用户名: 密码: 验证码:
高效率空间行波管慢波系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为卫星通讯的核心部件,空间行波管要有很高的效率和良好的线性。慢波系统是注波互作用实现能量交换的部分,与行波管的带宽、效率等有着极其密切的关系,它直接决定了行波管的性能。提高慢波系统的注波互作用效率是提高空间行波管效率的途径之一,而且良好的线性也与慢波系统有关。因此,研究慢波系统是发展高效率空间行波管的一个重要课题。本论文对高效率空间行波管的慢波系统进行了研究,应用软件模拟分析了螺旋带径向厚度和螺距对慢波系统色散和耦合阻抗的影响;围绕提高空间行波管的效率问题,分析了提高互作用效率的方法,重点分析了相速度再同步法,使用注波互作用程序TWTCAD对X波段40W空间行波管的螺旋线慢波系统进行了分析和优化,研究表明双渐变螺旋线使注波互作用效率得到显著提高;利用HFSS软件模拟对设计的空间行波管耦合装置进行了分析,得到了与冷测结果基本一致的结果。最后,本论文还对空间行波管的非线性指标——幅相转换系数的测量方法进行了探讨和试验,给出了完整的基于矢网的测量方法。
     本论文的主要工作如下:
     一、利用基于有限元法(FEM)的数值计算软件HFSS对螺旋线行波管慢波系统的冷测特性进行了模拟分析,将有限厚度的螺旋带等效为中央存在无限薄螺旋带的等厚真空层,研究不同螺旋带径向厚度对慢波系统冷测特性的影响。等效模型的计算值与实验值基本相符,证明了该等效方法是有效的,这为大信号理论计算奠定了基础。
     二、针对螺旋线行波管慢波系统制备过程中螺距的变化问题,利用计算软件HFSS模拟研究了螺距对慢波系统色散和耦合阻抗的影响。由模拟结果可知当螺距变化小于4%时,其对慢波系统色散和耦合阻抗的影响很小,并且对工程实际的慢波系统进行了测量,测量结果表明在工程实践中保证螺距变化小于4%是可以实现的。
     三、分析了提高注波互作用效率的方法,重点研究了双渐变螺旋慢波系统,利用计算软件TWTCAD对X波段40W空间行波管的螺旋慢波系统进行了分析和优化,使得注波互作用效率由传统的13%提高到28%。同时,双渐变螺旋慢波系统使行波管具有良好的线性特性。这是本文的创新点。
     四、利用HFSS软件完成了X波段40W空间行波管的耦合装置的优化设计,并通过冷测实验进行了验证。冷测结果表明,在工作频带内,设计和冷测之间的平均误差小于2.3%,这一误差说明利用HFSS软件能够快捷方便而且比较精确的给出耦合装置的几何参数,完成耦合装置的设计。
     五、为了完成对空间行波管线性参量△φ和K_p的精确测量,通过实验研究了其测试方法,给出了基于矢网的测试方法,并对测试结果进行了误差分析。
As a core of satellite communications, Space Traveling-Wave Tubes (STWTs)must be high efficiency and well linear. The slow-wave structure (SWS) in whichthe energy is exchanged by beam-wave interaction is related to the bandwidthand efficiency of TWT and it determine the performance of the TWT directly.It is the one approach of enhance the efficiency of TWT that improve theefficiency of beam-wave interaction of SWS; moreover, well linear is relatedto the SWS. So the research of SWS is an important aspect about enhance theefficiency of TWT. The paper researched the SWS of high efficiency STWTs andanalyzed that the dispersion and interaction impedance affected by the radicalthickness and pitch of helix. In order to improve the efficiency of STWTs,the method of improve the efficiency of beam-wave interaction of SWS,especially the re-synchronization of beam-wave, are analyzed. Using theprogram of TWTCAD, the efficiency of beam-wave of the X-band STWT is enhancedby the double-taped helical SWS. The coupling equipment of STWTs is designed by thesimulated with software and measured by the vector network analyzer.
     At last, the measurement of AM/PM is discussed in this paper and the methodbased on the vector network analyzer is given.
     The mostly work of this paper is as follow:
     1. The cold characteristics of SWS are simulated by using the program ofHFSS. The finite radial thickness tape helix is replaced by the samethickness vacuum layer laid in an infinite thin tape helix andresearched the effect of the radial thickness on the coldcharacteristics of SWS. The validity of equivalent of radial thicknessis proved and it provides the reasonable gist for theoretic computer.
     2. Based on the arts and crafts of helical SWS, it is simulated andresearched that the pitch has had a great affect on dispersion andcoupling impedance in STWTs. The simulated results show that the effectis very small for the project if the variety of pitch of helix lessthan 4%, further more, the experiment shows that the variety of pitchof helix less than 4%.
     3. In order to improve the efficiency of STWTs, the method of improve theefficiency of beam-wave interaction of SWS are analyzed. Using theprogram of TWTCAD, the double-taped helical SWS of the X-hand STWT isoptimized and designed which enhanced the efficiency and improved thelinear of STWTs. This is the innovations in the paper.
     4. In order to improve the efficiency and linear, the coupling equipmentof X-band STWT is optimized, designed and measured. The measured resultshow that the average error is less than 2.3% in the bandwidth betweendesigned and measured. The error proves rationality and feasibilityof the method.
     5. In order to improve the precision of the measurement of AM/PM, themeasurement based on vector network analyzer is given, and that, theerror of measurement is analyzed.
引文
[1] J.F.吉廷斯著,山石译.功率行波管.电子管技术编辑组出版,1976年
    [2] 廖复疆.真空电子技术——信息装备的心脏.北京:国防工业出版社,2001年
    [3] 杨祥林,张兆镗,张祖舜.微波器件原理.北京:电子工业出版社,1994年
    [4] Barker R J, Schamiloglu E. High-Power Microwave Sources and technologies. IEEE Press, New York, 2001
    [5] Barker R J, Booske J H, Luhmann Jr. N C, et al. Modern Microwave and Millimeter-wave Power Electronics. IEEE press, 2005:172
    [6] 欧阳勤,空间行波管.真空电子技术,2003(2):29-32
    [7] 刘韦.基于计算机仿真的行波管慢波系统研究:[博士学位论文].北京:中国科学院电子学研究所,2005年1月:6-8
    [8] 吴鸿适.微波电子学原理.北京:科学出版社.1987年
    [9] J R Pierce. Theory of the beam type traveling-wave tube. Proc. I R E., 1947 (35): 108-110
    [10] S. Sensiper. Electromagnetic wave propagation on helical structure. Proc. I. R. E.,1955(43): 149-161
    [11] D. Chermin. Extract treatment of the dispersion and beam interaction impedance of a thin tape helix surrounded by a raidally stratified dielectric. IEEE Trans. On ED. 1999(46): 1472-1483
    [12] 王自成,陈庆有,吴鸿适.带状螺旋慢波系统色散的研究.电子学报,1999(27):40-44
    [13] A. Nordsieck. Theory of the large-signal behavior of traveling-wave amplifiers. Proc. I. R. E, 1953: 630-637
    [14] P. K. Tien, L. R. Walker, and V.M. Wolontis. A large-signal theory of traveling-wave amplifiers. Proc. I.R.E, 1955, 43 (3): 260-277
    [15] J. E.Rowe. Nonlinear electron-wave interaction phenomenon. Academic Press, Inc., New York, 1965
    [16] L. A. Vainshtein. The Nonlinear Theory of Traveling Wave Tubes: Part Ⅲ, Influence of the Space Charge Forces. Radio Eng. Electron, 1958 (9): 116-123
    [17] J. G. Wohlbier, J.H. Booske, and I. Oobson. The multifrequency spectral Eulerian (MUSE) model of a traveling wave tube. IEEE Trans. on Plasma Science, 2002, 30 (3): 1063-1075
    [18] T.M. Antonsen, Jr., and B. Levush. Traveling-wave tube devices with dielectric elements. IEEE Trans. on Plasma Science, 1998, 26 (3): 774-786
    [19] David Chernin, T.M. Antonsen, Jr., and B. Levush et al. A three-dimensional multifrequency large signal model for helix traveling wave tubes. IEEE Trans. on Electron Devices, 2001, 48(1): 3-11
    [20] David Chernin, T.M. Antonsen, Jr., and B. Levush. "Power holes" and nonlinear forward and backward wave gain competition in helix traveling-wave tubes. IEEE Trans. on Electron Devices. 2003,50(12): 2540-2547
    [21] H. P. Freund. Three-dimensional nonlinear theory of helix traveling-wave tubes. IEEE Trans. on Plasma Science, 2000, 28(3):748-759
    [22] J. M. Dawson. Particle simulation of plasma. Reviews of Modern Physics, 1983,55(2): 404-441
    [23] Lalit Kumar, R.S. Raju, S.N. Joshi and B.N. Basu. Modeling of a vane-loaded helical slow-wave structure for broad-band traveling-wave tubes, IEEE Trans. on Electron Devices, 1989, 36(9): 1991-1999
    [24] T. M. Antonsen et al. Advances in Modeling and Simulation of Vacuum Electronic Devics. Proceedings of the IEEE, 1999, 5: 804-839
    [25] 杨中海,李斌等.微波管CAD技术进展.真空电子技术,2002(4):1-9
    [26] F. Kantrowitx, I. Tammaru. Three Dimensional Simulations of Frequency Phase Measurements of Arbitrary Coupled-Cavity RF Circuit. IEEE Trans. on Electron Devices, 1988, 35(11): 2018-2026
    [27] C. L. Kory, J.A. Dayton, Jr. Accurate cold-test model of helical TWT slow-wave circuits. IEEE Trans. on Electron Devices, 1998, 45(4): 966—971
    [28] C. L. Kory. Three-dimensional simulation of helix traveling-wave tube cold-test characteristics usingMAFIA. IEEE Trans, on Electron Devices, 1996, 43(8): 1937—1319
    [29] J. D. Wilson. Design of high-efficiency wide-bandwidth coupled-cavity traveling-wave tube phase velocity tapers with simulated annealing algorithms. IEEE Trans. on Electron Devices, 2001, 48(1): 95—100
    [30] 张国兴,戴卢富,刘准.MAFIA软件模拟三维耦合腔慢波结构.电子学报,1997,25(6):1—5
    [31] 雷文强,杨中海,廖莉等.螺旋慢波电路高频特性的三维计算模拟.强激光与粒子束,2002,14(6):892—896
    [32] R. T. Benton, et al. First Pass TWT Design Success. IEEE Trans. on Electron Devices, 2001(48): 176-178
    [33] 雷文强.宽带大功率行波管高频慢波系统CAD研究.[博士学位论文].成都:电子科技大学,2003
    [34] Antonsen T. M., Jr., Mondelli A. A., Levush B.,Verboncoeur J. P., Birdsall C. K.. Advances in Modeling and Simulation of Vacuum Electronic Devices. Proceedings of the IEEE, 1999, 87(5): 804-839
    [35] 段兆云,宫玉彬,王文祥,雷文强,蓝永海.考虑螺旋带径向厚度的螺旋慢波系统的研究.强激光与离子束,2002,6(14):905~910
    [36] 张勇,莫元龙,李建清,周晓岚.翼片加载螺旋线慢波系统的螺旋带模型.强激光与离子束,2002,6(14):887~891
    [37] S. Kapoor, R.S. Raju, R.K. Gupta, S.N, Joshi, and B.N. Basu. Analysis of an inhomogeneously loaded helical slow-wave-structure for broad-band TWT' s. IEEE Trans. Edu., 1989, 36(9): 2000-2004
    [38] L. Kumar, R.S. Raju, S.N. Joshi, and B.N. Basu. Modeling of a vane-loaded helical slow-wave structure for broad-band traveling-wave tube. IEEE Trans. Edu., 1989, 36(9): 1991-1999
    [39] R. S. Raju, S.N. Joshi, and B.N. Basu. Modeling of practical multi-octave-band slow-wave structures of a traveling-wave tube for interaction impedance. IEEE Trans. Edu., 1992, 39(9):996-1001
    [40] Chang Y T. A study of helix-coupled vane slow-wave structure. Acta. Elec. Sin., 1986,14(8): 67-75
    [41] M. V. Kartikeyan, A. K. Sinha, H.N. Bandopadhyay, and D.S. Venkateswarlu. A study of a radially thick helix: Equivalent circuit approach. IEEE Trans. Edu., 1992, 39(8): 1961-1965
    [42] M.V. Kartikeyan, A. K. Sinha, H.N. Bandopadhyay, and D.S. Venkateswarlu. Effective Simulation of the Radial Thickness of Helix of Broad Band, Practical TWT' s. IEEE Trans. on Plasma Science, 1999, 27(4):1115-1123
    [43] Chernin, D. fntonsen Jr., T. M. and Levush B. Exact treatment of the dispersion and beam interaction impedance of a thin tape helix surrounded by a radially stratified dielectric. IEEE Trans. on Electron Devices, 1999, 46(7): 1472-1483
    [44] 刘盛纲,李宏福,王文祥等.微波电子学导论.北京:国防工业出版社,1985
    [45] http://www.ansoft.com
    [46] 肖刘.行波管电磁慢波系统及电子注—波互作用研究.[博士学位论文].北京:中国科学院研究生院(电子所),2006
    [47] Kory C L, Dayton, J A. Accurate cold-test model of helical TWT slow-wave circuits. IEEE Trans. on Electron Devices [J], 1998, 45(4): 966-971
    [48] Kory C L, Dayton J A. Effect of helical slow-wave circuit variations on TWT cold-test Characteristics. IEEE Trans. on Electron Device, 1998, 45(4): 972-976
    [49] Rao S J, Ghosh S, Jain PK, Basu B N. Nonresonant perturbation measurements on dispersion and interaction impedance characteristics of helical slow wave structure. On Microwave theory and techniques, 1997, 45(9): 1585-1593
    [50] Paul Greninger. Tape Helix Perturbation Including 3-D Dielectrics for TWTs. IEEE Trans. on Electron Devices, 2001, 48(1): 12-23
    [51] V Srivastava, R G Carter, B Ravinder, et al. Design of helix slow-wave structures for high efficiency TWTs. IEEE Trans. on Electron Device, 2000, 47(12): 2438-2443
    [52] 董树义.微波测量技术.北京:北京理工大学出版社,1991
    [53] 张兆镗.微波管高频系统的测量.北京:国防工业出版社,1982
    [54] A. W. Horsley, A. Pearson. Measure of Dispersion and Interaction Impedance Characteristics of Slow wave Structure by Resonance Methods. IEEE Trans. on Electron Devices, 1966,13(12): 962-969
    [55] S. J. Rao, S. Ghosh, P. K. Jain, B. N. Basu. Nonresonant Perturbation Measuremetns on Dispersion and Interaction Impedance Characteristics of Helical Slow wave Structures. IEEE Trans. on Microwave Theroy and Techniques, 1997,45(9): 1585-1593
    [56] J E 罗埃著,电子与波的非线性互作用现象.第一版,北京:科学出版社,1979:19-28
    [57] Meeker JG and J. E. Rowe. Phase Focusing in Linear-beam Devices. IRE Trams on Electron Devices, 1962, 9(5): 257-266
    [58] C Peilong. Enhancement of traveling wave tubeby velocity tapers. Journal of electronics (Sinitic),1979, 1(2):64-73
    [59] P Thouvenin, etc. New helix tapers boost space TWT efficiency to 55%, broadband. IEDM87: 477-480
    [60] S K Liu. Engineering computation and analysis of enhancing efficiency for folded waveguide TWT in MMW. International journal of infrared and millimeter wave, 2004, 25(3):471-480
    [61] C L Jones. A 200 Watt traveling wave tube for communications technology satellite. NASA, CR-135029,1976
    [62] V Srivastava, V V P, B Ravinder, TK Ghosh, et al. Design of a high efficiency c-band 60W space TWT. IEEE, 1998: 767-770
    [63] BK Sharma, VSV Raju, and V Srivastava. Design of dual anode electron gun for Ku-band 140W space TWT, IEEE, 2003:122-123
    [64] R N Tamashiro, S L Aldana. 60 percent efficient k-band TWT using new diamond rod technology. IDEM89: 187-190
    [65] C L Kory. Investigation of fully three-dimension helical RF field effects on TWT beam/circuit interaction. IEEE Trans. Electron Devices, 2001, 48(8): 1718-1726
    [66] C L Kory, J A Dayton, and Jr. Accurate cold-test model of helical TWT slow-wave circuits. IEEE Trans. Electron Devices, 1998,45(4):966-971
    [67] J A Dayton, Jr. Private Communication. Apr, 2000
    [68] 电子管设计手册编辑委员会.中小功率行波管设计手册.北京,1976
    [69] 顾茂章,张克潜.微波技术.北京:清华大学出版社,1988年
    [70] 斯国新.卫星通信系统,宇宙出版社,1993:93-220
    [71] 汤世贤.微波测量.北京理工大学出版社,1983:169-360
    [72] 邮电506厂《行波管》编写组编著.行波管.人民邮电出版社,1979
    [73] Agilent公司.Guide for Network Analyzer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700