6(12):4690-702.
    [3] Sinsimer, D., Leekha, S.,Park, S., et al., Use of a multiplex molecular beacon platform for rapiddetection of methicillin and vancomycin resistance in Staphylococcus aureus[J]. J Clin Microbiol,2005,43(9):4585-91.
    [4] Bronner, S., Monteil, H.,Prevost, G. Regulation of virulence determinants in Staphylococcus aureus:complexity and applications[J]. FEMS Microbiol Rev,2004,28(2):183-200.
    [5] Sharma-Kuinkel, B. K.,Mann, E. E.,Ahn, J. S., et al., The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation[J]. J Bacteriol,2009,191(15):4767-75.
    [6] Tamber, S., Cheung, A. L. SarZ promotes the expression of virulence factors and represses biofilmformation by modulating SarA and agr in Staphylococcus aureus[J]. Infect Immun,2009,77(1):419-28.
    [7] Tsuji, B. T., Rybak, M. J.,Lau, K. L., et al., Evaluation of accessory gene regulator (agr) group andfunction in the proclivity towards vancomycin intermediate resistance in Staphylococcus aureus[J].Antimicrob Agents Chemother,2007,51(3):1089-91.
    [8] Luthje, P.,von Kockritz-Blickwede, M.,Schwarz, S. Identification and characterization of nine noveltypes of small staphylococcal plasmids carrying the lincosamide nucleotidyltransferase gene lnu(A)[J].J Antimicrob Chemother,2007,59(4):600-6.
    [9] Ohkura, T., Yamada, K.,Okamoto, A., et al., Nationwide epidemiological study revealed thedissemination of meticillin-resistant Staphylococcus aureus carrying a specific set of virulence-associated genes in Japanese hospitals[J]. J Med Microbiol,2009,58(10):1329-36.
    [10] Haga, S., Hishinuma, I.,Itoh, I., et al., Food poisoning caused by mannitol nonfermentingStaphylococcus aureus: case report[J]. Jpn J Infect Dis,2007,60(2-3):145-6.
    [11] Gonano, M.,Hein, I.,Zangerl, P., et al., Phenotypic and molecular characterization ofStaphylococcus aureus strains of veterinary, dairy and human origin[J]. Epidemiol Infect,2009,137(5):688-99.
    [12] Lis, E.,Korzekwa, K.,Bystron, J., et al., Enterotoxin gene content in Staphylococcus aureus fromthe human intestinal tract[J]. FEMS Microbiol Lett,2009,296(1):72-7.
    [13] Grumann, D., Scharf, S. S.,Holtfreter, S., et al., Immune cell activation by enterotoxin gene cluster(egc)-encoded and non-egc superantigens from Staphylococcus aureus[J]. J Immunol,2008,181(7):5054-61.
    [14] Delgado, A.,Zaman, S.,Muthaiyan, A., et al., The fusidic acid stimulon of Staphylococcusaureus[J]. J Antimicrob Chemother,2008,62(6):1207-14.
    [15] Roberts, C.,Anderson, K. L.,Murphy, E., et al., Characterizing the effect of the Staphylococcusaureus virulence factor regulator, SarA, on log-phase mRNA half-lives[J]. J Bacteriol,2006,188(7):2593-603.
    [16] Wang, D.,Yu, L.,Xiang, H., et al., Global transcriptional profiles of Staphylococcus aureus treatedwith berberine chloride[J]. FEMS Microbiol Lett,2008,279(2):217-25.
    [17] Bochner, B. R. Global phenotypic characterization of bacteria[J]. FEMS Microbiol Rev,2009,33(1):191-205.
    [18] Mesak, L. R.,Davies, J. Phenotypic changes in ciprofloxacin-resistant Staphylococcus aureus[J].Res Microbiol,2009,160(10):785-91.
    [19] Archer, G. L. Staphylococcus aureus: a well-armed pathogen[J]. Clin Infect Dis,1998,26(5):1179-81.
    [20]扬元斌,于徐.速冻食品中金黄色葡萄球菌的检出与存活情况[J].现代预防医学,2004(01):104-105.
    [21] Le Loir, Y.,Baron, F.,Gautier, M. Staphylococcus aureus and food poisoning[J]. Genet Mol Res,2003,2(1):63-76.
    [22]李毅,章乐怡,李小春.食品中金黄色葡萄球菌及肠毒素检测分析报告[J].中国卫生检验杂志,2009,(010):2370~2372.
    [23] von Eiff, C.,Becker, K.,Machka, K., et al., Nasal Carriage as a Source of Staphylococcus aureusBacteremia[J]. New England Journal of Medicine,2001,344(1):11-16.
    [24] Hiramatsu, K.,Hanaki, H.,Ino, T., et al., Methicillin-resistant Staphylococcus aureus clinical strainwith reduced vancomycin susceptibility[J]. J Antimicrob Chemother,1997,40(1):135-6.
    [25] Hvistendahl, M. China Takes Aim at Rampant Antibiotic Resistance[J]. Science,2012,2012,336(6083):795.
    [26] Clauditz, A.,Resch, A.,Wieland, K. P., et al., Staphyloxanthin plays a role in the fitness ofStaphylococcus aureus and its ability to cope with oxidative stress[J]. Infect Immun,2006,74(8):4950-3.
    [27] Liang, X.,Yu, C.,Sun, J., et al., Inactivation of a two-component signal transduction system, SaeRS,eliminates adherence and attenuates virulence of Staphylococcus aureus[J]. Infect Immun,2006,74(8):4655-65.
    [28] Sibbald, M. J.,Ziebandt, A. K.,Engelmann, S., et al., Mapping the pathways to staphylococcalpathogenesis by comparative secretomics[J]. Microbiol Mol Biol Rev,2006,70(3):755-88.
    [29] Gordon, R. J.,Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection[J].Clin Infect Dis,2008,46Suppl5S350-9.
    [30] Otto, M. Staphylococcal biofilms[J]. Curr Top Microbiol Immunol,2008,322207-28.
    [31] Yarwood, J. M.,Bartels, D. J.,Volper, E. M., et al., Quorum sensing in Staphylococcus aureusbiofilms[J]. J Bacteriol,2004,186(6):1838-50.
    [32] Atalla, H., Gyles, C.,Jacob, C. L., et al., Characterization of a Staphylococcus aureus small colonyvariant (SCV) associated with persistent bovine mastitis[J]. Foodborne Pathog Dis,2008,5(6):785-99.
    [33] Kahl, B. C., Belling, G., Becker, P., et al., Thymidine-dependent Staphylococcus aureus small-colony variants are associated with extensive alterations in regulator and virulence gene expressionprofiles[J]. Infect Immun,2005,73(7):4119-26.
    [34] Schulthess, B., Bloes, D. A.,Francois, P., et al., The sigmaB-dependent yabJ-spoVG operon isinvolved in the regulation of extracellular nuclease, lipase, and protease expression in Staphylococcusaureus[J]. J Bacteriol,2011,193(18):4954-62.
    [35] Novick, R. Pathogenicity factors and their regulation[J]. Gram-positive pathogens,2000,392–407.
    [36] Manna, A. C.,Cheung, A. L. Expression of SarX, a negative regulator of agr and exoproteinsynthesis, is activated by MgrA in Staphylococcus aureus[J]. J Bacteriol,2006,188(12):4288-99.
    [37] Ballal, A.,Manna, A. C. Expression of the sarA family of genes in different strains ofStaphylococcus aureus[J]. Microbiol-Sgm,2009,1552342-2352.
    [38] Geisinger, E.,Muir, T. W.,Novick, R. P. agr receptor mutants reveal distinct modes of inhibition bystaphylococcal autoinducing peptides[J]. Proc Natl Acad Sci U S A,2009,106(4):1216-21.
    [39] Traber, K. E.,Lee, E.,Benson, S., et al., agr function in clinical Staphylococcus aureus isolates[J].Microbiology,2008,154(8):2265-74.
    [40] Boles, B. R.,Horswill, A. R. Agr-mediated dispersal of Staphylococcus aureus biofilms[J]. PLoSPathog,2008,4(4): e1000052.
    [41] Morfeldt, E.,Tegmark, K.,Arvidson, S. Transcriptional control of the agr-dependent virulence generegulator, RNAIII, in Staphylococcus aureus[J]. Mol Microbiol,1996,21(6):1227-37.
    [42] Benito, Y.,Kolb, F. A.,Romby, P., et al., Probing the structure of RNAIII, the Staphylococcusaureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein Aexpression[J]. RNA,2000,6(5):668-79.
    [43] Dunman, P. M.,Murphy, E.,Haney, S., et al., Transcription profiling-based identification ofStaphylococcus aureus genes regulated by the agr and/or sarA loci[J]. J Bacteriol,2001,183(24):7341-53.
    [44] Cassat, J.,Dunman, P. M.,Murphy, E., et al., Transcriptional profiling of a Staphylococcus aureusclinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to thelaboratory strain RN6390[J]. Microbiology,2006,152(10):3075-90.
    [45] Novick, R. P.,Jiang, D. The staphylococcal saeRS system coordinates environmental signals withagr quorum sensing[J]. Microbiology,2003,149(10):2709-17.
    [46] Giraudo, A. T.,Mansilla, C.,Chan, A., et al., Studies on the expression of regulatory locus sae inStaphylococcus aureus[J]. Curr Microbiol,2003,46(4):246-50.
    [47] Steinhuber, A.,Goerke, C.,Bayer, M. G., et al., Molecular architecture of the regulatory Locus saeof Staphylococcus aureus and its impact on expression of virulence factors[J]. J Bacteriol,2003,185(21):6278-86.
    [48] Geiger, T.,Goerke, C.,Mainiero, M., et al., The virulence regulator Sae of Staphylococcus aureus:promoter activities and response to phagocytosis-related signals[J]. J Bacteriol,2008,190(10):3419-28.
    [49] Li, D.,Cheung, A. Repression of hla by rot is dependent on sae in Staphylococcus aureus[J]. InfectImmun,2008,76(3):1068-75.
    [50] Rogasch, K.,Ruhmling, V.,Pane-Farre, J., et al., Influence of the two-component system SaeRS onglobal gene expression in two different Staphylococcus aureus strains[J]. J Bacteriol,2006,188(22):7742-58.
    [51] Giraudo, A. T.,Cheung, A. L.,Nagel, R. The sae locus of Staphylococcus aureus controlsexoprotein synthesis at the transcriptional level[J]. Arch Microbiol,1997,168(1):53-8.
    [52] Smeltzer, M. S.,Hart, M. E.,Iandolo, J. J. Phenotypic characterization of xpr, a global regulator ofextracellular virulence factors in Staphylococcus aureus[J]. Infect Immun,1993,61(3):919-25.
    [53] Harraghy, N.,Kormanec, J.,Wolz, C., et al., sae is essential for expression of the staphylococcaladhesins Eap and Emp[J]. Microbiology,2005,151(Pt6):1789-800.
    [54] Goerke, C.,Fluckiger, U.,Steinhuber, A., et al., Impact of the regulatory loci agr, sarA and sae ofStaphylococcus aureus on the induction of alpha-toxin during device-related infection resolved bydirect quantitative transcript analysis[J]. Mol Microbiol,2001,40(6):1439-47.
    [55] Chien, Y.,Manna, A. C.,Projan, S. J., et al., SarA, a global regulator of virulence determinants inStaphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation[J]. J BiolChem,1999,274(52):37169-76.
    [56] Manna, A. C.,Cheung, A. L. Transcriptional regulation of the agr locus and the identification ofDNA binding residues of the global regulatory protein SarR in Staphylococcus aureus[J]. MolMicrobiol,2006,60(5):1289-301.
    [57] Goerke, C.,Esser, S.,Kummel, M., et al., Staphylococcus aureus strain designation by agr and cappolymorphism typing and delineation of agr diversification by sequence analysis[J]. Int J MedMicrobiol,2005,295(2):67-75.
    [58] Kullik, I. I.,Giachino, P. The alternative sigma factor sigmaB in Staphylococcus aureus: regulationof the sigB operon in response to growth phase and heat shock[J]. Arch Microbiol,1997,167(2/3):151-9.
    [59] Lorenz, U.,Huttinger, C.,Schafer, T., et al., The alternative sigma factor sigma B of Staphylococcusaureus modulates virulence in experimental central venous catheter-related infections[J]. MicrobesInfect,2008,10(3):217-23.
    [60] Kullik, I.,Giachino, P.,Fuchs, T. Deletion of the alternative sigma factor sigmaB in Staphylococcusaureus reveals its function as a global regulator of virulence genes[J]. J Bacteriol,1998,180(18):4814-20.
    [61] Chan, P. F.,Foster, S. J.,Ingham, E., et al., The Staphylococcus aureus alternative sigma factorsigmaB controls the environmental stress response but not starvation survival or pathogenicity in amouse abscess model[J]. J Bacteriol,1998,180(23):6082-9.
    [62] Gertz, S.,Engelmann, S.,Schmid, R., et al., Regulation of sigmaB-dependent transcription of sigBand asp23in two different Staphylococcus aureus strains[J]. Mol Gen Genet,1999,261(3):558-66.
    [63] Xiong, Y. Q.,Willard, J.,Yeaman, M. R., et al., Regulation of Staphylococcus aureus alpha-toxingene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis[J]. JInfect Dis,2006,194(9):1267-75.
    [64] Rachid, S.,Ohlsen, K.,Wallner, U., et al., Alternative transcription factor sigma(B) is involved inregulation of biofilm expression in a Staphylococcus aureus mucosal isolate[J]. J Bacteriol,2000,182(23):6824-6.
    [65] Rangarajan, E. S.,Shankar, V. Sugar non-specific endonucleases[J]. FEMS Microbiol Rev,2001,25(5):583-613.
    [66] Linn, S. a. R., R.J., Eds. Tabulation of some well-characterized enzymes with deoxyribonucleaseactivity. In: Nucleases [J]. Cold Spring Harbor Laboratory Press, New York.,1982,341-357.
    [67] Tucker, P. W.,Hazen, E. E., Jr.,Cotton, F. A. Staphylococcal nuclease reviewed: a prototypic studyin contemporary enzymology. I. Isolation; physical and enzymatic properties[J]. Mol Cell Biochem,1978,22(2-3):67-77.
    [68] Tucker, P. W.,Hazen, E. E., Jr.,Cotton, F. A. Staphylococcal nuclease reviewed: a prototypic studyin contemporary enzymology. IV. The nuclease as a model for protein folding[J]. Mol Cell Biochem,1979,23(3):131-41.
    [69] Benedik, M. J.,Strych, U. Serratia marcescens and its extracellular nuclease[J]. FEMS MicrobiolLett,1998,165(1):1-13.
    [70] Iwamatsu, A.,Aoyama, H.,Dibo, G., et al., Amino acid sequence of nuclease S1from Aspergillusoryzae[J]. J Biochem,1991,110(1):151-8.
    [71] Maekawa, K.,Tsunasawa, S.,Dibo, G., et al., Primary structure of nuclease P1from Penicilliumcitrinum[J]. Eur J Biochem,1991,200(3):651-61.
    [72] Wei, C. F.,Alianell, G. A.,Bencen, G. H., et al., Isolation and comparison of two molecular speciesof the BAL31nuclease from Alteromonas espejiana with distinct kinetic properties[J]. J Biol Chem,1983,258(22):13506-12.
    [73] Ikeda, S.,Kawasaki, N. Isolation and characterization of the Schizosaccharomyces pombe cDNAencoding the mitochondrial endonuclease(1)[J]. Biochim Biophys Acta,2001,1519(1-2):111-6.
    [74] Bouex, P.,Sabourin, M.,Chaignepain, S., et al., Purification and characterization of an endo-exonuclease from Podospora anserina mitochondria[J]. Biochim Biophys Acta,2002,1574(1):72-84.
    [75] Martin, C. E.,Wagner, R. P. Two forms of a mitochondrial endonuclease in Neurospora crassa [J].Can J Biochem,1975,53(7):823-5.
    [76] Wu, S. I.,Lo, S. K.,Shao, C. P., et al., Cloning and characterization of a periplasmic nuclease ofVibrio vulnificus and its role in preventing uptake of foreign DNA[J]. Appl Environ Microbiol,2001,67(1):82-8.
    [77] Birnboim, H. C. Cellular site in Bacillus subtilis of a nuclease which preferentially degradessingle-stranded nucleic acids[J]. J Bacteriol,1966,91(3):1004-11.
    [78] Horney, D. L.,Webster, D. A. Deoxyribonuclease: A sensitive assay using radial diffusion inagarose containing methyl green-DNA complex[J]. Biochimica et Biophysica Acta (BBA)-NucleicAcids and Protein Synthesis,1971,247(1):54-61.
    [79] Rosenthal, A. L.,Lacks, S. A. Nuclease detection in SDS-polyacrylamide gel electrophoresis[J].Anal Biochem,1977,80(1):76-90.
    [80] Man, J.,Chesbro, W. Detection of Staphylococcus aureus products in foods using enzyme linkedimmunosorbent assay and spectrophotometric thermonuclease assay [J]. Journal of Food Safety,1980,3(1):15-25.
    [81] Baumann, U.,Frank, R.,Blocker, H. Conformational analysis of hairpin oligodeoxyribonucleotidesby a single-strand-specific nuclease[J]. Eur J Biochem,1986,161(2):409-13.
    [82] Roth, J. S.,Milstein, S. W. Ribonuclease. I. A new assay method with P32labeled yeast ribonucleicacid[J]. J Biol Chem,1952,196(2):489-98.
    [83] Erickson, A.,Deibel, R. H. Production and heat stability of staphylococcal nuclease[J]. ApplMicrobiol,1973,25(3):332-6.
    [84] Gray, H. B., Jr.,Ostrander, D. A.,Hodnett, J. L., et al., Extracellular nucleases of PseudomonasBAL31. I. Characterization of single strand-specific deoxyriboendonuclease and double-stranddeoxyriboexonuclease activities[J]. Nucleic Acids Res,1975,2(9):1459-92.
    [85] Cooke, G. D.,Cranenburgh, R. M.,Hanak, J. A., et al., A modified Escherichia coli proteinproduction strain expressing staphylococcal nuclease, capable of auto-hydrolysing host nucleic acid[J].J Biotechnol,2003,101(3):229-39.
    [86] Jing, G.,Liu, L.,Jiang, M., et al., High-level expression of staphylococcal nuclease R gene inEscherichia coli[J]. J Biotechnol,1992,22(3):271-82.
    [87] Song, Q.,Zhang, X. Characterization of a novel non-specific nuclease from thermophilicbacteriophage GBSV1[J]. BMC Biotechnol,2008,843.
    [88] Serpersu, E. H.,Shortle, D.,Mildvan, A. S. Kinetic and magnetic resonance studies of effects ofgenetic substitution of a Ca2+-liganding amino acid in staphylococcal nuclease[J]. Biochemistry,1986,25(1):68-77.
    [89] Cotton, F.,Hazen, E., Legg, M. Staphylococcal nuclease: Proposed mechanism of action based onstructure of enzyme—thymidine3′,5′-bisphosphate—calcium ion complex at1.5-resolution[J].Proceedings of the National Academy of Sciences,1979,76(6):2551.
    [90] Fraser, M. J. Alkaline deoxyribonucleases released from Neurospora crassa mycelia: two activitiesnot released by mutants with multiple sensitivities to mutagens[J]. Nucleic Acids Res,1979,6(1):231-46.
    [91] Montague, J. W.,Hughes, F. M., Jr., Cidlowski, J. A. Native recombinant cyclophilins A, B, and Cdegrade DNA independently of peptidylprolyl cis-trans-isomerase activity. Potential roles ofcyclophilins in apoptosis[J]. J Biol Chem,1997,272(10):6677-84.
    [92] Desai, N. A., Shankar, V. Single-strand-specific nucleases[J]. FEMS Microbiol Rev,2003,26(5):457-91.
    [93] Parrish, J. Z., Xue, D. Cuts can kill: the roles of apoptotic nucleases in cell death and animaldevelopment[J]. Chromosoma,2006,115(2):89-97.
    [94] Sandel, M. K., McKillip, J. L. Virulence and recovery of Staphylococcus aureus relevant to thefood industry using improvements on traditional approaches[J]. Food Control,2004,15(1):5-10.
    [95] Hsia, K. C., Li, C. L.,Yuan, H. S. Structural and functional insight into sugar-nonspecific nucleasesin host defense[J]. Curr Opin Struct Biol,2005,15(1):126-34.
    [96] Bubeck W, J.,Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia[J]. JExp Med,2008,205(2):287-94.
    [97] Bubeck W, J.,Patel, R. J.,Schneewind, O. Surface proteins and exotoxins are required for thepathogenesis of Staphylococcus aureus pneumonia[J]. Infect Immun,2007,75(2):1040-4.
    [98] Mann, E. E.,Rice, K. C.,Boles, B. R., et al., Modulation of eDNA release and degradation affectsStaphylococcus aureus biofilm maturation[J]. PLoS One,2009,4(6): e5822.
    [99] Tsang, L. H.,Cassat, J. E.,Shaw, L. N., et al., Factors contributing to the biofilm-deficientphenotype of Staphylococcus aureus sarA mutants[J]. PLoS One,2008,3(10): e3361.
    [100] Beenken, K. E.,Spencer, H.,Griffin, L. M., et al., Impact of extracellular nuclease production onthe biofilm phenotype of Staphylococcus aureus under in vitro and in vivo conditions[J]. Infect Immun,2012,80(5):1634-8.
    [101] Anfinsen, C. B. Characterization of staphylococcal nuclease and the status of studies on itschemical synthesis[J]. Pure Appl Chem,1968,17(3):461-517.
    [102] Kovacevic, S.,Veal, L. E.,Hsiung, H. M., et al., Secretion of staphylococcal nuclease by Bacillussubtilis[J]. J Bacteriol,1985,162(2):521-8.
    [103] Tucker, P. W.,Hazen, E. E., Jr.,Cotton, F. A. Staphylococcal nuclease reviewed: a prototypic studyin contemporary enzymology. III. Correlation of the three-dimensional structure with the mechanismsof enzymatic action[J]. Mol Cell Biochem,1979,23(2):67-86.
    [104] Cole, H. B.,Sparks, S. W.,Torchia, D. A. Comparison of the solution and crystal structures ofstaphylococcal nuclease with13C and15N chemical shifts used as structural fingerprints[J]. Proc NatlAcad Sci U S A,1988,85(17):6362-5.
    [105] Su, Z.,Wu, J. M.,Fang, H. J., et al., Local stability identification and the role of a key aromaticamino acid residue in staphylococcal nuclease refolding[J]. FEBS J,2005,272(15):3960-6.
    [106] Meyrand, A.,Atrache, V.,Bavai, C., et al., An automated method for the detection ofstaphylococcal heat stable deoxyribonuclease in dairy products[J]. Lett Appl Microbiol,1999,29(4):216-20.
    [107] Kumar, J. K.,Sharma, A. K.,Kulkarni, P. R. Effect of preservation techniques and food additiveson staphylococcal thermonuclease[J]. Nahrung,2000,44(4):272-5.
    [108] Brakstad, O. G.,Maeland, J. A. Direct identification of Staphylococcus aureus in blood culturesby detection of the gene encoding the thermostable nuclease or the gene product[J]. APMIS,1995,103(3):209-18.
    [109] Alarcon, B.,Vicedo, B.,Aznar, R. PCR-based procedures for detection and quantification ofStaphylococcus aureus and their application in food[J]. J Appl Microbiol,2006,100(2):352-64.
    [110] Brakstad, O. G.,Aasbakk, K.,Maeland, J. A. Detection of Staphylococcus aureus by polymerasechain reaction amplification of the nuc gene[J]. J Clin Microbiol, Jul,1992,30(7):1654-60.
    [111] Kuroda, M.,Ohta, T.,Uchiyama, I., et al., Whole genome sequencing of meticillin-resistantStaphylococcus aureus. In Lancet,2001/06/22ed.;2001; Vol.357,1225-40.
    [112] Tang, J. N.,Shi, X. M.,Shi, C. L., et al., Characterization of a duplex polymerase chain reactionassay for the detection of enterotoxigenic strains of Staphylococcus aureus[J]. Journal of RapidMethods and Automation in Microbiology,2006,14(3):201-217.
    [113] Tang, J.,Zhou, R.,Shi, X., et al., Two thermostable nucleases coexisted in Staphylococcus aureus:evidence from mutagenesis and in vitro expression[J]. FEMS Microbiol Lett,2008,284(2):176-83.
    [114] Herron-Olson, L.,Fitzgerald, J. R.,Musser, J. M., et al., Molecular correlates of host specializationin Staphylococcus aureus[J]. PLoS One,2007,2(10): e1120.
    [115] Bendtsen, J. D.,Nielsen, H.,von Heijne, G., et al., Improved prediction of signal peptides: SignalP3.0[J]. J Mol Biol,2004,340(4):783-95.
    [116] Lambert, C.,Leonard, N.,De Bolle, X., et al., ESyPred3D: Prediction of proteins3D structures[J].Bioinformatics,2002,18(9):1250-6.
    [117] Humphrey, W.,Dalke, A.,Schulten, K. VMD: visual molecular dynamics[J]. J Mol Graph,1996,14(1):33-8,27-8.
    [118] J Sambrook, D. R. Molecular cloning: a laboratory manual[J]. CSHL press,2001.
    [119] Brnakova, Z.,Godany, A.,Timko, J. An extracellular endodeoxyribonuclease from Streptomycesaureofaciens[J]. Biochim Biophys Acta,2005,1721(1-3):116-23.
    [120] Suciu, D.,Inouye, M. The19-residue pro-peptide of staphylococcal nuclease has a profoundsecretion-enhancing ability in Escherichia coli [J]. Mol Microbiol,1996,21(1):181-95.
    [121] Chen, J.,Lu, Z.,Sakon, J., et al., Proteins with simplified hydrophobic cores compared to otherpacking mutants[J]. Biophys Chem,2004,110(3):239-48.
    [122] Chen, J.,Stites, W. E. Replacement of staphylococcal nuclease hydrophobic core residues withthose from thermophilic homologues indicates packing is improved in some thermostable proteins[J]. JMol Biol,2004,344(1):271-80.
    [123] Xie, T.,Liu, D.,Feng, Y., et al., Folding stability and cooperativity of the three forms of1-110residues fragment of staphylococcal nuclease[J]. Biophys J,2007,92(6):2090-107.
    [124] Hynes, T. R.,Fox, R. O. The crystal structure of staphylococcal nuclease refined at1.7Aresolution[J]. Proteins,1991,10(2):92-105.
    [125] Sasaki, T.,Kikuchi, K.,Tanaka, Y., et al., Reclassification of phenotypically identifiedstaphylococcus intermedius strains[J]. J Clin Microbiol,2007,45(9):2770-8.
    [126] Hirotaki, S.,Sasaki, T.,Kuwahara-Arai, K., et al., Rapid and accurate identification of human-associated staphylococci by use of multiplex PCR[J]. J Clin Microbiol,2011,49(10):3627-31.
    [127] Watanabe, S.,Ito, T.,Morimoto, Y., et al., Precise excision and self-integration of a compositetransposon as a model for spontaneous large-scale chromosome inversion/deletion of theStaphylococcus haemolyticus clinical strain JCSC1435[J]. J Bacteriol,2007,189(7):2921-5.
    [128] Becker, K.,Bierbaum, G.,von Eiff, C., et al., Understanding the physiology and adaptation ofstaphylococci: a post-genomic approach[J]. Int J Med Microbiol,2007,297(7-8):483-501.
    [129] Chen, J.,Novick, R. P. Phage-mediated intergeneric transfer of toxin genes[J]. Science,2009,323(5910):139-41.
    [130] Gill, S. R.,Fouts, D. E.,Archer, G. L., et al., Insights on evolution of virulence and resistancefrom the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and abiofilm-producing methicillin-resistant Staphylococcus epidermidis strain[J]. J Bacteriol,2005,187(7):2426-38.
    [131] Novick, R. P. Autoinduction and signal transduction in the regulation of staphylococcalvirulence[J]. Molecular Microbiology,2003,48(6):1429-1449.
    [132] Beenken, K. E.,Mrak, L. N.,Griffin, L. M., et al., Epistatic Relationships between sarA and agr inStaphylococcus aureus Biofilm Formation[J]. PLoS One,2010,5(5).
    [133] Tang, J.,Kang, M.,Chen, H., et al., The influence of sae locus knockout on exoproteins inStaphylococcus.aureus [J]. Journal of Food Safety,2010,30(3):711-720.
    [134] Eleaume, H.,Jabbouri, S. Comparison of two standardisation methods in real-time quantitativeRT-PCR to follow Staphylococcus aureus genes expression during in vitro growth[J]. J MicrobiolMethods,2004,59(3):363-70.
    [135] Schmittgen, T. D.,Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method[J].Nat Protoc,2008,3(6):1101-8.
    [136] Lachica, R. V.,Genigeorgis, C.,Hoeprich, P. D. Metachromatic agar-diffusion methods fordetecting staphylococcal nuclease activity[J]. Appl Microbiol,1971,21(4):585-7.
    [137] Scheu, P.,Berghof, K.,Stahl, U. Detection of pathogenic and spoilage micro-organisms in foodwith the polymerase chain reaction[J]. Food microbiology,1998,15(1):13-31.
    [138] Oscarsson, J.,Tegmark-Wisell, K.,Arvidson, S. Coordinated and differential control of aureolysin(aur) and serine protease (sspA) transcription in Staphylococcus aureus by sarA, rot and agr(RNAIII)[J]. Int J Med Microbiol,2006,296(6):365-80.
    [139] Bronner, S.,Stoessel, P.,Gravet, A., et al., Variable expressions of Staphylococcus aureusbicomponent leucotoxins semiquantified by competitive reverse transcription-PCR[J]. Appl EnvironMicrobiol,2000,66(9):3931-8.
    [140] Sabersheikh, S.,Saunders, N. A. Quantification of virulence-associated gene transcripts inepidemic methicillin resistant Staphylococcus aureus by real-time PCR[J]. Mol Cell Probes,2004,18(1):23-31.
    [141] Freeman, W. M.,Walker, S. J.,Vrana, K. E. Quantitative RT-PCR: pitfalls and potential[J].Biotechniques,1999,26(1):112-22,124-5.
    [142] Overbergh, L.,Giulietti, A.,Valckx, D., et al., The use of real-time reverse transcriptase PCR forthe quantification of cytokine gene expression[J]. Journal of Biomolecular Techniques: JBT,2003,14(1):33.
    [143] Giraudo, A. T.,Raspanti, C. G.,Calzolari, A., et al., Characterization of a Tn551-mutant ofStaphylococcus aureus defective in the production of several exoproteins[J]. Can J Microbiol,1994,40(8):677-81.
    [144] Giraudo, A. T.,Rampone, H.,Calzolari, A., et al., Phenotypic characterization and virulence of asae-agr-mutant of Staphylococcus aureus[J]. Can J Microbiol,1996,42(2):120-3.
    [145] Hart, M. E.,Crum, R. M.,St John-Tidwell, M. A., et al., Isolation of stable hemolysin and catalasevariants of Staphylococcus aureus S6C includes one with an exoprotein-deficient phenotype[J]. CurrMicrobiol,2001,43(2):134-9.
    [146]唐俊妮,龙飞,史贤明.金黄色葡萄球菌基因组DNA提取方法的比较研究[J].中国卫生检验杂志.2008,18(008):1467~1469.
    [147] Rigoulay, C.,Entenza, J. M.,Halpern, D., et al., Comparative analysis of the roles of HtrA-likesurface proteases in two virulent Staphylococcus aureus strains[J]. Infect Immun,2005,73(1):563-72.
    [148] Foster, T. J.,Peter Williams, J. K.,George, S.7.9Molecular Genetic Analysis of StaphylococcalVirulence. In Methods in Microbiology, Academic Press:1998;27,433-454.
    [149] Bae, T.,Schneewind, O. Allelic replacement in Staphylococcus aureus with inducible counter-selection[J]. Plasmid,2006,55(1):58-63.
    [150] Antignac, A., Tomasz, A. Reconstruction of the phenotypes of methicillin-resistantStaphylococcus aureus by replacement of the staphylococcal cassette chromosome mec with a plasmid-borne copy of Staphylococcus sciuri pbpD gene[J]. Antimicrob Agents Chemother,2009,53(2):435-41.
    [151] Bruckner, R. Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus[J].FEMS Microbiol Lett,1997,151(1):1-8.
    [152] Piccinini, R.,Borromeo, V.,Zecconi, A. Relationship between S. aureus gene pattern and dairyherd mastitis prevalence[J]. Vet Microbiol,2010,145(1-2):100-5.
    [153] Swanson, K. M.,Stelwagen, K.,Dobson, J., et al., Transcriptome profiling of Streptococcusuberis-induced mastitis reveals fundamental differences between immune gene expression in themammary gland and in a primary cell culture model[J]. J Dairy Sci,2009,92(1):117-29.
    [154] Baker, J.,Sitthisak, S.,Sengupta, M., et al., Copper stress induces a global stress response inStaphylococcus aureus and represses sae and agr expression and biofilm formation[J]. Appl EnvironMicrobiol,2009,76(1):150-60.
    [155] Anderson, K. L.,Roberts, C.,Disz, T., et al., Characterization of the Staphylococcus aureus heatshock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover[J]. JBacteriol,2006,188(19):6739-56.
    [156] Berends, E. T.,Horswill, A. R.,Haste, N. M., et al., Nuclease expression by Staphylococcusaureus facilitates escape from neutrophil extracellular traps[J]. J Innate Immun,2010,2(6):576-86.
    [157] Bolstad, B. M.,Irizarry, R. A.,Astrand, M., et al., A comparison of normalization methods for highdensity oligonucleotide array data based on variance and bias[J]. Bioinformatics,2003,19(2):185-93.
    [158] Makhlin, J.,Kofman, T.,Borovok, I., et al., Staphylococcus aureus ArcR controls expression ofthe arginine deiminase operon[J]. J Bacteriol,2007,189(16):5976-86.
    [159] Hubscher, J.,Jansen, A.,Kotte, O., et al., Living with an imperfect cell wall: compensation offemAB inactivation in Staphylococcus aureus[J]. BMC Genomics,2007,8307.
    [160] Seggewiss, J.,Becker, K.,Kotte, O., et al., Reporter metabolite analysis of transcriptional profilesof a Staphylococcus aureus strain with normal phenotype and its isogenic hemB mutant displaying thesmall-colony-variant phenotype[J]. J Bacteriol,2006,188(22):7765-77.
    [161] Montgomery, C. P.,Boyle-Vavra, S.,Daum, R. S. The arginine catabolic mobile element is notassociated with enhanced virulence in experimental invasive disease caused by the community-associated methicillin-resistant Staphylococcus aureus USA300genetic background[J]. Infect Immun,2009,77(7):2650-6.
    [162] Davidson, A. L.,Dassa, E.,Orelle, C., et al., Structure, function, and evolution of bacterial ATP-binding cassette systems[J]. Microbiol Mol Biol Rev,2008,72(2):317-64, table of contents.
    [163] Davidson, A. L.,Chen, J. ATP-binding cassette transporters in bacteria[J]. Annu Rev Biochem,2004,73241-68.
    [164] Pragman, A. A.,Herron-Olson, L.,Case, L. C., et al., Sequence analysis of the Staphylococcusaureus srrAB loci reveals that truncation of srrA affects growth and virulence factor expression[J]. JBacteriol,2007,189(20):7515-9.
    [165] Marti, M.,Trotonda, M. P.,Tormo-Mas, M. A., et al., Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus[J]. Microbes and Infection,2010,12(1):55-64.
    [166] Bochner, B. R.,Gadzinski, P.,Panomitros, E. Phenotype microarrays for high-throughputphenotypic testing and assay of gene function[J]. Genome Res, Jul,2001,11(7):1246-55.
    [167] Beenken, K. E.,Dunman, P. M.,McAleese, F., et al., Global gene expression in Staphylococcusaureus biofilms[J]. J Bacteriol,2004,186(14):4665-84.
    [168] Kerr, I. D.,Jones, P. M.,George, A. M. Multidrug efflux pumps: The structures of prokaryoticATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues[J]. Febs Journal,2010,277(3):550-563.
    [169] Bibb, L. A.,Schmitt, M. P. The ABC Transporter HrtAB Confers Resistance to Hemin Toxicityand Is Regulated in a Hemin-Dependent Manner by the ChrAS Two-Component System inCorynebacterium diphtheriae[J]. Journal of Bacteriology,2010,192(18):4606-4617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700